Tellus(2008),60A,191–205 (cid:2)C 2007TheAuthors Journalcompilation(cid:2)C 2007BlackwellMunksgaard PrintedinSingapore.Allrightsreserved TELLUS The ADM-Aeolus wind retrieval algorithms ∗ By DAVID G. H. TAN1 , ERIK ANDERSSON1, JOS DE KLOE2, GERT-JAN MARSEILLE2, AD STOFFELEN2, PAUL POLI3, MARIE-LAURE DENNEULIN3, ALAIN DABAS3, DORIT HUBER4, OLIVER REITEBUCH4, PIERRE FLAMANT5, OLIVIER LE RILLE6 and HERBERT NETT6, 1ECMWF,ShinfieldPark,ReadingRG29AX,UK;2KNMI,Postbus201,3730AE,deBilt,theNetherlands; 3Me´te´o-France,42avenueCoriolis,31057Toulouse,France;4DLR,Oberpfaffenhofen,D-82234Wessling,Germany; 5LMD/IPSL,91128Palaiseau,France;6ESA/ESTEC,Postbus299,NL-2200-AGNoordwijk,theNetherlands (Manuscriptreceived15January2007;infinalform20August2007) ABSTRACT TheADM-AeolusisprimarilyaresearchanddemonstrationmissionflyingthefirstDopplerwindlidarinspace.Flex- ibledataprocessingtoolsarebeingdevelopedforuseintheoperationalgroundsegmentandbythemeteorological community.Wepresentthealgorithmsdevelopedtoretrieveaccurateandrepresentativewindprofiles,suitableforas- similationinnumericalweatherprediction.Thealgorithmsprovideaflexibleframeworkforclassificationandweighting ofmeasurement-scale(1–10km)dataintoaggregated,observation-scale(50km)windprofilesforassimilation.The algorithmsaccountfortemperatureandpressureeffectsinthemolecularbackscattersignal,andsothemainremaining scientificchallengeistoproducerepresentativewindsininhomogeneousatmosphericconditions,suchasstrongwind shear,brokenclouds,andaerosollayers.TheAeolusinstrumentprovidesseparatemeasurementsinRayleighandMie channels,representingmolecular(clearair)andparticulate(aerosolandclouds)backscatter,respectively.Thecombin- ingofinformationfromthetwochannelsofferspossibilitiestodetectandflagdifficult,inhomogeneousconditions.The functionalityofabaselineversionofthedevelopedsoftwarehasbeendemonstratedbasedonsimulationofidealized cases. measurementsandobservations2in24layerswithconfigurable 1. Introduction verticaldistributionthatcanbemodifiedinflight.Thecurrent TheAtmosphericDynamicsMission,ADM-Aeolus,isthefourth baseline configuration will provide 1000 m vertical resolution ofESA’sEarthExplorerMissions1(ESA,1999;Stoffelenetal., throughmostoftheatmosphere(from2to16km),500mbelow 2005a).ADM-Aeolusisscheduledforlaunchinmid-2009and 2km,and2000mbetween16and26km(Fig.1). hasaprojectedlifetimeofthreeyears.Itsobjectiveistodemon- TheschematicinFig.1showstheDWLinstrumentviewing stratethecapabilitytomeasurewindprofilesfromspaceusinga fromalow-altitude(∼400km)polarorbitinthedirectionper- DopplerWindLidar(DWL).Theneedforsuchdata,withhigh pendiculartothesatellitetrack.Measurementsaremadeintwo accuracyandgoodverticalresolution,hasbeenidentifiedasapri- receiver‘channels’:RayleighformolecularreturnsandMiefor orityfortheglobalobservingsystem(WMO,2004).Themission particulates.Thereisinformationonthehorizontalline-of-sight objectivesandobservationrequirementshavebeendesignedto (HLOS)windcomponentonly(line-of-sightwindvelocitydi- meetscientificgoalsinusercommunitiesinclimateresearch,at- vided by the cosine of the local elevation angle ∼53◦), which mosphericmodellingandnumericalweatherprediction(NWP). is close to east–west except at high latitudes. The unobserved The polar orbit facilitates the global data coverage that is re- wind component and the mass field will have to be statisti- quired,providingdataalsoovertheoceanswhicharecurrently callyinferredwithinthedataassimilationprocess(Riishøjgaard poorly observed. The DWL will provide layer-averaged wind etal.,2004;Zˇagar,2004;Stoffelenetal.,2005b;Zˇagaretal., 2005;Tanetal.,2007).Theinstrumentwillprovide50kmalong- track average winds, separated by 150 km data gaps (Fig. 1); thisistoensureminimalerrorcorrelationbetweenconsecutive ∗ Correspondingauthor. e-mail:[email protected] 2Theterm‘measurement’isusedforinstrumentdatacharacterizedby DOI:10.1111/j.1600-0870.2007.00285.x horizontalscalesofbetween1and10km,whereas‘observation’isused 1ESAEarthExplorerswebsite:www.esa.int/esaLP/LPearthexp.html. foraggregateddataathorizontalscalesof50km. Tellus60A(2008),2 191 192 D. G. H. TAN ET AL. km 2126.5 Molecular Layers 2024.5 1922.5 1820.5 Aerosol Layers 1718.5 km 16.521 1616.5 15.520 1515.5 14.519 1414.5 13.518 1313.5 12.517 1212.5 11109...555111654 1110911910.5..55 Direction to sun 8.513 88.5 7.512 77.5 65..551110 6565..55 Velocity direction 4.59 44.5 --0132210.......10505505587654321 WGS 832143210....5555 of sight 496 km35° Altitude 400 km e n Li z0 Nadir 285 km Fig.1. Line-of-sightviewinggeometryand 50 km (7 sec) proposedverticaldistributionoftherange 200 km (28 sec) Horizontal line of sight bs(ERhiSnoaAswy.