Theadiabaticstrictly-correlated-electronsfunctional: kernelandexactproperties GiovannaLani,1 SimonediMarino,2 AugustoGerolin,3 RobertvanLeeuwen,4 andPaolaGori-Giorgi1 1Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands 2LaboratoiredeMathe´matiquesd’Orsay,Univ. Paris-Sud,CNRS,Universite´ Paris-Saclay,91405Orsay,France. 3Dipartimento di Matematica, Univerisita´ di Pisa, Largo B. Pontecorvo, 56126 Pisa, Italy 4Department of Physics, Nanoscience Center, University of Jyva¨skyla¨, 40014 Jyva¨skyla¨, Finland; European Theoretical Spectroscopy Facility (ETSF) (Dated:January18,2016) Weinvestigateanumberofformalpropertiesoftheadiabaticstrictly-correlatedelectrons(SCE)functional, relevantfortime-dependentpotentialsandforkernelsinlinearresponsetime-dependentdensityfunctionalthe- 6 ory. Amongtheformer, wefocusonthecompliancetoconstraintsofexactmany-bodytheories, suchasthe 1 generalisedtranslationalinvarianceandthezero-forcetheorem.Withinthelatter,wederiveananalyticalexpres- 0 sionfortheadiabaticSCEHartreeexchange-correlationkernelinonedimensionalsystems,andwecomputeit 2 numericallyforavarietyofmodeldensities. Weanalysethenon-localfeaturesofthiskernel,particularlythe n onesthatarerelevantintacklingproblemswherekernelsderivedfromlocalorsemi-localfunctionalsareknown a tofail. J 5 1 I. INTRODUCTION In Eq. (1), vH([n],r,t) is the usual Hartree potential computed with the time-dependent density n(r,t), and ] vxc([Ψ0,Φ0,n];r,t) is the exchange-correlation (xc) poten- l e While a considerable amount of work on the strictly- tial, depending also on the initial states Ψ0 and Φ0. Trad- - correlated-electrons (SCE) formalism1–3 within the frame- ing the many-body TDSE for the one-particle TDKS equa- r t workofgroundstateKohn-Sham(KS)densityfunctionalthe- tionshasapricetopay,thatisthetime-dependentexchange- s ory (DFT) has been carried out,4–8 the study of its perfor- correlation potential v ([n,Ψ ,Φ ];r,t) of TDDFT is an . xc 0 0 at mancesinthetimedomainisjuststarting.9,10 Theaimofthis evenmorecomplexobjectthanthevxc forgroundstateDFT, m work is to begin a systematic investigation of the SCE func- asitisafunctionalofthedensityatalltimest(cid:48) ≤ tand,ad- tional in the context of time dependent problems, in order to ditionally, oftheinitialstateofboththeinteractingandnon- - d understand its fundamental aspects and its potential in tack- interacting systems. However, whenever the initial state for n ling challenging problems for the standard approximations the evolution problem described by the TDKS equations is o employedintime-dependent(TD)DFT. chosen to be the ground state of the system, then the func- c tionaldependenceofthexcpotentialisontheelectronicden- [ Wewillhencefocusonthosephysicalsituationsdescribed sityalone: sincethisscenariooccursnaturallyinmanyprob- 1 by an explicitly time-dependent Hamiltonian, and whose lems of interest, it doesn’t pose actual limitations and thus it v dynamics is described by the time-dependent Schro¨dinger isoftenadoptedinpracticalapplications. 7 equation (TDSE). Due to the existence of a time-dependent 7 density-potential mapping11–14 for interacting and non- Similarly to ground state DFT, in order to make use of 9 interacting systems, a time-dependent Kohn-Sham approach Eq. (1) one needs approximations for the exchange correla- 3 0 can be rigorously set up and employed to study the dynam- tion potential vxc. A first drastic approximation, which is . ics of quantum systems at a manageable computational cost. usedinthelargemajorityofcasesinTDDFT,istheso-called 1 Choosingtheinitialnon-interactingwavefunctiontobeasin- adiabatic approximation, obtained by inserting in a ground- 60 gle Slater determinant of some spin orbitals ψj(x,t0), one stateapproximatevxc([n];r,t)theinstantaneousdensity, ig- 1 canreducetheTDSEtoasetofsingle-orbitalequations, the noring dependence on the density at earlier times. This ap- : time-dependent Kohn-Sham (TDKS) equations, of the form proximation has a very specific range of validity – infinitely v (inHartreeatomicunitsusedthroughout): slowly varying perturbations, such that the system is always i X in its ground state – but it is very often employed outside ar i∂tψj(x,t)=(cid:16)− 12∇2+vext(r,t)+vH([n],r,t) (1) idte,pwenitdhinrgesuolntsththeatnactaunrevaorfythfreomprovbelreymsaatdisdfraecstsoerdy.toInpoceorr-, (cid:17) tain cases, it is still difficult to disentangle the errors due +v ([Ψ ,Φ ,n];r,t) ψ (x,t), xc 0 0 j to the adiabatic approximation and the errors due to the ap- with Ψ and Φ initial states of the true interacting and of proximation for the ground-state exchange correlation po- 0 0 tential, but considerable progress has been made in recent the non-interacting KS system. The time-dependent density years, by analysing, whenpossible, the “adiabaticallyexact” is thus computed in the familiar way (for simplicity in this potential.15–17Inothercases,itisinsteadwellestablishedthat