Lecture Notes in Mechanical Engineering Editor Mokhtar Awang The Advances in Joining Technology Lecture Notes in Mechanical Engineering Lecture Notes in Mechanical Engineering (LNME) publishes the latest develop- ments in Mechanical Engineering—quickly, informally and with high quality. Originalresearchreportedin proceedings andpost-proceedings represents thecore of LNME. Also considered for publication are monographs, contributed volumes and lecture notes of exceptionally high quality and interest. Volumes published in LNME embrace all aspects, subfields and new challenges of mechanical engineering. Topics in the series include: (cid:129) Engineering Design (cid:129) Machinery and Machine Elements (cid:129) Mechanical Structures and Stress Analysis (cid:129) Automotive Engineering (cid:129) Engine Technology (cid:129) Aerospace Technology and Astronautics (cid:129) Nanotechnology and Microengineering (cid:129) Control, Robotics, Mechatronics (cid:129) MEMS (cid:129) Theoretical and Applied Mechanics (cid:129) Dynamical Systems, Control (cid:129) Fluid Mechanics (cid:129) Engineering Thermodynamics, Heat and Mass Transfer (cid:129) Manufacturing (cid:129) Precision Engineering, Instrumentation, Measurement (cid:129) Materials Engineering (cid:129) Tribology and Surface Technology More information about this series at http://www.springer.com/series/11236 Mokhtar Awang Editor The Advances in Joining Technology 123 Editor Mokhtar Awang Department ofMechanical Engineering Universiti TeknologiPETRONAS Seri Iskandar Malaysia ISSN 2195-4356 ISSN 2195-4364 (electronic) Lecture Notesin MechanicalEngineering ISBN978-981-10-9040-0 ISBN978-981-10-9041-7 (eBook) https://doi.org/10.1007/978-981-10-9041-7 LibraryofCongressControlNumber:2018938358 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. partofSpringerNature Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young’s Modulus Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bahman Meyghani, M. Awang, S. Emamian and Mohd Khalid B. Mohd Nor The Effect of Pin Profiles and Process Parameters on Temperature and Tensile Strength in Friction Stir Welding of AL6061 Alloy. . . . . . . 15 S. Emamian, M. Awang, F. Yusof, Patthi Hussain, Bahman Meyghani and Adeel Zafar The Effect of Argon Shielding Gas Flow Rate on Welded 22MnB5 Boron Steel Using Low Power Fiber Laser . . . . . . . . . . . . . . . . . . . . . . 39 Khairul Ihsan Yaakob, Mahadzir Ishak and Siti Rabiatull Aisha Idris Effect of Bevel Angle and Welding Current on T-Joint Using Gas Metal Arc Welding (GMAW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Z. A. Zakaria, M. A. H. Mohd Jasri, Amirrudin Yaacob, K. N. M. Hasan and A. R. Othman Laser Brazing Between Sapphire and Inconel 600 . . . . . . . . . . . . . . . . . 59 Shamini Janasekaran, Farazila Yusof and Mohd Hamdi Abdul Shukor A Review on Underwater Friction Stir Welding (UFSW). . . . . . . . . . . . 71 Dhanis Paramaguru, Srinivasa Rao Pedapati and M. Awang Three Response Optimization of Spot-Welded Joint Using Taguchi Design and Response Surface Methodology Techniques. . . . . . . . . . . . . 85 F. A. Ghazali, Z. Salleh, Yupiter H. P. Manurung, Y. M. Taib, Koay Mei Hyie, M. A. Ahamat and S. H. Ahmad Hamidi A Review on Mechanical Properties of SnAgCu/Cu Joint Using Laser Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Nabila Tamar Jaya, Siti Rabiatull Aisha Idris and Mahadzir Ishak v Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young’s Modulus Values BahmanMeyghani,M.Awang,S.EmamianandMohdKhalidB.MohdNor Abstract The temperature fluctuations present in Friction Stir Welding (FSW), require,detailedthermalanalysisoftheprocess.Toachievehighlyaccurateresultsfor theanalysis,reliablematerialdatashouldbeobtained.Nevertheless,thematerialdata thatarepresentedintheliteratureareusuallylimitedtolowerstrainrateregimesand lowertemperatures.Thus,calculatingthetemperaturedependentmaterialproperties helpsimprovetheaccuracyofthestimulatedmodel.Toachieveareliablematerial datainthehigherrangeoftemperatures,thispaperpresentsamathematicalformu- lationforcalculatingtemperaturedependentYoung’smodulusvalues.MATLAB® andABAQUS®softwareareemployedforsolvingthegoverningequationsandmod- ellingtheprocess,respectively.Tocomparetheresultsandfindtheerrorpercentage, thecalculatedandthedocumented(constant)valuesofYoung’smodulusareapplied intotwodistinctfiniteelementmodels.Finally,thedevelopedmodelisvalidatedby comparingtheresultsobtainedfromexperimentswithpublishedresults. · · Keywords Temperaturefluctuations