(lielnaiggyhethr)sec)hafaeonrrontsheoleslA(sMeDpiMaer)a-aAteneldyo.lmuCsoolsuearcttueellsalyirteo,f Level 2B retrieved horizontal line of sight wind profiles, at 50 km scale Auxiliary Level 1B Parameter settings meteorological data Rayleigh Brillouin ADM measurements controlling the (T and p at ADM correction coefficients At 3.8 km scale processor options locations) Predicted orbit positions to be used in case of missing orbits Fig.2. SchematicshowingmaininputstotheADM-AeoluswindretrievalalgorithmandtheoutputL2Bdata.Unshadedboxesindicatethat geolocationinformationisusedtodeterminethelocationsofauxiliarymeteorologicaldata. observations (Stoffelen et al., 2005a) and maximize the infor- molecules(i.e.thedensityofair)andattenuationbyoverlying mationcontentwhileconservingtheenergyconsumptionofthe aerosolandcloud.TheexpectedyieldandaccuracyofAeolus instrument. The accuracy of the ADM-Aeolus wind measure- winds has been studied through detailed simulation (Tan and mentsandobservationswilldependprimarilyontheintensity Andersson,2005),basedonmodelclouds(fromtheEuropean of the backscattered laser light, which in the Mie channel de- CentreforMedium-RangeWeatherForecasts,ECMWF)andcli- pendsonthepresenceandopticalthicknessofclouds,andthe matologicalaerosol(Vaughanetal.,1995,1998)distributions. concentrationofaerosol(MarseilleandStoffelen,2003),andin The literature cited above has noted that ADM-Aeolus of- theRayleighchannelitdependsmainlyontheconcentrationof fers substantial complementarity to existing wind observing Tellus60A(2008),2 THE ADM-AEOLUS WIND RETRIEVAL ALGORITHMS 193 Diameter 7.5 mm Front optics Interference filter (1 nm) Field stop Diameter 20 mm Aperture stop /2 /4 Rayleigh spectrometer (RSP) diameter 36 mm / 4 thermal control Mie cocoon spectrometer (MSP) DFU1 Detection Front End Unit (Rayleigh) diameter 4 mm DFU2 Detection Front End Unit (Mie) Fig.3. OpticalreceiverarchitecturefortheAeolusDWLinstrument.CourtesyofAstriumSatellites. systems—toradiosondes,windprofilersandaircraftdatabypro- rabletotheradiosonde/windprofilernetwork,withthebenefits viding global coverage especially over oceans and away from beingmostapparentoveroceansandintheTropics.Anunderly- theprincipalflightroutes,andtoatmosphericmotionvectorsby ingassumptionofsuchstudiesisthatthedataprocessingchain, providing profiles with good vertical resolution. Complemen- fromrawinstrumentdatauptoLevel-2Bandincludingthegen- taritytomass/temperatureobservingsystems,thatis,radiance eration of calibration/characterization data, is able to produce andtemperaturedata,hasalsobeennoted—thisisregardedas sufficientlyaccurateproducts(errorsinHLOSwindestimates particularly valuable for determining atmospheric motion on shouldbebelow2ms−1throughoutmostoftheatmosphere). sub-synoptic scales and in the Tropics, that is, for regimes in InthispaperwedescribetheADM-AeolusLevel-2B(L2B) which temperature data and conventional mass/wind balance windretrievalalgorithmswhichformpartoftheADM-Aeolus relationships are inadequate (both empirically and from theo- dataprocessingchain.Thepurposeofthesealgorithmsistoob- retical/dynamical arguments). Weissman and Cardinali (2007) tainrepresentativeandaccuratewindssuitableforuseinNWP. showedthatDWLobservationstakenintheNorthAtlanticfrom Level-1B(L1B)windretrievalsarenotsuitableforuseinNWP anairborneplatformhadasignificantpositiveimpactonanalyses for a number of reasons, the principal one being that L1B al- andforecastsoftheECMWFforecastsystem.Increasingly,sim- gorithmsdonotaccountexplicitlyfortemperatureandpressure ulatedAeolusdataarebeingevaluatedagainstrealobservations effectsontheresponseofthemolecular(Rayleigh)channelof in NWP data assimilation/forecast experiments. For example, theinstrument(seecompanionpaperDabasetal.,2008).The Tanetal.(2007)developedatechniquebasedonthespreadof L2BalgorithmsuseNWPinformationtotaketheseeffectsinto anensembleofdataassimilations,tocomparetheexpectedim- account.ThedesignoftheL2Balgorithmstakesaccountofthe pactofAeolusdatatothatoftheradiosondeandwindprofiler technicalcapabilitiesandconstraintsoftheinstrument,forexam- network.TheyfoundthatAeoluscanbeexpectedtoreduceanal- plewithrespecttoverticalandhorizontalsampling,instrument ysisandshort-rangeforecastuncertaintybyanamountcompa- pointingstabilityandzerowindcalibration.Qualitycontroland Tellus60A(2008),2 194 D. G. H. TAN ET AL. product confidence indicators are important items that will be onaerosolandcloudlayeropticalproperties)aredescribedby providedwiththewindretrievals.Inbrokencloudscenes,itis Flamantetal.