introductionweconsiderclosed-shellsystems)as: neglecting all “memory effects” in v (or equivalently fre- xc N/2 quency dependence in the so called xc kernel, Fxc of linear (cid:88) n(r,t)=2 |ψ (r,t)|2. (2) response TDDFT), does not allow TDDFT to describe ex- j citations with a predominantly double character.18–22 In the j=1 2 TDDFTframework,adiabaticityisthusequivalenttolocality tations. Finallywewillgiveourconclusionsandperspectives intime. Themostcommonapproximationsusedtobuildthe forfuturework. adiabaticv (andF inthelinearresponsecase)inTDDFT, xc xc arelocalandsemi-localfunctionals,whichthusaddtolocal- ityintimelocalityinspaceaswell. Inthesecases,thetime- dependentkernelFxc(r,r(cid:48),t,t(cid:48))isapproximatedas II. REVIEWOFTHESCEFORMALISM δ2Eappr[n] F ([n];rt,r(cid:48)t(cid:48))= xc , (3) The SCE formalism can be put in the DFT context start- xc δn(r,t)δn(r(cid:48),t(cid:48)) ingwiththegeneralizationoftheHohenberg-Kohnfunctional F[n]toscaledinteractions: whereEappr[n]isevaluatedattheinstantaneousdensityand xc itisoftenalocalorsemi-localapproximatefunctional,which F [n]= min(cid:104)Ψ|Tˆ+λVˆ |Ψ(cid:105) (4) makesthekerneldifferentfromzeroonlyon(orverycloseto) λ ee Ψ→n thediagonalr = r(cid:48). Wehavealreadyhintedattheshortcom- ings of the locality in time in this introduction, but also the where Tˆ and Vˆ are the familiar kinetic and two-body in- ee localityinspacehasseriouslimitations,anotoriousexample teraction operators, while λ is a parameter varying continu- beingthedescriptionofexcitationswithalong-rangecharge ously from 0 to ∞, yielding different scenarios: F [n] = λ=0 transfer (CT) character23,24. In the case of closed-shell frag- T [n] corresponds to the non interacting or Kohn-Sham sys- s ments, the introduction of a considerable portion of Hartree- tem, F [n] corresponds to the real physical system, while λ=1 Fock exchange (often introduced at long-range only through F [n]definesthestrong-couplinglimit,1,2capturedbythe λ=∞ range-separation) is able to fix the CT problem in linear re- strictly-correlated-electronfunctional sponseTDDFT.25–29However,thissolutiondoesnotworkfor theverychallengingcaseofhomolyticbondbreakingexcita- VSCE[n]≡ min(cid:104)Ψ|Vˆ |Ψ(cid:105). (5) ee ee tions, the prototypical example being the lowest excited sin- Ψ→n gletstate1Σ+u oftheH2molecule.30,31Inthiscase,thekernel TheworkinghypothesistobuildtheminimizerofEq.(5)fora shoulddivergeinordertocompensatethefactthatthisexcita- givendensityisthatinthislimitthemany-bodywavefunction tionintheKSsystemgoestozeroasthebondisbroken.30,31 collapsesintoa3-dimensionalsubspaceofthefullconfigura- In this context, we will show that, at least in a model one- tionspace, dimensional case, the adiabatic SCE (ASCE) kernel shows a verypromisingnon-localdivergingbehavior. 1 (cid:88)(cid:90) n(r) In order to construct approximations both for potentials and |ΨSCE(r1,...,rN)|2 = N! dr N δ(r1−f℘(1)(r)) kernelsinTDDFT,onecanbeguidedbytryingtosatisfyexact ℘ propertiesandconstraintsofmany-bodytheories. Inaseries ×δ(r −f (r))···δ(r −f (r)), (6) 2 ℘(2) N ℘(N) of works32–34 Dobson and Vignale devised a number of con- straints(namedtheoremsafterwards)thatthetime-dependent where℘denotesapermutationof1,...,N,suchthatn(r)= v shouldcomplyto, inordertoavoidunphysicalresultsor N(cid:82) |Ψ (r,r ,...,r )|2dr ···dr . The functional is xc SCE 2 N 2 N contradictionsinthetheory. Fromtheiranalysis, itappeared then specified in terms of the so-called co-motion functions for the first time that the interplay between non locality in f ([n];r)thatdeterminethesetinwhich|Ψ |2 (cid:54)=0, i SCE space and non locality in time is a delicate issue in TDDFT and this fact needs to be kept in mind when looking for ap- 1(cid:90) (cid:88)N 1 VSCE[n]= n(r) dr. (7) proximations, making this task much more challenging than ee 2 |r−f ([n];r)| i ingroundstateDFT.Itisthusnaturaltoaskwhetherahighly i=2 non-localfunctionalsuchasSCEcansatisfytheseexactcon- ThefunctionalderivativeofVSCE[n]definestheSCEpoten- ditionswhenemployedintheadiabaticapproximation. ee tial: After briefly reviewing in Sec. II the basics ideas of the δVSCE[n] SCE formalism, we will show in Sec. III how the SCE po- vSCE([n];r)= ee , (8) δn(r) tential satisfies exact properties of many-body theories, such asthezero-forcetheoremandthegeneralizedtranslationalin- which can be computed via a rigorous and physically trans- variance. Ouranalysiswillalsoshowhow,whilenon-locality parentshortcut2astherepulsionfeltbyanelectroninrdueto in time and non-locality in space have to go hand in hand, theotherN −1electronsatpositionsr =f ([n];r), non-localityinspaceandlocalityintimecancoexistwithout i i violatingtheabovementionedproperties. InSec.IVwewill N derive an analytical expression for the SCE kernel for one- ∇vSCE([n];r)=−(cid:88) r−fi([n];r) . (9) dimensionalsystems,andthencomputeitnumericallyforvar- |r−fi([n];r)|3 i=2 