Frictionstirwelding(FSW) Mathematical · formulation Young’smodulus 1 Introduction FSWcombinesbothmechanicalandthermalphenomena.Basically,thetemperature evaluation surrounding and inside the stirring zone (SZ) is dominated by severe plasticdeformationandfrictionalforce[1].Toclarifythepoint,plasticdeformation producesmechanicalenergyandsomepartsofthismechanicalenergyistransformed B B.Meyghani·M.Awang( )·S.Emamian DepartmentofMechanicalEngineering,FacultyofEngineering,UniversitiTeknologi PETRONAS,BandarSeriIskandar32610,PerakDarulRidzuan,Malaysia e-mail:[email protected] M.K.B.MohdNor FrictionandForgeProcessesGroup,JoiningTechnologiesGroup,TWILtd,Cambridge,UK ©SpringerNatureSingaporePteLtd.2019 1 M. Awang (ed.), The Advances in Joining Technology, Lecture Notes in Mechanical Engineering,https://doi.org/10.1007/978-981-10-9041-7_1 2 B.Meyghanietal. intoheat[2].Thisissuecausespermanentmicrostructuralchangesandalsochanges thephaseofthematerial. Many studies have been done to investigate the temperature behaviour during the FSW process by using experimental procedures [3–5], however, for detailed understandingandanalysethethermalbehaviour,experimentalmethodsareusually costly and time consuming. Finite Element Methods (FEMs) is recommended as apowerfultoolandaneffectivenumericaltechniqueforsolvingpartialdifferential equations(PDEs)inengineering,thereforeFEMsareacheaperandquickerapproach forinvestigatingtheprocess.AschematicviewoftheFSWisdescribedinFig.1. Asdiscussedearlier,themostsignificantfactorsforthegenerationoftheheatare frictionalforceandplasticdeformation[6,7].Therefore,toobtainmorepreciseanal- ysisoftheprocess,itiscrucialtopreciselydefinethematerialplasticitybehaviour. Oneofthemostsignificantinputparameterswhichisinfluencingtheaccuracyofthe simulatedmodelisYoung’smodulus.However,Young’smodulusthatwereusedin theliterature,usuallyobtainedfromtheexperimentaldataorgainedfromthelitera- ture[8–10].Additionally,thevaluesareoftenrestrictedtolowerstrainrateregimes andlowertemperatures.While,temperatureinFSWcanreachupto60–80%ofthe basematerialmeltingtemperature[11]. Inrecentyears,theFSWprocessmodellinghasbeenresearchedinbothacademic andindustrialorganisations.ALagrangian–Eulerian(adaptivearbitraryformulation) was established to compute the evolution of the temperature and the flow of the materialthroughouttheFSWprocess[12].Inthemodel,Young’smoduluswaskept constantat73GPaandthePoisson’sratiowasassumedtobe0.3.Inthisresearch, 3D Forge3® FE software with automatic remeshing was utilised to implement the formulation. The results indicated that the accuracy of the model in the tempera- Fig.1 Theprocessschematicviewandrotationdirection ThermalModellingofFrictionStirWelding(FSW)Using… 3 turepredictionishighlydependenttotheuseofconstantortemperaturedependent materialproperties. ThearbitraryLagrangian–Eulerian(ALE)methodwasusedtodevelopa3DFE model in ABAQUS®/Explicit by utilising Coulomb law of friction and Johnson— Cook material law [8]. The study found that the generation of the heat during the processcanbecategorisedintotwovariousparts,theheatgeneratedbythedeforma- tionofthematerialnearthepinandtheshoulder,andthefrictionalforce.Inaddition, the numerical results of the paper indicated that the heat generated by the friction hasmoreimpactincomparisontotheheatproducedbytheplasticdeformation.The studyalsodemonstratedthatsomeportionsoftheheatistheresultofthesliprate. Meanwhile, it was claimed that, the heat from the plastic deformation is linked to thematerialvelocity. Toestimatetheresidualstressesandthepeaktemperature,astationaryshoulder wasusedinastudy[9]inwhichaconstantYoung’smodulusandPoisson’sratioof 71.7and0.33GPahavebeenemployed,respectively.Itwasobservedthat,through thethicknessofthematerial,theprocessproducedamoreuniformandanarrower nugget zone and the heat affected zone. Furthermore, ‘M’ shaped residual stress distributionswereobtained. Meanwhile,afiniteelement(FE)analysiswasemployedforsimulatingthestress, the effective strain distribution and the temperature on the workpiece surface for differentpinprofiles[10].Themodelusedaconstantelasticmodulusof68.9GPa and a constant Poison’s ratio of 0.3. The study examined the fracture surfaces at both microscopic and macroscopic levels to investigate the welded joints fracture behaviour.Itwasfoundthatthecrackinitiatedfromtheperipheryofthejoint,and thefailureofthejointsmainlyoccurredduetothethinningoftheuppersheet. Astudypresented[13]asolidapproachbyusingaconstantPoisson’sratioof0.33 