(2008). envisagedthatseparatewindretrievalswillbederivedforclouds The operational production of L2B data will be done at andclearair.Thiswillbedonethroughselectiveaveragingof ECMWFslightlybehindrealtime,justbeforetheassimilation measurement-scaledatainthelayersofclearairaboveclouds, (andproductionofL2C)iscarriedout.TheL2Bprocessinguses from cloud-top layers, from layers in and below thin clouds, aprioriinformationonthestateoftheatmosphereatthetime andfromlayerswithsufficientaerosolinthelowerpartsofthe andplaceoftheAeolusL1Bmeasurements.Thisinformation atmosphere. isbestprovidedbythebackgroundfieldsoftheNWPsystem, TheADM-Aeolusisprimarilyaresearchanddemonstration thatis,thefieldspredictedbytheforecastmodelrunfromthe missionthatwillprovidemanyopportunitiesforassessingthe previousanalysis.Meteorologicalbackgrounddata,interpolated benefitsofspace-basedwindprofileinformation,andfordefin- intheverticalplanealongtheflighttrackwillalsobecreatedand ingthestepstowardsfutureoperationalDWLmissions.Given deliveredtoESAtofacilitatere-processingoftheAeolusL1B theexperimentalnatureofthemission,ithasbeenrecognized dataatalatertime,andforoff-linecalibrationtasks.Figure2is thatdataprocessingneedstohavesufficientflexibilitytoexplore aschematicdiagramshowingthevariousdatasetsinvolvedin the full potential of the mission data. The L2B wind retrieval creatingtheL2Bdata.Itisenvisagedthatfortheirownpurposes, algorithmsdiscussedhereinarelikelytoevolveduringthemis- manymeteorologicalcentresotherthanECMWFwillproduce sion. The evolution is expected to be relatively minor, but of L2B data with local background inputs, and according to the course any changes will be thoroughly documented. The L2B timelinessconstraintsoftheirownoperationalNWPsystems. softwarewillbefreelyavailabletothemeteorologicalcommu- nity.Thesoftwarehasbeendesignedtobeportable,andspecifi- 2.1. TheADM-Aeolusinstrument callytoruninthreedifferentcontexts:(1)real-timeprocessingat NWPcentreswithaninteresttoassimilateADM-Aeoluswinds ThepayloadoftheADM-AeolusmissionisasingleDWLin- withintheirownforecastingsystems;(2)operationalprocessing strument.Theinstrumentisahigh-spectralresolutionlidaroper- attheECMWFtoproducewindretrievalsfordeliverytoESA atingintheultraviolet,atwavelengthλ =355nm.TheDoppler 0 shortly after real time and (3) re-processing at ESA for situa- frequencyshifts(cid:3)ν ofthereturned(elasticbackscatter)atmo- tionsinwhichdelaysindatadeliverypreventprocessingwithin spheric signals provide profile information on wind velocity theECMWFoperationalschedule,andtoaccommodatefuture alongtheinstrument’sline-of-sightv , LOS algorithmimprovementsandupgrades. v ThescopeandpurposeoftheL2Bwindretrievalprocessoris (cid:3)ν =−2 LOS (1) λ describedinSection2.Detaileddescriptionsofthealgorithms 0 are given in Section 3. Examples illustrating the behaviour of whilethesignalamplitudesprovideinformationonparticlelay- theretrieval,classificationanderrorestimationsareprovidedin ersandtheiropticalproperties.Thesignalamplitudesalsopro- Section4,followedbyconcludingremarksinSection5. videproductconfidencedata,includingerrorquantifiers,forthe windandparticleinformation. Althoughmoredetailsonthemeasurementprinciplesunder- 2. ThescopeandpurposeoftheAeoluswind pinningtheinstrumentaregiveninotherpapersfromthisvol- retrievalalgorithms ume (Dabas et al., 2008; Flamant et al., 2008) and elsewhere Thealgorithmsoutlinedinthispaperareinvolvedincalculating (Reitebuchetal.,2006),wesummarizeherethepointsmostrel- theL2BHLOSwindobservationsatthe50kmscalebasedon evantforunderstandingtheLevel-2Bwindretrievalalgorithms. ADM-Aeolusmeasurementsandinstrumentperformancedata. Thesolidcurveinfig.1fromDabasetal.(2008)showsanom- Theywerederivedprimarilytoformpartofapieceofsoftware inalfrequencyspectrummeasuredbytheinstrumentwhilethe that creates the ADM-Aeolus Level-2B (L2B) data products. dashedcurveshowshowthespectrumisshiftedinthepresence Basedonthecalibratedmeasurements(L1B)asinputs,theyap- ofa50ms−1 LOSvelocity.Thespectralreturnfromparticles plythemodifications,correctionsandadditionsrequiredtoob- (aerosol,cloud)contributesthesharpnarrowpeaksandthespec- tainaccurateandrepresentativeHLOSwindssuitableforassimi- tralreturnfrommoleculescontributesthebroadportions(nearly lationbyNWPsystems,aswellastheappropriatequalitycontrol Gaussianbutmodifiedbytemperatureandpressureeffects).The flags and uncertainty estimates. Key features of Aeolus prod- instrumentincludesbothaMiereceiverandaRayleighreceiver uctsaresummarizedinTable1.Theso-calledLevel-2C(L2C) designed to detect, respectively, the particulate and molecular productisasupersetoftheL2Bproductandwillbedescribed returnsignals(Fig.3).TheMiereceiverisbasedonthefringe elsewhere.Briefly,itcontainsadditionaloutputfromECMWF imagingtechniquewithaFizeauinterferometerusedinamode assimilation of L2B data, that is, ECMWF analysed winds at whereitformsaninterferencefringewhosespatialpositionis the Aeolus data locations. Thus, L2B products are intermedi- wavelengthdependent,thatis,aDopplershifttranslatesintoa atebetweenL1BandL2Cdata.Level-2Aproducts(information lateraldisplacementofthefringe.TheRayleighreceiverisbased Tellus60A(2008),2 THE ADM-AEOLUS WIND RETRIEVAL ALGORITHMS 195 Table1. ThemainADM-Aeolusdataproducts Typicalsize (Megabytesper Productlevel Description orbit) Comments Level1B Engineering- 21–70 Near-real-timeproduct.Spectrometerdataat corrected measurementscale,HLOSwindprofilesusing HLOSwinds algorithmsthatdonotaccountexplicitlyfor sceneclassificationnorforRayleigh-Brillouin (pressure/temperature)effects. Level2A Aerosolandcloud 7–10 Off-lineproduct.SeeFlamantetal.