iousdensityprofiles. Wewillcompletethesectionwithadis- cussiononsomegeneralfeaturesofthekernel,pinpointingat All the f [n](r), whose physical meaning is to give the posi- i thosewhicharisefromitshighlynon-localnatureandwhich tions of all the others N − 1 electrons once the position of couldbepromisingforthedescriptionofbond-breakingexci- areferenceelectronhasbeenfixedinr,satisfythefollowing 3 non-lineardifferentialequation: dependent density, the time-dependent xc potential is rigidly translatedbythesamequantity. Wewillrefertothisproperty n(fi([n];r))dfi([n];r)=n(r)dr i=2,..,N −1 (10) as generalized translational invariance (GTI), since it holds alsoforcoordinatesframeswhichareacceleratedwithrespect which shows their non-local dependence on n(r). Further- totheoriginalone.43 more the co-motion function obey (cyclic) group properties2 ThusingeneraltheGTIcanbeformalizedasfollows: given whichensurethattheelectronsareindistinguishable. an arbitrary (be or not time-dependent) shift of the density Intherecentyears,ithasbeenrealizedthattheproblemde- R(t): finedbytheminimization(5)isequivalenttoanoptimaltrans- portproblemwithCoulombcost.35,36 Sincethen,theoptimal n(cid:48)(r,t)=n(r−R(t),t) (11) transport community has been able to prove several rigorous results. Inparticular,theSCEstate(6)hasbeenproventobe thexc potentialassociated withthis densityhas totransform the true minimizer for any number of particles N in one di- accordinglyto: mensional(1D)systems37andinanydimensionforN =2.35 Formoregeneralcases,ithasbeenshownthattheminimizer vxc([n(cid:48)];r,t)=vxc([n];r−R(t),t) (12) mightnotbealwaysoftheSCEform38. Eveninthosecases, however,SCE-likesolutionsseemtobeabletogoveryclose tothetrueminimum,39 andinseveralcasesitisstillpossible A. PropertiesoftheadiabaticSCEpotential toproveEq.(9).39 Inthelow-densitylimit(orstrong-couplinglimit)theexact WewillnowshowexplicitlyshowthattheASCEcomplies Hartree andexchange-correlation (Hxc)energy functionalof KS DFT tends asymptotically to VSCE[n],36,40 Thus, in the tothisrequirement. ee followingwedenotevSCE([n];r)ofEq.(9)asvSCE([n];r),to We begin by observing that in the SCE limit, upon the shift Hxc ofthedensity,alltherelativedistancesbetweentheelectrons stressthatthispotentialisthestrong-couplingapproximation tothestandardHxcpotentialofKSDFT.4,40 havestilltobethesame, thustheco-motionfunctionstrans- formas: Now that the basics of the SCE formalism at the ground state level have been reviewed, we can move to the time- f ([n(cid:48)];r)=f ([n];r−R(t))+R(t). (13) dependentdomain. i i In the one dimensional case, where the co-motion functions can be expressed in terms of a simple one-dimensional inte- III. EXACTPROPERTIESFROMMANY-BODY gral,onecanshowexplicitlythattheaboverelationholds,see THEORIES App. A for details. Substituting the transformed co-motion functionsintotheexpressionfortheSCEpotentialgives: Since the success of TDDFT relies heavily on the avail- N abilityandthequalityoftheapproximationsforvxc([n];r,t) ∇vSCE([n(cid:48)];r,t)=−(cid:88) r−fi([n];r−R(t))−R(t) and for the linear response exchange-correlation kernel Hxc |r−fi([n];r−R(t))−R(t)|3 i=2 F ([n],r,r(cid:48),t,t(cid:48)), there have been intense research efforts xc =∇vSCE([n];r−R(t),t). (14) towards better approximations. As already mentioned in the Hxc introduction,awaytoguidesuchapproximationsistoresort IntegrationandsubtractionoftheHartreepotential(whichsat- to the compliance to exact constraints from many-body the- isfytheGTIstraightforwardly)yields: ories, similarly to what has been done extensively already in ground state DFT. A first exact condition is given by scal- vSCE([n(cid:48)];r,t)=vSCE([n];r−R(t),t) (15) xc xc ing relations,41,42 a second one by a sum rule for the time- dependent exchange-correlation energy41 and just like in the whichistherelationwewantedtoprove. static case, the time-dependent xc potential should be self- A second important constraint is that the xc potential can- interactionfree. notexertanetexternalforceonthesystem,whichisnothing In addition to the constraints enumerated above, a very im- elsethanthecompliancetoNewton’sthirdlawofmotion. In portant condition on approximate xc potentials is that they DFTthispropertygoesunderthenameofzeroforcetheorem shouldbeGalileaninvariant,asaconsequenceofthefactthat (ZFT)andin33 itwasshownhowitisautomaticallysatisfied the TDSE itself exhibits this symmetry. This condition was fortranslationallyinvariantxcpotentials. Onemaythinkthat firstinvestigatedbyVignale,33asageneralizationofanearlier this is a trivial requirement to be satisfied, but in practice it work by Dobson32 on the so called harmonic potential theo- isn’t. Forexamplein44 itwasdemonstratednumericallythat rem (HPT), which states that upon the application of a time- computingthedipolemomentofsmallNa andNa+clusters, 5 9 dependent field to a many-body system confined by an har- via the exact exchange Krieger-Li-Iafrate