andYoung’smodulusof70.4GPaforthermomechanicalsimulationofFSW.Two numerical models (three dimensional models) were compared representing FSW procedureswithatrigonalpin.Oneofthemodelswasbasedonasolidformulation, whiletheotheronewasbasedonafluidformulation.AuthorsusedNorton–Hoffcon- stitutivemodelwithhighsensitivitytothetemperature,andtheArbitraryLagrangian Eulerian(ALE)method.Itwasconcludedthat,thetwomentionedformulationslead tothesameresults. Inamodel[14]aconstantpoisonratioof0.33andYoung’smodulusof68.9GPa were applied to the model. The paper proposed a 3D coupled thermo-mechanical model, which was based on the Lagrangian implicit approach to examine the dis- tribution of the strain and also to observe the thermal history of Aluminium alloy 2024buttweldingusingtheDEFORM-3D® software.Itwasobservedthatthereis anasymmetricnatureintheweldingnuggetzone.Furthermore,itwasfoundthatthe topsurfaceoftheworkpiecehasthemaximumtemperature. Inthemeantime,somestudiesadaptedtemperaturedependentmaterialproperties [15–18].Thematerialcharacteristicswereintroduced[15]tomodeltheprocessusing theconstantPoisson’sratioof0.33,andthetemperaturedependentYoung’smodulus rangingfrom68.9GPain25°C–31.72GPain426.7°C.Moreover,inthemodelthe relationship between the tool moving speed, the heat distribution and the residual 4 B.Meyghanietal. stresswereinvestigated.Theanalysisoftheprocesswasclassifiedintotwostages;the firststageinvolvedthestudyingoftheworkpiecethermalbehaviourwheretheheat wasgeneratedbecauseofthefrictionbetweentheinterfacesofthetool/workpiece. Meanwhile, in the next stage, the workpiece thermal behaviour (investigated from thefirststage)wastakenintoaccountasaninletheatwhichrepresentstheelasto- plasticbehaviour.Inthelatterstepofthesimulation,thetoolwasremovedafterthe welding and the distributions of the residual stress was measured after completely coolingoftheworkpiece(whentheclampwasdisassembled).Theresultsobtained showedthat,thepatternofthedistributionoftheheatvariedalongthethicknessis largelyasymmetrical.Furthermore,itwasobservedthat,astheweldingtransverse and rotational movements increased, the welding longitudinal residual stress also increased.Itshouldbenotedthat,onlytheheatimpactwasconsideredforpredict- ing the residual stress. Therefore, it was deemed as the main factor of the minor differencesbetweentheactualexperimentandthesimulation. Astudyhaddevelopeda3-dimensionallocalisedFEMforpredictingtheprobable resultsforthedefectsgenerationwithintheFSW[18].TheLagrangianformulation hadbeenusedtomodelthetool,whiletheEulerianformulationwasusedtomodel theworkpiece.Besidesthat,theCoulomblawoffrictionwasusedfordefiningthe interactions between the interfaces of the tool/workpiece. Moreover, the material inflow and outflow velocities were used to define the welding speeds. The study hadconsideredthetemperaturedependentYoung’smodulus,rangingfrom66.94to 20.2GPawhenthetemperaturevariationis25–482°C.Theresultsinvestigatedthat byconsideringtheadiabaticheatingeffect,themaximumestimatedtemperatureof 583°Cwasobtained,whichwassimilartothematerialsolidustemperature(based onJohnson–Cookmaterialmodel). The temperature dependent Young’s modulus was adopted to investigate the mechanicalbehaviourofthematerialduringhightemperatureforweldingof6xxx aluminiumalloyseries[17].Basedontheresult,thetemperaturehadcontinuously changedduringthewelding;firstly,thetemperaturehadrisen,thenitdecreased(dur- ingthecoolingdownperiod).Itshouldbenotedthat,thedwell-timeatthemaximum temperaturewasnotconsideredinthemodel.Thestudyalsoexamined,thetensile testsduringtheheatingandthecoolingrateofthespecimen.Moreover,acomparison betweenthecalculatedandthemeasuredstress-straincurveswasdonetovalidatethe accuracyofthethermomechanicaldatabase.Thissuggeststhat,thisapproachcould beusefulinpredictingthealloystensilebehaviourathightemperatures.Lastly,the numericalandtheexperimentalresultsforthetemperatureandtheresidualstresses werecomparedandagoodagreementwasfound. Meanwhile,Azizetal.[16]employedYoung’smodulusasatemperaturefunc- tion in a study for developing thermomechanical modelling FSW of aluminium (AA2219)–copperalloy.Furthermore,theyinvestigatedtheheatgenerationthrough- outtheprocess.ThemodelwasdevelopedbyusingANSYS®APDLandtheresults wereverifiedthroughconductingacomparisonofthetemperatureprofilebetween the experimental observations and the results obtained from the simulated model. Threedifferentconditions(variousweldingspeeds)inexperimentalandnumerical modelswereconsideredandtheverifiedFEmodelwasusedtoanalysetheinfluence