(2008) layeroptical properties Level2B Meteorologically- 13–18 Shortlyafternear-real-timeforoperational representative products(generatedatECMWF),potentially HLOSwinds near-real-timeforothermeteorological centres(dependingonschedule).HLOSwind profilesusingalgorithmsthat(a)group measurementsaccordingtoa scene-classificationprocedureand(b)account explicitlyforRayleigh-Brillouin effects—makinguseofNWPestimatesof atmospherictemperatureandpressure, typicallyfromashort-rangeforecast.Subset ofLevel2Cproducts. Level2C Aeolus-assisted 19–24 SupersetofLevel2Bproducts.AddsECMWF windvectors analysedwinds(2horizontalcomponents)at theADM-Aeoluslocations,and supplementaryproductconfidencedata derivedduringassimilationofLevel2Bdata atECMWF.Theanalysedwindstakeinto accountotheratmosphericobservationsand theECMWFforecastmodelthroughthedata assimilationscheme. onthedouble-edgetechniquewithasequentialFabry-Perot,it- sistingofabout200independentobservations.BoththeL1Band selfincludingtwoband-passfilters‘A’and‘B’whichproduce L2BobservationscalewindretrievalarecomputedfromNMie two signal outputs that are then used in ecartometry mode to andRayleighmeasurements,eachmeasurementitselfbeingthe estimate the Doppler shifts. The two filters are centred on the resultoftheon-boardanalogueaccumulationofPlaserreturns edgesofthebackscatteredmolecularspectrumandplacedsym- withanACCDdetector(seeFig.4).Inthestandardoperating metrically with respect to the laser central wavelength. Using mode of the Lidar, N = 14 (up to 20 if laser warm-up pulses thereflectiononinterferometersandpolarizationopticstoper- are considered) and P = 50, defining what is called the ba- formthespectralseparation,theatmosphericreturnsignalfirst sic repeat cycle (BRC). Given the satellite ground-velocity of enterstheMiereceiverandsubsequentlytheRayleighreceiver. ∼7.6 km s−1, and a pulse repetition frequency (PRF) of ThedetectorusedforbothchannelsisanAccumulationCharge 100 s−1, one measurement integrates the atmospheric return CoupledDevice(ACCD)witha16by16pixelsusefulimage over a horizontal distance of (P = 50) × (7.6 km s−1)/ zoneandoptimizedforultravioletsensitivity. (PRF = 100 s−1) = 3.8 km. The N contiguous measurements thatmakeuponeobservationarerepresentativeofthewindfield over a horizontal distance (N = 14) × 3.8 km ≈ 50 km (or 2.2. Measurements,observationsandwindretrievals ≈70 km if warm-up pulses are kept and N = 20). Note that L1BdataaretheinstrumentalinputtotheL2Bprocessor.The thestartingpointsoftwoconsecutiveobservationsareseparated L1B data set contains Aeolus measurements and observations by 200 km, that is to say there is a 150 km data gap between andassociatedauxiliaryparametersofoneorbit,typicallycon- consecutive50kmobservations. Tellus60A(2008),2 196 D. G. H. TAN ET AL. 1 BRC = 1 observation = N measurements Measurements 1 2 3 N-1 N ….. ….. ….. ….. ….. P laser pulses Fig.4. DiagramshowingthegeometryofADM-Aeolusmeasurementsandobservations.Duringonebasicrepeatcycle(BRC)ofthelaser,N measurementsareacquiredeachresultingfromtheon-boardanalogueaccumulationofPatmosphericreturnsgeneratedbyPlaserpulses.OneBRC correspondsto50kmontheground(Fig.1). N L1 measurements top s n bi ht g ei L2bP h e h d g Altitu aylei R or e Mi 4 2 base Fig.5. SchematicillustrationoftheselectiveaveragingofNmeasurementsat24levels(orheightbins,left)inasingleAeolusobservation(over50 km)intoseveralpartialorcompletewindprofileretrievals(right).Thegreyshadingrepresentsabrokencloudlayerandthecolouredsquares representclassificationofindividualmeasurementsincategories:greenrepresentsmeasurementsabovethebrokencloudlayer,yellowarethecloud topreturns,redarebetweenbrokenclouds,andbluearecloudfree. The L2B processor has access to the L1B data at mea- 2.3. L2Bprocessing surement scale (3.8 km). This gives essential information on Inthissection,wedescribetheeffectsandinfluencesthatneed the heterogeneities of the atmosphere within one observation tobeaccountedforwithinthecalculationofAeolusL2Bwind (50 km) and can help detect those situations which may lead retrievals. to large measurement or representativeness errors in wind re- 2.3.1. Spatialcoordinates. TheverticalcoordinateofAeolus trievals.Inordertocreaterepresentativeaverageswithinanob- L1B data is the height above the reference WGS84 ellipsoid servation, the measurements may be grouped into several cat- whereas NWP models typically work with heights above the egories each containing a profile of Mie and Rayleigh winds