approximation to monicpotential,itstime-dependentdensityisrigidlyshifted. v ,yieldedanincreasedamplitudeinthedipoleoscillations, xc In33 it was demonstrated that the HPT is automatically sat- mostlikelyduetospuriousinternalforcesappearingasacon- isfiedwheneverthetime-dependentxcpotentialobeysapre- sequence of the violation of the ZFT. The ZFT not only has ciseconstraint,thatisuponarigidshiftofthesystem’stime- implicationsfortheapproximationstothetime-dependentxc 4 potential,butalsoonanotherkeyquantityofTDDFT,namely B. PropertiesoftheadiabaticSCEkernel the exchange correlation kernel. In34 Vignale showed how a frequency dependent (thus non local in time) F cannot be xc Let’snowturntotheASCEkernel, local in space, in order to satisfy the ZFT. A notable exam- ple of a kernel which violates the ZFT and the HPT too, is δ2VSCE[n] theGross-KohnFxc45 whichindeedisfrequencydependent, FHAxScCE([n];rt,r(cid:48)t(cid:48))= δn(r,te)en(r(cid:48),t(cid:48))δ(t−t(cid:48)), (21) butlocalinspace,asitisbasedonthehomogeneouselectron gas. This peculiar issue in TDDFT is commonly known as OnceagainweresorttoanexpansionforthedensityinR(t), ultra non-locality problem and makes particularly challeng- thatisn(r−R(t),t)≈n(r,t)−R(t)·∇n(r,t),combining ingtheconstructionofapproximatefrequencydependentker- thiswithEq.(15)andinvokingthearbitrarinessofR(t)and nels. AdiabaticFxc, derivedfromfullylocalfunctionals, do thedefinitionofASCExckernel,weobtain: not violate the ZFT. It is legitimate to ask if an adiabatic but (cid:90) highly non local functional like the ASCE, does violate the dr(cid:48)FASCE([n];rt,r(cid:48)t(cid:48))∇n(r(cid:48))=δ(t−t(cid:48))∇vSCE([n];r,t), ZFT.Strictlyspeakingwealreadyknowthatitdoesn’t,sinceit Hxc Hxc respectstheGTI,butinthefollowingwewillexplicitlyshow whichshowsthattheASCEkernelindeedsatisfiestheZFTin thatwhilenonlocalityintimerequiresnonlocalityinspace, theconverseisnottrue. thelinearresponseregime. Let’s consider once again a shift in the density: n(cid:48)(r) = n(r−R). Observing that the generalized HK energy func- tionalFλ[n]istranslationallyinvariant(sincebothTˆandVˆee C. Propertiesoftheco-motionfunctions are)onehas: Atthispointitseemsnaturaltoalsoinvestigatesomeprop- F [n]=F [n(cid:48)]. (16) λ λ erties of the co-motion functions. Combining again the ex- pansionforthedensityofEq.(17)withEq.(13)oneobtains: ExpansionofthedensityinpowersofRgives: n(cid:48)(r)=n(r−R)=n(r)−R·∇n(r)+O(R2), (17) (cid:90) dr(cid:48)δfi,α([n];r) ∂ n(r(cid:48))= ∂ f ([n];r)−δ (22) δn(r(cid:48)) ∂r(cid:48) ∂r i,α αβ β β andexpandingbothsidesofEq.(16)yields: where α,β run over Cartesian indices x,y,z. Eq. (22) is a (cid:90) δF 0= dr λ (−R·∇n(r)) (18) sumrulethatcanbewrittenalsoforadiabatictime-dependent δn(r) co-motion functions and the static density and may be em- ployed as constraint to devise approximate co-motion func- whichisvalidforanyarbitraryshiftR. tions. Furthermoreitcanbeusedtoverify(particularlyinthe ThecaseF = VSCE correspondstotheSCEfunctional, λ=∞ ee easier one-dimensional case) the functional variation of the hence: co-motionfunctionswithrespecttothedensity. (cid:90) 0= drvSCE([n];r)∇n(r) (cid:90) =− dr∇vSCE([n];r)n(r) (19) IV. SCEHARTREE-EXCHANGECORRELATION KERNELFORONE-DIMENSIONALSYSTEMS which shows that the SCE potential does indeed satisfy the ZFTforstaticdensities.Additionally,sincethedifferentiation In the one-dimensional case with convex repulsive inter- above is completely general and holds for any density, even particleinteractionw(|x|), theSCEsolution1 isknowntobe time-dependentones,onehas: exactforanynumberofelectronsN,37 andcanbeexpressed inarathersimpleformintermsofthefunctionN ([n];x), (cid:90) e 0= dr∇vSCE([n];r,t)n(r,t), (20) (cid:90) x N ([n];x)= n(y)dy, (23) e −∞ whichshowsthattheASCExcpotentialsatisfiestheZFTfor time-dependentdensitiesaswell. andofitsinverseN−1([n];x): e f ([n];x)=f+([n];x)θ(x−a [n])+f−([n];x)θ(a [n]−x) i i k i k whereθ(x)istheusualHeavisidestepfunction,and f+([n];x)=N−1([n];N ([n];x)+i−1) (24) i e e f−([n];x)=N−1([n];N ([n];x)+i−1−N), i e e witha [n]=N−1([n];k),andk =N +1−i. k e 5 InthiscasetheSCEpotentialissimplygivenby thekernelisgivenby N (cid:90) ∞ FSCE([n];x,x(cid:48))=(G(x(cid:48))−G(x)+G(0))θ(x(cid:48)−f(x)) (cid:88) Hxc vHSCxcE([n];x)=− w(cid:48)(|y−fi([n];y)|)× for x>0, x(cid:48) <0. (32) i=2 x sgn(y−fi([n];y))dy. (25) TheresultingSCEFSCE([n];x,x(cid:48))forthiscaseisplottedin Hxc the first panel of Fig.1: as it is evident from Eq. (29), the TheSCEkernelisthenequaltothevariationoftheSCEpo- kernel has in the first and third quadrants (x,x(cid:48) > 0 and tentialwithrespecttotheelectrondensity, x,x(cid:48) < 0) the same value as along the diagonal (x = x(cid:48)), while in the second and fourth quadrants (Eq. (32)) the ker- δvSCE([n];x) FSCE([n];x,x(cid:48))= Hxc , (26) nelisdifferentfromzeroonlyintheregiondelimitedbythe Hxc δn(x(cid:48)) x,x(cid:48) axesandtheco-motionfunctionx(cid:48) =f(x). Thebehav- ior of an adiabatic kernel local in space, such as the ALDA, whichcanbecarriedout(thedetailsofthederivationaregiven isinsteadradicallydifferent: theFALDA(n];x,x(cid:48))hasanon- in Appendix B-C), yielding (for densities supported on the xc zero component only along the diagonal, δ(x−x(cid:48)), and the wholerealline)thecompactexpression Hartreecomponent,equaltow(|x−x(cid:48)|),hasamaximumon FSCE([n];x,x(cid:48))=(cid:88)N (cid:90) ∞ w(cid:48)(cid:48)(|y−fi([n];y)|)] (27) thediagonal,decayingas1/|x−x(cid:48)|outsideit. Hxc n(f ([n];y)) i=2 x i ×[θ(y−x(cid:48))−θ(f ([n];y)−x(cid:48))]dy. B. ModelHomonuclearmolecule i Fromthisexpression,itisnotevidentthatEq.