meansea-level.Thedifferencebetweenthetwoaltitudesmay measuredinsimilarhomogeneousconditions. beseveraltensofmeters,whichislessthanthethicknessofrange Anidealizedmeteorologicalsituationthatwouldresultinsev- bins(250m–2km)butstillcannotbeneglectedincontextswith eralseparatewindretrievalswithina50kmAeolusL2Bobser- strongverticalgradientsinthewind.Aconversionhasthusbeen vationisillustratedinFig.5.TheNMie(orRayleigh)measure- implemented which takes as reference the EGM96 geoid (see mentsformingtheobservationsareshownontheleft.Singleal- http://cddisa.gsfc.nasa.gov/926/egm96/). titude,brokencloudscanbeseeninthelefthalf,blockingsome 2.3.2. Cross-talk between the Mie and Rayleigh channels. (in this case every second) of the measurements while others L2BprocessingofMiechanneldataneedstoaccountforcontri- penetratetothesurface.Themeasurementsingreenabovethe butionsfromthebroadreturnedRayleighspectrum;suchcontri- cloudlayerareaveragedlevel-by-leveltoformthefirstretrieval butionsaregenerallyregardedasonecomponentofbackground containingonlythethreetop-mostlevels.Thecloudreturns(yel- light. L2B processing of Rayleigh channel data needs to ac- low)aregroupedintoasecondprofile,inthiscaselimitedtoa countfortemperatureandpressuredependenceofthemolecular singlelevel.Themeasurementsfromclearairbetweenorbelow backscatter(Rayleigh-Brillouin).Italsoneedstoaccountforthe clouds (red) are averaged to form the third profile with valid possibilitythatreflectionsfromtheMiechannel’sFizeauinter- windsfromthesurfacetothealtitudeofthecloudlayer.Finally, ferometerentertheRayleighchannel. measurementsfromthesecond,homogeneoushalfofthescene 2.3.3. Temperatureandpressureeffects. L1BRayleighwinds (blue)producethefourthwindprofileretrieval. areobtainedbyconvertingtheresponseofthedualFabry-Perot Tellus60A(2008),2 THE ADM-AEOLUS WIND RETRIEVAL ALGORITHMS 197 (definedbythedifferenceofphotonscountedattheoutputof tivecontributionofparticlebackscatterdoesnotneedtobevery Fabry-PerotAandBdividedbytheirsum)intoaDopplershift accurate. throughtheuseofaresponsecalibrationcurve.Thetrueresponse 2.3.4. Effect of atmospheric heterogeneities. An essential curvedependsontheatmosphericconditionsinthesensingvol- taskoftheL2Bprocessoristheidentificationoftheatmospheric umeviatheshapeofthetemperature-andpressure-dependent situationsthatarelikelytoproducelargeerrorsintheretrieved spectrum of the Rayleigh-Brillouin spectrum of the scattered windvelocities.Cloudandaerosolstructuresareoftenspatially light.Inthepresenceofaerosolandclouds,Miesignalcontami- intermittentleadingtopotentiallylargesignaldifferencesfrom natestheRayleighsignal,therebymodifyingtheresponsecurve onemeasurementtothenextatthesameheight.Measurements ofthedoubleFabry-Perot.TheRayleighwindsmusttherefore withrelativelylowsignal-to-noiseratiocanpotentiallydeterio- becorrectedforpressure,temperatureandresidualMielightef- ratethewindestimateduetotheirhighnoisecontributions.Here fects.DetailsofthecorrectionschemearepresentedbyDabas signal-to-noiseratioisdefinedastheusefulsignaldividedbythe etal.(2008).Asitrequirespriorknowledgeontheactualtemper- detectionnoiseassociatedwiththeusefulsignalandbackground atureandpressureinsidethesensingvolume,itwillnecessarily light.DatapointswithstrongMiereturnsmaybeflaggedbecause beappliedatL2BlevelwhichhasaccesstoNWPdata.Foreach ofthepotentialfortheMiereturnstocontaminatethedetected Rayleighwind,theoutputwillbe signalintheRayleighchannels.LargevariabilityofstrongMie returnslikelysignalsthepresenceofturbulenceandverticalmo- (i) A Rayleigh HLOS wind corrected from pressure and tion.Insuchcases,theoptimalweightingofthestrongandweak temperatureeffects,usingpriorestimatesP andT . ref ref MieandRayleighmeasurementshastobedonewithgreatcareto (ii) Thederivativea ofthecorrectedwindwithrespectto R ensurethatspatiallyrepresentativewindestimatesareobtained. theRayleighresponse(neededforerrorquantifier,seebelow). Stratification of aerosol or cloud structures within a range (iii) Thederivativea ofthecorrectedwindwithrespectto T bin(layer)maycausestrongverticalgradientsintheextinction thetemperature. profileresultinginverticallynon-uniformcontributionsoflaser (vi) Thederivativea ofthecorrectedwindwithrespectto p light returning from within that range bin. In such conditions thepressure. theretrievedwindwouldnotrepresentthetruemeanwindover thelayer.Withoutknowledgeaboutthedetailedstratificationthe Theselasttwocoefficients(sensitivities)permitoptionalfurther windretrievalcanonlybeassignedtothemid-pointofthelayer, refinementofthecorrectionwhenincrementallyimprovedtem- potentiallyincurringasignificantheightassignmenterror.How- peratureandpressureestimatesbecomeavailableduringNWP ever,itmaybepossibletoflagtheconditionsinwhichthistype assimilationofatmosphericobservations: ofheightassignmenterrorislikelytooccur,bycarefulscrutiny v (T,P)=v (T ,P ) ofdifferencesinreturnsbetweensubsequentrangegatesinthe HLOS HLOS ref ref +a (T −T )+a (P−P ). (2) MieandRayleighchannels.Rayleighsignalheightassignment T ref p ref problems could also be tackled by redistributing the available Itisworthnotingthattheuseofmeteorologicalparameters(tem- (24)Mierangebinstoover-samplepartsofthetroposphere. peratureandpressureestimates)intheL2Bwindretrievalim- pliessomecorrelationoferrorsbetweenthewindestimatesand 3. HLOSwindretrieval—thedetails theNWPmodelsupplyingthemeteorologicalparameters.The correlationisdirectlyproportionaltothesensitivitycoefficients InthissectionwegivedetailsoftheL2Bwindretrievalsfromthe reportedintheL2Bproduct,andisinfactrathersmall—ascan MieandRayleighchannels,togetherwiththeirassociatederror beinferredfromfigs.5and7ofthecompanionpaperbyDabas quantifiers.L2Bproductscontainotherancillaryparametersof etal.(2008). amoretechnicalnature,whichwillbedescribedelsewhere.For ThecorrectionoftheimpactofMieresidueintheRayleigh the sake of brevity we do not include in this paper a number signalscanbecarriedoutatthesametime.Thisrequiresinforma- ofpreliminarystepsrelatedtothequalitycontrolandscreening tionontheamountofMielightatthereceiver.Thisinformation ofLevel-1Binputdata.Broadlyspeaking,theseinvolvecheck- cannot be obtained from the NWP model because the aerosol ingthatthevariousparametersofinterestarewithinreasonable backscatter is not a model parameter and it cannot easily and bounds.Precisedetails,includingthethresholdvaluesapplied, reliablyberelatedtoexistingmodelparameters:itmustbeesti- can only be given after the mission’s in-orbit commissioning matedfromthemeasuredsignalsthemselves,whichinprinciple phase. ispossiblebycomparingthestrengthofthesignalsregistered Intheintroductionwereferredtotheneedforflexibilityinthe ontheMieandRayleighchannel(theformeronebeingmostly dataprocessing.ThisflexibilityismanifestedintheHLOSwind sensitive to particle backscatter while the latter one is mostly retrievalalgorithmsthroughtheirformulationintermsofweights representativeofthemolecularreturn).Notethat,duetothelow wi,k giventorangegate(orlayer)iofmeasurementk.Thetwo sensitivityoftheRayleighresponsetoMiecontamination(see indicesarethusindicativeofthetwodirections:iisinthevertical companionpaperDabasetal.2008),theestimationoftherela- andkinthehorizontal.Forclarityofexposition,wepresentthe Tellus60A(2008),2 198 D. G. H. TAN ET AL. windretrievalalgorithmsintermsofweightsthatareassumed Non-linearitiesarecharacterizedregularlybyapropercalibra- given.Wefollowthiswithabaselinespecificationforhowthese tion procedure. It remains to specify how δm and δm are ATMi REFi weights are assigned for the examples presented in Section 4, computed.ThesearetheresultofapplyingtheMiecorealgo- andindicatewhatweconsidertobethemostpromisingoptions rithm (Reitebuch et al., 2006) to the spectrometer readouts r foralternativespecificationstobeexploredduringthemission (vectorofthen=16numbersofphotonscountedbythen=16 lifetime. accumulationCCDpixels): δm =Mie Core[r ] (9) ATMi ATMi 3.1. L2BMiechannelHLOSwindestimate δm =Mie Core[r ]. (10) The Mie-channel retrieved HLOS wind (vHLOS) is computed REFi REFi fromtheatmosphericreturndetectedbytheMiechannel(vATM) TheinputstotheMieCorealgorithmaretheweightedspectrom- and three correction terms. Two of these correction terms ac- etermeasurements(subscriptk)fortheatmosphericreturnand countforthelaserinternalreferencepath(vREF)andthesatellite theinternalreference: velocity relative to the ground (vSAT). The third correction is (cid:4)N (cid:4)N knownasthegroundwind(vG)correctionterm,andcorrectsfor rATMi = wi,krATMi,k; rREFi = wi,krREFi,k. (11) instrumentaloffsetsthatariseevenforanatmosphericvolume k=1 k=1 inwhichthewindvelocityiszero,asexpectedfortherangebins ThespacecraftLOSvelocityv isgivenbysimilarlyweighting SAT that intercept the Earth’s surface. Consequently, the retrieved themeasurement-scalevelocities: MieHLOSwindisobtainedby (cid:4)N vHLOSi =cvoLOsSϕi (3) vSATi = k=1wi,kvSATi,k (12) v =v −[v +v +v ], (4) LOSi ATMi REFi SATi G 3.2. L2BRayleighchannelHLOSwindretrieval where ϕ is the local elevation angle and i is the range-bin (or layer)index. TheL2BretrievedRayleighchannelHLOSwindaccountsfor TheatmosphericandinternalreferenceLOSvelocities,v the atmospheric return detected by the Rayleigh channel and ATM andv ,arecomputedfromtheDopplershiftδbytwosimilar threecorrectionterms.AsinthecaseofMiewindretrieval,these REF expressions: correctiontermsaccountforthelaserinternalreferencepath,the satellitevelocityrelativetothegroundandtheoffsetsthatarise 1 v =− λ δ /s (5) evenforanatmosphericvolumeinwhichthewindvelocityis ATMi 2 0 ATMi ATM zero.Consequently,theL2BRayleighHLOSretrievalisdefined: (cid:2) (cid:3) 1 1 v =− λ δ /s . (6) v =v − v +v +v . (13) REFi 2 0 REFi REF