(27)satisfiesthe Thesecondtypeofdensityconsideredisamodel2-electron symmetry requirement FSCE([n];x,x(cid:48)) = FSCE([n];x(cid:48),x). Hxc Hxc densitywhichresemblestheoneofahomonuclearmolecule, AnexplicitproofofthissymmetryisgiveninAppendixD. a(cid:16) (cid:17) n(x)= e−a|x−R2|+e−a|x+R2| , (33) 2 A. AnalyticalExample where a = 1 and where R, the distance between the two nuclei, canbeincreasedarbitrarilytosimulatethemolecular bond stretching. For this case we numerically computed the WebeginbyconsideringN =2electronsintheLorentzian SCEkernelfordifferentvaluesofR,toobtaininsightsonhow densityprofile, ahighlynon-localkernelbehavesforaproblemwhichbears 2 1 aresemblancetotheH2 dissociation. TheresultsforR = 3, n(x)= , (28) R = 8 and R = 12 are presented respectively in panels (b), π1+x2 (c)and(d)ofFig.1. forwhichtheco-motionfunctionissimplyf (x) ≡ f(x) = Aside from the peak in the origin, a very interesting fea- 2 −1.FromthegeneralexpressionofEq.(27),weobtaininthe ture displayed by the SCE kernel is the appearance, as R is x firstquadrant increased,oftwoplateaux,eachoccupyingalargesquarere- gion (of size ≈ R×R) of the first and the third quadrants. FSCE([n];x,x(cid:48))=G(−max{x,x(cid:48)}) for x>0, x(cid:48) >0, As in the case of the lorentzian density, the SCE kernel has Hxc (29) alsonon-zerocomponentsinthesecondandfourthquadrants, wherewehavedefinedthefunctionG(x) but they are now much smaller than the ones in the I and III quadrants. (cid:90) x w(cid:48)(cid:48)(|y−f([n];y)|)] The height of the plateaux increases as R increases. A G(x)= dy, (30) n(f([n];y)) closer analysis of the function G(x) defined by Eq. (30) for −∞ the case of the density (33) (see Appendix E) shows that the which in this case, and with e-e interaction w(|x|) = 1 heightandsizeoftheplateauxareapproximatelygivenby |x| (sinceintheSCEwavefunctiontheparticlesnevergetontop of each other, the 1/x divergence at x = 0 in 1D does not 1 FSCE([n];x,x(cid:48))≈ poseanyproblem),isequalto Hxc n(0)(R−1/a)2 1 1 1 1 (cid:40) π 1 x≤0 for (cid:46)|x|(cid:46)R− , and (cid:46)|x(cid:48)|(cid:46)R− , G(x)= 21+x2 (31) a a a a π211++2xx22 x>0. withx,x(cid:48) ≥0 or x,x(cid:48) ≤0 (34) Sinceourdensitysatisfiesn(−x)=n(x),inthiscasetheker- As an example, we show in Fig. 2 the SCE kernel along the nel in the third quadrant (x < 0 and x(cid:48) < 0) is equal to the diagonalforR=8,12and20,multipliedbyn(0)(R−1/a)2, oneinthefirstquadrant.Inthesecondquadrant–andbysym- where n(0) = e−aR/2. The value of the SCE kernel on the metrythefourth,sinceFSCE([n];x,x(cid:48))=FSCE([n];x(cid:48),x)– diagonalalsodefinesthevalueofthekernelinthewholefirst Hxc Hxc 6 andthirdquadrants,seeEq.(29). Thus,weseethattheSCE e-R2(R-1)2FSCE(x,x) Hxc 1.5 R=20 1.0 (a)SCEkernelforaLorentziandensity. 0.5 R=12 R=8 -20 -10 10 20 x Figure2. TheSCEkernelforthe“homonucleardimer”densityof Eq.(33)witha = 1anddifferentinternuclearseparationsRalong thediagonalx = x(cid:48). Thekernelhasbeenmultipliedbyn(0)(R− (b)SCEkernelfora“homonucleardimer” 1/a)2,toshowitsscalingwithR. Thevaluealongthediagonalis densitywithR=3 exactlythesameasthevalueofthekernelinthewholefirstandthird quadrant,seeEq.(29)andFig.1. kerneldevelopsplateauxregionswhoseheightdivergesexpo- nentiallyasRisincreased. Thisdivergenceisverypromisingtocapturebond-breaking excitations, because it makes diverge matrix elements of the kernel between atomic orbitals centered on the same site. Considerthebasicexampleofthelowestexcitedsingletstate 1Σ+oftheH molecule,30,31wherewehaveamatrixelement u 2 (c)SCEkernelfora“homonucleardimer” ofthekind densitywithR=8 (cid:90) (cid:90) dx dx(cid:48)σ (x)σ (x)FSCE([n];x,x(cid:48))σ (x(cid:48))σ (x(cid:48)), g u Hxc g u (35) whereσ = c (φ ±φ ),withφ theatomicorbitals g,u u,g A B A,B centeredinthetwoatoms,andc anormalizationconstant. u,g IntheTDDFTlinearresponseequationsthismatrixelementis multipliedbythecorrespondingKSorbitalenergydifference (cid:15) −(cid:15) , which goes to zero as R → ∞, so that the kernel u g matrix element must diverge in order to keep the excitation finite (as it is in the exact system).30,31 We see that for the termscenteredonthesameatomAappearingin(35)wehave, (d)SCEkernelfora“homonucleardimer” densitywithR=12 forlargeR, Figure 1. The SCE Hartree-exchange-correlation kernel for (cid:90) (cid:90) N = 2 electrons for the Lorentzian density profile of dx dx(cid:48)|φA(x)|2FHSCxcE([n];x,x(cid:48))|φA(x(cid:48))|2 Eq. (28) (a) and for “homonuclear dimer” densities n(x) = (cid:16) (cid:17) 1 1 e−|x+R/2|+e−|x−R/2| , with R = 3 (b), R = 8 (c) and ≈ . (36) 2 n(0)(R−1/a)2 R = 12 (d). The FSCE([n];x,x(cid:48)) displays, in all the four cases, Hxc apeakstructureincorrespondenceoftheverticalasymptotesofthe Equation(36)holdsbecausetheproductoftheatomicorbitals co-motionfunctions. Twosymmetricquasi-plateaux,inthefirstand withthesamecenter, |φ (x)|2|φ (x(cid:48))|2, issignificantlydif- A A thirdquadrants,appearforthestretched“homonucleardimer”den- ferent from zero only in one of the two plateau regions of sities: theybecomegreaterinheightandflatterasthevalueofRis Eq.(34),wherewecanapproximatetheSCEkernelwiththe increased. constantvalue 1 ,whichdivergesexponentiallyas n(0)(R−1/a)2 R→∞. Althoughamorecarefulanalysisisneededtoverify if this divergence is really able to compensate the vanishing 7 oftheKSexcitation(cid:15)u−(cid:15)g comingfromaself-consistentKS AppendixA:Explicitcalculationoftheshiftedco-motion SCE calculation, we see that the FSCE([n];x,x(cid:48)) embodies functionsin1D Hxc the right physics: its very non-local dependence on the den- sitymakesitdivergeintheatomicregion,onlywhenanother Let us consider the negative semi-axis (the positive one distantatomispresent. gives an analogous result). The function N ([n];x) for a e Finally, the height of the peak in the origin can be easily shifteddensityn(cid:48)reads: obtained from the properties of the function G(x) (see Ap- pendixE),anditcanbeshowntobealwaysequalto x x−R(t) (cid:90) (cid:90) (cid:18) R R(cid:19) 2 Ne([n(cid:48)];x)= n(cid:48)(y)dy = n(y−R(t))dy FSCE([n];0,0)=2FSCE [n]; , ≈ . Hxc Hxc 2 2 n(0)(R−1/a)2 −∞ −∞ (37) =N ([n];x−R(t)), (A1) e andtakingitsinverse, V. CONCLUSIONSANDPERSPECTIVES N−1[N ([n(cid:48)];x)]=x e e N−1[N ([n];x−R(t))]+R(t)=x. (A2) InthisworkwehaveexploredtheSCElimitinthecontext e e of time-dependent problems, focusing on the formal proper- Combiningtheaboverelationswehave: tiesoftheadiabaticSCE(ASCE)functional. Wefirstexam- ined some properties of the ASCE time-dependent potential, f ([n(cid:48)];x)=N−1[N ([n(cid:48)];x)+i−1] (A3) i e e inparticularthecompliancetoconstraintsofexactmany-body =N−1[N ([n];x−R(t))+i−1]+R(t) theories, such as the generalized translational invariance and e e =f ([n];x−R(t))+R(t) the zero-force theorem, and showed that the ASCE satisfies i both. Whileitiswellknownthatnon-localityintimerequires whichisthe1DversionofEq.(13). nonlocalityinspace,wehaveshownthattheconverseisnot trueusingtheexampleoftheASCE. Inthesecondhalfofthepaperwederivedananalyticalex- pressionfortheSCEHartreeexchange-correlationkernelfor AppendixB:Functionalvariationofthe1Dco-motionfunctions withrespecttothedensity one-dimensional problems, and we have computed it numer- ically for various density profiles. In particular, we have an- alyzedthecaseofamodelhomonuclear2-electronmolecule LetnbeadensityofameasureinRsuchthat(cid:82) n(x)dx= R asthebondisstretched,findingthattheSCEkerneldisplaysa N. Then, the co-motion functions (or the optimal transport verypromisingdivergingbehaviorthatcouldtackletheprob- maps) are given explicitly by Eqs. (24)-(25), which corre- lemofhomolyticbond-breakingexcitations. spondtothecondition(cid:82)fi(x)n(y)dy ∈{i,−N+i},depend- x In future works we will implement the whole linear re- ingonwhetherx≤a ornot. i sponse TDDFT equations for one-dimensional problems us- Weconsidernε(x)=n(x)+ε(n˜(x)−n(x))andwewant ingtheSCEkernel,analysingifitsdivergingbehaviorisable to determine the corresponding co-motion functions fε. For i toopenthegapinamodelMottinsulator,madeofachainofH every x ∈ R we define x as the point such that f (x ) = ε i ε atoms. Workonbond-breakingexcitationsinrealtimeprop- fε(x),andthenwenoticethat i agationwiththeASCEpotentialhasalsoshownverypromis- ingresultsinthissense,andiscurrentlyinpreparation.10Last (cid:90) fi(xε) (cid:90) fiε(x) but not least, we will use our insights to design approximate n(y)dy− nε(y)dy ∈{−N,0,N}, kernelsbasedontheSCEform. xε x (cid:90) fε(x) (cid:90) fε(x) (cid:90) fε(x) i i i n(y)dy− n(y)−ε (n˜(y)−n(y))dy ACKNOWLEDGMENTS xε x x ∈{−N,0,N}, (cid:90) x (cid:90) fε(x) It is our pleasure to dedicate this paper to Evert Jan i n(y)dy−ε (n˜(y)−n(y))dy ∈{−N,0,N}. Baerends,whohasbeenapioneerinunderstandingandusing xε x linear response TDDFT, and a wonderful mentor to some of (B1) us. WethankAndre´Mirtschink,KlaasGiesbertzandMichael Seidlformanyusefuldiscussionsandforacriticalreadingof SincethislastquantityisforsurelessthanN initsabsolute the manuscript. This work was supported by an IEF fellow- value,thenitmustbeequalto0andso shipfromtheMarieCurieprogram(n.629625)andfromthe European Research Council under H2020/ERC Consolidator (cid:90) x (cid:90) fiε(x) n(y)dy =ε (n˜(y)−n(y))dy; (B2) Grant“corr-DFT”(GrantNo.648932).RvLlikestothankthe AcademyofFinlandforsupport.AGacknowledgesCNPqfor xε x thefinancialsupportofhisPh.D.,whenthisworkwasdone. thisimpliesforsurethatifn>0everywherethenx −xisof ε 8 orderεandtheneitherf −fεisoforderεor(whenx=a ) theregularpart i i i f ∼ ±∞andfε ∼ ∓∞. Inthefirstcaseitisclearthatthe i i right-handsideof(B2)canbeapproximatedby(cid:82)xfi(x)(n˜−n) K (x,x(cid:48))=(cid:88)N (cid:90) ∞w(cid:48)(cid:48)(|y−f ([n];y)|)· losingalowerorderterm;infactthisistruealsointhesecond R i case, using the fact that n˜ −n has null total integral. Now, i=2 x definingthequantity θ(y−x(cid:48))−θ(fi([n];y)−x(cid:48))dy. (C1) n(f (y)) i (cid:90) fi(x) αi(x)= (n˜(y)−n(y))dy (B3) The singular part is more delicate as the classical chain rule x doesnotapplyanymore: wefindthatδf /δnisproportional i andusing(B2), thelastobservation, andthecontinuityofn, to(fi)(cid:48). [Thechainruleforderivativeswhenwehaveastep wecaninferthat functionisnottrivial:justtaketheexampleofg(θ),forwhich thederivativeis(g(1)−g(0))δ andnot(g(cid:48)◦θ)·θ(cid:48) =g(cid:48)(0)δ .] 0 0 α (x) x =x−ε i +o(ε). (B4) In this case, the term coming from the jump, noticing that ε n(x) sgn(a −f±([n];a ))=∓1,hastheform i i i Thismeansthatwehave N (cid:88) (cid:16) fiε(x)−fi(x) = fi(xε)−fi(x) ∼−(f (x))(cid:48)αi(x), (B5) KS(x,x(cid:48))= θ(ai−x)· w(cid:48)(|ai−fi+([n];ai)|)+ ε ε i n(x) i=2 (cid:17) α (a ) w(cid:48)(|a −f−([n];a )|) · i i . (C2) wherethederivativeisadistributionalderivative,whichtakes i i i n(a ) i into account also the jumps. Away from x = a , which is i the only point where the jump can occur, we can make a In particular, whenever n(x) > 0 on the whole real line we simplification, as we have fi(cid:48)(x) = n(x)/n(fi(x)), and so would have f±([n];ai) = ±∞ and this term becomes 0 if (f (x))(cid:48)αi(x) = αi(x) . For the jump we will get an addi- w(cid:48)(∞) = 0whichisthecasefortheCoulombinteractionor i n(x) n(fi(x)) anysituationinwhichtheforce tendsto0 withthedistance. tionaltermintheformofadeltafunction, FordensitiessupportedonthewholeRwehaveonlytheterm α (x) (C1),whichcoincideswithEq.(27). (f+([n];a )−f−([n];a ))δ(x−a )· i . (B6) i i i i i n(x) However, if the support of n is compact, denoting Intheend,noticingthat−αi(x) = (cid:82)Rδn(x(cid:48))·(cid:0)θ(x−x(cid:48))− by n−,n+ the extremes of the support, we would have θ(fi([n];x)−x(cid:48))(cid:1)dx(cid:48),weget f±([n];ai)=n±andthecontributionwouldbenonzero. We canwriteitinaclearerform(usingθ(f+([n];a )−x(cid:48))=0) i i δfi([n];x) =(cid:0)θ(x−x(cid:48))−θ(f ([n];x)−x(cid:48))(cid:1)· δn(x(cid:48)) i N (cid:88) (cid:16) (cid:17) (cid:18) 1 f+([n];a )−f−([n],a ) (cid:19) KS(x,x(cid:48))= θ(ai−x)· w(cid:48)(|ai−n+|)+w(cid:48)(|ai−n−|) · n(f ([n];x) + i in(a )i i ·δ(x−ai) i=2 i i θ(a −x(cid:48)) (B7) i . (C3) n(a ) i AppendixC:FunctionalvariationfortheSCEpotential(kernel) Now we want to use the results of the previous section AppendixD:SymmetryoftheSCEkernelin1D on the variation of the co-motion functions to derive an expression for δvSCE(x)/δn(x(cid:48)), where vSCE(x) is given Hxc Hxc in Eq. (25). We can write FSCE(x,x(cid:48)) = K (x,x(cid:48)) + Hxc R KS(x,x(cid:48)),whereKR andKS are,respectively,thecontribu- The symmetry in x and x(cid:48) of the singular term KS(x,x(cid:48)) tionduetotheregularandsingularpartof δfi(x). Whenthe ofEq.(C3)isobvious,whileforK (x,x(cid:48))ofEq.(C1)thisis δn(x(cid:48)) R co-motionfunctionsdonothavejumps(thatis,wheny (cid:54)=a ) subtler. In order to prove it we compute ∂2 K (x,x(cid:48)): if i ∂x∂x(cid:48) R wecansimplyapplythechainruleandfindanexpressionfor wecanprovethatthisquantityissymmetric,thenthesymme- 9 tryofthewholekernelisautomaticallyproven: AppendixE:PropertiesofthefunctionG(x)forthe homonuclear1Ddensity ∂2 K ([n];x,x(cid:48))= ∂x∂x(cid:48) R Forthe2-electrondensityofEq.(33)witha = 1itiseasy (cid:88)N w(cid:48)(cid:48)(|x−f ([n];x)|)δ(x(cid:48)−x)−δ(x(cid:48)−fi([n];x)) toshowthattheco-motionfunctionsatisfies i n(f ([n];x)) (cid:18) 2 (cid:19) i=2 i f([n];x→0+)=ln(x)−R+ln , (E1) 1+e−R =(cid:88)N w(cid:48)(cid:48)(|x−fi([n];x)|)δ(x(cid:48)−x)− n(f ([n];x)) yielding i i=2 (cid:88)N w(cid:48)(cid:48)(|x−x(cid:48)|)δ(x(cid:48)−fi([n];x)). (D1) n(f([n];x→0+))=xe−R/2. (E2) n(f ([n];x)) i=2 i The case x → 0− can be obtained from f([n];−x) = −f([n];x) and n(−x) = n(x). Inserting these expansions For the first term we will use the fact that h(x)δ(x(cid:48) −x) = inthedefinitionofthefunctionG(x)ofEq.(30)weseethat h(x(cid:48))δ(x−x(cid:48)), while for the second term we will use also itsderivativeisgivenby thatδ(g(x)−g(x(cid:48)))= 1 δ(x−x(cid:48)). Inparticularwehave g(cid:48)(x) x(cid:48) =f (f (x(cid:48))),andso,sincef(cid:48)([n],y)= n(y) : 2eR/2 i N−i+2 i n(fi([n];y) G(cid:48)(x→0+)= (cid:16) (cid:17) , (E3) x|R−ln 2 −ln(x)|3 δ(x(cid:48)−f ([n];x))=δ(f (f (x(cid:48)))−f (x)) 1+e−R i i N−i+2 i n(f ([n];x)) showing that G(x) has an infinite slope in x = 0. Further- =δ(f ([n];x(cid:48))−x) i . (D2) N−i+2 n(x) more,wealsohave,fromthepropertiesoftheco-motionfunc- tionandfromthesymmetryofthedensityn(−x)=n(x)that Plugging in this expression and using again the fact that h(x)δ(y−x)=h(y)δ(x−y)wefindthat G(−x)=2G(0)−G(x) (E4) G(f(x))=G(x)−G(0) forx>0 (E5) ∂2 G(f(x))=G(x)+G(0) forx<0. (E6) K ([n];x,x(cid:48))= ∂x∂x(cid:48) R Since f([n];−R/2) = R/2, for x = −R/2 both properties (cid:88)N w(cid:48)(cid:48)(|x−fi([n];x)|)δ(x(cid:48)−x) (E4)and(E6)musthold, implyingthatG(0) = 2G(−R/2), n(fi([n];x)) whichisEq.(37). i=2 When R is large, if x is well inside one of the atomic re- −(cid:88)N w(cid:48)(cid:48)(|x−x(cid:48)|)δ(x(cid:48)−fi([n];x)) gions then f∓([n];x) ≈ x ± R, yielding the constant dis- i=2 n(fi([n];x)) tance|x−fi([n];x)| ≈R,producingtheplateauxregionsin thekernel. Thisbehaviorholdsuntiltheelectroninf([n];x) =(cid:88)N w(cid:48)(cid:48)(|x(cid:48)−fi([n];x(cid:48))|)δ(x−x(cid:48)) approachestheoriginandstartsto“see”theseconddensityin n(f ([n];x(cid:48))) theoverlapregionpresentinthemidbond.Thishappenswhen i i=2 x≈±(R−1/a). Atthispoint,thelargenegativexbehavior −(cid:88)N w(cid:48)(cid:48)(|x−x(cid:48)|)δ(fN−i+2([n];x(cid:48))−x) ofG(x)startstoappear, n(x) i=2 1 G(x→−∞)= , (E7) =(cid:88)N w(cid:48)(cid:48)(|x(cid:48)−fi([n];x(cid:48))|)δ(x−x(cid:48)) n(0)x2 n(f ([n];x(cid:48))) i i=2 yieldingtheplateauvalueofEq.(34). −(cid:88)N w(cid:48)(cid:48)(|x−x(cid:48)|)δ(fN−i+2([n];x(cid:48))−x) n(f ([n];x(cid:48))) N−i+2 i=2 ∂2 = K ([n];x(cid:48),x), (D3) ∂x∂x(cid:48) R whereinthelaststepwejustrelabeledthesecondsum. 10 1 M.Seidl,Phys.Rev.A60,4387(1999). 22 N.T.Maitra,F.Zhang,R.J.Cave, andK.Burke,J.Chem.Phys. 2 M.Seidl,P.Gori-Giorgi, andA.Savin,Phys.Rev.A75,042511 120,5932(2004). (2007). 23 A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 3 P.Gori-Giorgi,G.Vignale, andM.Seidl,J.Chem.TheoryCom- (2004). put.5,743(2009). 24 E.J.Baerends,O.V.Gritsenko, andR.vanMeer,Chem.Phys. 4 F. Malet, A. Mirtschink, J. C. Cremon, S. M. Reimann, and Phys.Chem.15,16408(2013). P.Gori-Giorgi,Phys.Rev.B87,115146(2013). 25 C. Bannwarth and S. Grimme, Comput. Theoret. Chem. 1040- 5 C. B. Mendl, F. Malet, and P. Gori-Giorgi, Phys. Rev. B 89, 1041,45(2014). 125106(2014). 26 M.DierksenandS.Grimme,J.Phys.Chem.A108,10225(2004). 6 F.Malet, A.Mirtschink, K.Giesbertz, L.Wagner, andP.Gori- 27 B. P. Peach, M. J. and, T. Helgaker, and D. J. Tozer, J. Chem. Giorgi,Phys.Chem.Chem.Phys.16,14551(2014). Phys.128,044118(2012). 7 F.Malet,A.Mirtschink,C.B.Mendl,J.Bjerlin,E.O.Karabulut, 28 T.Yanai,D.P.Tew, andN.C.Handy,Chem.Phys.Lett.393,51 S.M.Reimann, andP.Gori-Giorgi,Phys.Rev.Lett.115,033006 (2004). (2015). 29 W.J.Dreuw, A.andandM.Head-Gordon,J.Chem.Phys.119, 8 S.Vuckovic,L.O.Wagner,A.Mirtschink, andP.Gori-Giorgi,J. 2943(2003). Chem.Theory.Comput.11,3153(2015). 30 O.V.Gritsenko,S.vanGisbergen,A.Go¨rling, andE.J.Baerends, 9 A. Mirtschink, Energy Density Functionals from the Strong- J.Chem.Phys.113,8478(2000). Interaction Limit of Density Functional Theory, Phd thesis, VU 31 K.J.H.GiesbertzandE.J.Baerends,Chem.Phys.Lett.461,338 University,Amsterdam(2014). (2008). 10 A.Mirtschink,U.DeGiovannini,A.Rubio, andP.Gori-Giorgi, 32 J.F.Dobson,Phys.Rev.Lett.73,2244(1994). inpreparation(2015). 33 G.Vignale,Phys.Rev.Lett.74,3233(1995). 11 E.RungeandE.K.U.Gross,Phys.Rev.Lett.52,997(1984). 34 G.Vignale,Phys.Lett.A209,206(1995). 12 R.vanLeeuwen,Phys.Rev.Lett.82,3863(1999). 35 G.Buttazzo,L.DePascale, andP.Gori-Giorgi,Phys.Rev.A85, 13 M.RuggenthalerandR.vanLeeuwen,Eur.Phys.Lett.95,13001 062502(2012). (2011). 36 C.Cotar,G.Friesecke, andC.Klu¨ppelberg,Comm.PureAppl. 14 M.Ruggenthaler, M.Penz, andR.vanLeeuwen,J.Phys.Con- Math.66,548(2013). dens.Matter27,203202(2015). 37 M.Colombo,L.DePascale, andS.DiMarino,Can.J.Math.67, 15 J.I.Fuks,M.Farzanehpour,I.V.Tokatly,H.Appel,S.Kurth, and 350(2015). A.Rubio,Phys.Rev.A88,062512(2013). 38 M.ColomboandF.Stra,arXiv:1507.08522[math.AP]. 16 P.Elliott,J.I.Fuks,A.Rubio, andN.T.Maitra,Phys.Rev.Lett. 39 S.DiMarino,A.Gerolin,L.Nenna,M.Seidl, andP.Gori-Giorgi, 109,266404(2012). inpreparation. 17 J.I.FuksandN.T.Maitra,Phys.Chem.Chem.Phys.16,14504 40 F.MaletandP.Gori-Giorgi,Phys.Rev.Lett.109,246402(2012). (2014). 41 P.Hessler,J.Park, andK.Burke,Phys.Rev.Lett.82,378(1999). 18 S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302, 375 42 P.Hessler, N.P.Maitra, andK.Burke,J.Chem.Phys.117,72 (1999). (2002). 19 M.ThieleandS.Ku¨mmel,Phys.Rev.Lett.112,083001(2014). 43 Forframeswhicharetranslatedwithauniformvelocitywithre- 20 D.J.TozerandN.C.Handy,Phys.Chem.Chem.Phys.2,2117 specttothereferenceone,wesimplytalkaboutGalileaninvari- (2000). ance. 21 J.Neugebauer,E.J.Baerends, andM.Nooijen,J.Chem.Phys. 44 M. Mundt, S. Kummel, R. van Leeuwen, and P.-G. Reinhard, 121,6155(2004). Phys.Rev.A75,050501(R)(2007). 45 E.K.U.GrossandW.Kohn,Phys.Rev.Lett.55,2850(1985).