HLOSi ILIADi cosϕ REFi SATi G Thefactor−λ0/2,withthewavelengthλ0 =355nm,converts Here,vILIADrepresentstheHLOSwindretrievaltakingintoac- DopplershiftsintoLOSwindvelocities.TheDopplershiftin countthetemperatureandpressuredependenceofthemolecular frequencyunitsisgivenbytheratiooftheDopplershiftinCCD backscatter(Rayleigh-Brillouin).Thev velocityisobtained ILIAD pixelunitsδ,andaninstrumentresponseparameters(tothefirst byapplyingtheso-calledILIADschemetotheRayleighchannel orderequaltothefrequencyspanγ =1500MHzoftheCCD, measurements.ILIADtakesthegeneralform: theso-calledusefulspectralrange,dividedbytheusefulnumber n=16ofCCDpixels).Fortheatmosphericpathandtheinternal vILIADi =ILIAD[RATMi,ρi,Ti,pi]. (14) referencepaththesearedenotedbysubscriptsATMandREF, Details of the ILIAD scheme are given in Dabas et al. (2008) respectively. In an ideal instrument, the Doppler shift in pixel sowhatisneededhereistospecifytheinputparameters.These unitswouldbethepixelpositionofthepeakoftheinterference parametersdenoteweightedvalueswithinthescatteringvolume, fringeoutputbytheFizeauinterferometerandimagedontothe for, respectively, the so-called instrument Rayleigh response accumulationCCD,whichwedenotebyδm.However,toaccount R , the scattering ratio ρ = 1 + β /β (where β and β ATMi a m a m fornon-idealnon-linearresponseoftheactualinstrument,the aretheparticleandmolecularbackscattercoefficients,respec- Dopplershiftinpixelunitsδiscomputedfromδmwithafurther tively),thetemperatureTandthepressurep.Theweightedval- non-linearitycorrectionE: uesareobtainedfromaweightedaverageofthecorresponding (cid:2) (cid:3) quantitiesatthemeasurement-scale: δ =δm −E δm . (7) ATMi ATMi ATM ATMi (cid:4)N (cid:4)N (cid:4)N δ =δm −E (cid:2)δm (cid:3). (8) ρi = wi,kρi,k,Ti = wi,kTi,k,pi = wi,kpi,k. (15) REFi REFi REF REFi k=1 k=1 k=1 Tellus60A(2008),2 THE ADM-AEOLUS WIND RETRIEVAL ALGORITHMS 199 Similarly, the weighted Rayleigh response needed as input to TheseexpressionsarederivedasdescribedintheAppendix.It ILIADisgivenintermsoftheweightedsummationofuseful isworthnotingthatthesummationindexin(18)runsfrom3to signals in channels A and B (numbers of photons counted at 18—indices1and2correspondtotheCCD‘pre-pixels’which theoutputofFabry-PerotAandBcorrectedfrombackground arenotusedforwindprocessing. noise),NAandNB: NA−NB 3.4. ErrorquantifierfortheL2BRayleighchannel RATMi = NiA+NiB, (16) HLOSwindestimate i i wheretheweightedsummationusefulsignalinchannelsAand TheinversionstepoftheILIADschemecomputesthehorizontal Bare: lineofsightwindvHLOSo usingthesensitivity∂vHLOSo/∂p,fora (cid:4)N (cid:4)N zeroscatteringratio,ρ=0.Foragivenscatteringratio,ρ(cid:7)=0, NiA = wi,kNiA,k; NiB = wi,kNiB,k. (17) alinearcorrectionisapplied Compukt=at1ionofameteorologkic=a1llyweightedinternalreference vHLOS=vHLOSo +ρ∂vH∂LρOSo. (22) LOSvelocityv andthesatellite’sLOSvelocityv areper- formedinananRaElFogousmanner,usingtheweightswSiA,kT. RThera(dsieaelweqi.nd16v)H,LtOhSeotiesmcopmerpaututeredTfroamndththeeRparyelsesiugrherpe.spFornosme ATM thisfollowsthattheerroronthecalculatedHLOSwindis (cid:3)v = ∂vHLOSo(cid:3)R + ∂vHLOSo(cid:3)T 3.3. ErrorquantifierfortheL2BMiechannelHLOS HLOS ∂RATM ATM ∂T windestimate +∂vHLOSo(cid:3)p+ρ∂vHLOSo, (23) ∂p ∂ρ ThebaselinefortheL2BMieerrorquantifieristheerrorstandard deviationσ givenbytheequation: where∂vHLOSo/∂T and∂vHLOSo/∂parethelocalsensitivitiesof MIE (cid:5) (cid:6) (cid:7)(cid:8) the vHLOSo to T and p, respectively. For uncorrelated errors in σMIEi = 2cλo0sϕ (cid:4)18 αi2,j −1(cid:8)(cid:9)(cid:4)18 σi2,jαi2,j, (18) sthceatrteesriunlgtinrgatHioL,OteSmeprerroart,uσreH,LOpSre=ssu√re(cid:9)(cid:3)anvdHLROSa(cid:3)ylveHigLhOSr(cid:10)ewspiothns(cid:9)e(cid:10), j=3 j=3 theoperatorfortheexpectedcovariance,isestimatedas (cid:19) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) σHLOS= ∂∂vRHLOSoσRATM 2+ ∂v∂HLTOSoσT 2+ ∂v∂HLpOSoσp 2+ ∂vH∂LρOSoσρ 2. (24) ATM where The sensitivities ∂vHLOSo/∂·are delivered as output from the (cid:4)N ILIADscheme.Thedominanttermstemsfrom∂vHLOSo/∂RATM, σ2 = w2 r (19) whichisabout296ms−1.Thetermswiththestandarddeviation i,j k=1 i,k ATMi,j,k oferrorfortemperatureandpressure,respectivelyσTandσpare is an estimate for the variance of the weighted sum of photo- smallbutthisneedstobefurthertested.Equation(24)assumes counts r after removal of a detection chain (or analogue) thaterrorsintheelevationangleϕarenegligible,contributinga ATM offset,and winderroroforder0.01ms−1. ⎡ ⎤ Itremainstoprovideanexpressionfortheerrorstandardde- αi,j =τj H ⎢⎣1+ 4(cid:13)f1j+−ˆfiMIE(cid:14) − 1+ 4(cid:13)f1j−−ˆfiMIE(cid:14)⎥⎦. (20) fvoialltoiownsothfatthethreeeturrronrsiingnRaAlTRMAiTsM.Fromasensitivityanalysisit fw2 fw2 (cid:3)R = ∂RATM (cid:3)NA+ ∂RATM (cid:3)NB HereH,f and(cid:18)fMIE(infrequencyunits)aretheoutputsofthe ATM ∂NA ∂NB w i Mie core algorithm (H is peak height and fw is the full width = 2NB (cid:3)NA− 2NA (cid:3)NB. (25) athalfmaximumofthefittedLorentzianspectrum,and(cid:18)fMIEis (NA+NB)2 (NA+NB)2 i theMiefrequencyestimate),τjisacorrectionfactoraccounting Forindependenterrorsin(cid:22)NA andNB theestimatederrorinthe fortheobscurationoftheprimarymirrorofthetelescopebythe responseR , σ = (cid:9)(cid:3)R2 (cid:10)isobtainedby tripodthatbearsthesecondarymirror(characterizedatground ATM RATM(cid:23) ATM 2 before launch), and f+j , f−j are the upper and lower frequen- σRATM = (NA+NB)2 NB2σA2+NA2σB2. (26) ciesofCCDpixelindexj.Withtheusefulspectralrangeγ = RecallfromSection3thatNAandNBareobtainedfromweighted 1500MHz: γ γ γ γ sums of NA and NB, respectively, where each of the measure- fj−=(j−3)16 − 2 and fj+=(j−2)16 − 2. (21) mentsinrakngegatkeihasafractionalweightwi,k.σA andσB, Tellus60A(2008),2 200 D. G. H. TAN ET AL. atobservation-scale,arethusaswellobtainedfromaweighted BRC1 BRC2 BRC3 BRC4 sum,respectively (cid:4)N (cid:4)N d2 d3 d4 d5 σA2 = wi2,kσA2,k σB2 = wi2,kσB2,k, (27) Clou Clou Clou Clou k=1 k=1 whereσA,k andσB,k arethestandarddeviationsofNkA andNkB Clear Cloud1 (equaltothesquarerootofNAandNBundertheassumptionthat k k thephotoncountuncertaintyisgovernedbyPoissonstatistics). Fig.6. Schematicrepresentationofthetestscenariowiththreecloud layers. 3.5. Selectiveaveraging Through aggregation of L1B data at measurement scale, L2B dertomakeL2Bobservations.Thebaselinescenarioismadeof algorithmscanproducemultiplewindretrievalsatobservation- fourconsecutiveobservations(orBRCs)wheretheHLOSwind scale,asillustratedinFig.5.Theprocedureconsistsoftwomain isconstantforallaltitudes(50ms−1).ThefourBRCscontaina steps: classification and weighting of each measurement-scale seriesofthreecloudlayerslocatedatthealtitudes4,9and15km rangegate. asillustratedinFig.6.ThefirstBRCisclear(seeFig.7forthe correspondingscatteringratioprofile);thesecondispartlycov- (i) Classification.Thescatteringratioestimateavailablein eredbyCloud1featuringasinglecloudlayerat4kmaltitude; L1Bproductsisanindicatorofthepresenceofparticles(cloud the third is entirely covered by Cloud1, and finally the fourth oraerosol)withintherange-gate.Thebaselineclassificationex- BRC contains five different cloud scenarios formed through a ploits this by classifying all range-gates with scattering ratio combination of partly overlapping clouds at three levels. The aboveathresholdvalueasbeing‘Cloudy’,andthosebelowthe scenariocalledCloud2containstwocloudlayersat4and9km thresholdas‘Clear’ altitudes, and so on. Briefly, the Cloud1, Cloud3 and Cloud5 (ii) Weighting. Let N Cloudy denote the number of mea- BRCscontainone-layerclouds,whileCloud2andCloud4con- surementsforwhichrange-gateiisclassifiedas‘Cloudy’,and taintwo-layerclouds. let N Clear denote the number of measurements for which ThescenariodescribedaboveisrunthroughtheAeolusEnd- range-gate i is classified as ‘Clear’. Then two sets of weights to-End simulator (E2S v2.01) and L1B Processor (v1.05), de- are defined: W cloudy(i,k) = 1/N Cloudy when range-gate i veloped in the frame of the satellite prime contract, in order of measurement k is classified as ‘Cloudy’, and 0 otherwise. to generate Level-0 and Level-1 instrument data. The Level-1 W clear(i,k)=1/N Clearwhenrange-gateiofmeasurementk products are then used as input by the L2B processor (v1.2). isclassifiedas‘Clear’,and0otherwise.Accordingtothissim- The classification criterion uses the scattering ratio calculated ple weighting scheme, each measurement range-gate receives bytheL1Bprocessorforeachmeasurementrange-gatewitha non-zeroweightinjustonesetofweights. thresholdof1.5toseparateclearfromcloudy. UponrunningtheL2Bprocessor,theclassificationprocedure Flexibility for future modifications includes classification assignseachmeasurementrange-gatewiththreepossiblevalues: basedonL2Bretrievalofopticalparameters.Theweightsmaybe adjustedbasedonthesignal-to-noiseratioofeachmeasurement- scalerange-gate. 30 Clear Cloud 1 4. Applicationtosimulateddata 25 Cloud 2 Cloud 3 Cloud 4 The sensitivities of the baseline L2B algorithms to basic as- m)20 Cloud 5 sumptions,errorsanduncertaintiesinitsmaininputshavebeen e (k15 testedthroughcarefulsimulationsandapplicationtoidealized ud cases.Twotestsaredescribedheretodemonstrateretrievalof Altit10 HLOSwinds,sceneclassificationwithselectiveaveraging,and estimationofwindretrievaluncertainty. 5 0 4.1. Sceneclassificationandselectiveaveraging 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Thepurposeofthistestistoassessthesceneclassificationabil- Fig.7. ScatteringratiooftheobservationsClear,andCloud1to itytoidentifyclearfromcloudyareasinanacademicscenario Cloud5.Thecloudprofileshaveeachbeenshiftedbyoneunitinthe andtogroupthemeasurementrange-gatesappropriatelyinor- x-direction,forconvenience. Tellus60A(2008),2
Description: