ebook img

The Acoustics of Wood (1995) PDF

301 Pages·1995·73.485 MB·\301
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The Acoustics of Wood (1995)

ACOUSTICS O f WOOD Voichita Bucur Institut National de la Recherche Agronomique Centre de Recherches Forestières Nancy, France First published 1995 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 Reissued 2018 by CRC Press © 1995 by Taylor & Francis CRC Press is an imprint of Taylor & Francis Group, an lnforma business No claim to original U.S. Government works This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. A Library of Congress record exists under LC control number: 94036293 Publisher's Note The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original copies may be apparent. Disclaimer The publisher has made every effort to trace copyright holders and welcomes correspondence from those they have been unable to contact. ISBN 13: 978-1-138-50647-3 (hbk) ISBN 13: 978-0-203-71012-8 (ebk) Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com “Dubito, ergo cogito; cogito ergo suiti” René Descartes (1596- 1650) CONTENTS Foreword .................................................................................. ix Preface ........................................................................................................................................................... x Chapter 1 Introduction 1.1. General Remarks on Wood Material.................................................................................................. 1 1.2. Outline of the Book .......................................................................................................................... 4 References ...................................................................................................................................................... 4 PART I ENVIRONMENTAL ACOUSTICS Chapter 2 Acoustics of Forests and Acoustic Quality Control of Some Forest Products 2.1. Acoustics of Forests and Forest Products....................................................................................... 9 2.2. Ultrasound for the Germinability Detection of Acorns ............................................................... 13 References ...................................................................................................................................................... 17 Chapter 3 Wood and Wood-Based Materials in Architectural Acoustics 3.1. Influence of Anatomical Structure of Wood on Sound Absorption Characteristics ................ 19 3.2. Wood Materials as Acoustic Insulators......................................................................................... 20 3.3. Wood and the Acoustics of Concert Halls .................................................................................... 24 References ...................................................................................................................................................... 31 PART II MATERIAL CHARACTERIZATION Chapter 4 Theory and Experimental Methods for the Acoustic Characterization of Wood 4.1. Elastic Symmetry of Propagation Media ...................................................................................... 35 4.1.1. Isotropic Solids...................................................................................................................... 36 4.1.2. Anisotropic Solids ................................................................................................................ 36 4.2. Wave Propagation in Anisotropic Media ........................................................................................ 42 4.2.1. Ultrasonic Bulk Wave Propagation in Orthotropic Media ............................................. 44 4.2.1.1. Velocities and Stiffnesses. The Eigenvalues of Christoffel’s Equations ............................................................................................................... 44 4.2.1.2. The Eigenvectors of Christoffel’s Equations ................................................... 49 4.2.2. Mechanical Vibrations in the Acoustic Frequency Range ............................................. 51 4.2.2.1. Resonance Vibration Modes in Rods and Plates ............................................. 51 4.2.2.2. Engineering Constants ......................................................................................... 52 4.3. Velocity of Ultrasonic Waves in Wood........................................................................................... 58 4.3.1. Measurement System ........................................................................................................... 59 4.3.1.1. Devices ................................................................................................................... 59 4.3.1.2. Transducers............................................................................................................ 60 4.3.2. Specimens for Ultrasonic Testing ....................................................................................... 60 4.3.2.1. Preparation of Samples ........................................................................................ 62 4.3.2.2. Coupling Media..................................................................................................... 65 4.3.2.3. Specimens of Finite Dimensions ........................................................................... 66 4.3.2.4. Influence of the Physical Properties of Wood on Measurement of Ultrasonic Velocity .......................................................................................... 70 4.4. Attenuation of Ultrasonic Waves ..................................................................................................... 73 4.4.1. Theoretical Considerations................................................................................................. 74 4.4.2. Measurement Technique .................................................................................................... 74 4.4.3. Factors Affecting Attenuation Measurements ................................................................ 74 4.4.3.1. Geometry of the Specimen ............................................................................... 74 4.4.3.2. Characteristics of the Materials ........................................................................ 76 4.5. Internal Friction in Wood in the Audible Frequency Range .................................................... 79 4.5.1. Typical Damping Coefficient Values ............................................................................... 80 4.5.2. Damping Coefficients as Indicators of Microstructural Modifications Induced by Different Factors ............................................................................................ 81 4.5.2.1. Temperature and Moisture Content ................................................................. 81 4.5.2.2. Chemical Treatment ........................................................................................... 82 4.5.2.3. Dynamic Loading ............................................................................................... 83 References .................................................................................................................................................... 84 Chapter 5 Elastic Constants of Wood Material 5.1. Global Characterization ................................................................................................................... 91 5.1.1. Optimization Criteria for Off-Diagonal Terms of the Stiffness Matrix Determined Using Bulk Waves.............................................................................................................. 91 5.1.2. Stiffnesses and Mode Conversion Phenomena from Bulk to Surface Waves .................................................................................................................................... 101 5.1.3. Young’s Moduli, Shear Moduli, and Poisson’s Ratios from Dynamic (Ultrasonic and Resonance) Testsa nd Static Tests ........................................................ 105 5.2. Local Characterization ..................................................................................................................... 107 5.2.1. Acoustic Microscopy ........................................................................................................ 108 5.2.1.1. Operating Principle ........................................................................................... 110 5.2.1.2. Acoustic Images ................................................................................................ Ill 5.2.2. Photoacoustics in Wood Science .................................................................................... 112 5.2.2.1. Principles ............................................................................................................ 113 5.2.2.2. Instrumentation ................................................................................................... 113 5.2.2.3. Applications......................................................................................................... 114 References .................................................................................................................................................... 114 Chapter 6 Structural Anisotropy and Ultrasonic Parameters of Wood 6.1. Filtering Action Induced by the Anatomic Structure of Wood ................................................ 119 6.2. Estimation of Anisotropy by Velocities of Longitudinal and Transverse Bulk Waves ................................................................................................................................................. 120 6.3. Estimation of Anisotropy by Invariants ........................................................................................ 124 6.3.1. Acoustic Invariants ............................................................................................................. 125 6.3.2. Elastic Invariants ................................................................................................................. 129 References .................................................................................................................................................... 131 PART III QUALITY ASSESSMENT Chapter 7 Wood Species for Musical Instruments 7.1. Acoustic Properties of Wood Species ............................................................................................ 135 7.1.1. Acoustic Properties of Resonance Wood for Violins .................................................... 135 7.1.1.1. Spruce ................................................................................................................... 136 7.1.1.2. Curly Maple ........................................................................................................ 140 7.1.1.3. Wood for the Bow ............................................................................................ 141 7.1.1.4. Wood for Other Components........................................................................... 141 7.1.2. Acoustic Properties of Wood for Guitars ......................................................................... 141 7.1.3. Acoustic Properties of Wood for Woodwind Instruments ............................................. 142 7.1.4. Acoustic Properties of Wood for Percussion Instruments ............................................. 143 7.1.5. Acoustic Properties of Wood for Keyboard Instruments: The Piano ......................... 143 7.1.6. Relationships between Elastic Properties of Resonance Wood and Its Typical Structural Characteristics............................................................................... 145 7.1.6.1. Macroscopic Structural Parameters ................................................................. 145 7.1.6.1.1. Growth Ring Pattern ....................................................................... 147 7.1.6.1.2. Densitometric Pattern of the Annual Ring in Resonance Wood 150 7.1.6.2. Microscopic and Submicroscopic Structural Parameters.............................. 151 7.1.7. Tonal Quality of Musical Instruments and Wood Properties ...................................... 153 7.1.8. Conclusion ........................................................................................................................... 154 7.2. Factors Affecting Acoustic Properties of Wood for Musical Instruments ............................... 155 7.2.1. Influence of Natural Aging on Resonance Wood ........................................................... 155 7.2.2. Influence of Environmental Conditions ........................................................................... 158 7.2.3. Influence of Long-Term Loading ..................................................................................... 159 7.2.4. Influence of Varnishing ...................................................................................................... 161 7.3. Chemical Treatments for Improving the Acoustic Properties of Common Solid Wood Used for Mass-Produced Instruments ............................................................................... 163 7.4. Composites as Substitutes for Resonance Wood ......................................................................... 165 Appendix ...................................................................................................................................................... 168 References .................................................................................................................................................... 170 Chapter 8 Ultrasound as a Complementary Nondestructive Tool for Wood Quality Assessment 8.1. Ultrasound and Wood Quality ........................................................................................................ 177 8.2. Ultrasonic methods for Trees, Timber, and Wood Composites ................................................ 177 8.2.1. Ultrasound and Trees ......................................................................................................... 177 8.2.1.1. Detection of the Slope of the Grain ................................................................ 177 8.2.1.2. Detection of Reaction Wood .................................................................. 179 8.2.1.3. Detection of Pruning Trees............................................................................. 181 8.2.1.4. Detection of Curly Figures in Trees ............................................................... 183 8.2.2. Ultrasound and Lumber Grading ...................................................................................... 185 8.2.2.1. Ultrasonic Velocity Method for Grading Timber and Round Wood .......... 186 8.2.2.2. Stress-Wave Grading Technique for Testing Timber and Wood Composites .......................................................................................................... 190 8.3. Ultrasonic Control of Wood-Based Composites ........................................................................... 190 8.4. Other Nondestructive Techniques for the Detection of Defects in Wood ............................... 192 References .................................................................................................................................................... 193 Chapter 9 Environmental Modifiers of the Structural Parameters of Wood Detected With Ultrasounic Waves 9.1. Dependence of Ultrasonic Velocities and Related Mechanical Parameters of Wood on Moisture Content and Temperature ......................................................................................... 197 9.1.1. Influence of Moisture Content on Solid Wood................................................................... 197 9.1.2. Influence of Temperature on Solid Wood ......................................................................... 201 9.1.3. Influence of the Hygrothermal Treatment on the Quality of Wood Composites .......................................................................................................................... 206 9.2. Ultrasonic Parameters and Biological Deterioration .................................................................. 207 9.2.1. Bacterial Attack ................................................................................................................... 207 9.2.2. Fungal attack ....................................................................................................................... 209 9.2.3. Wood-Boring Agents ....................................................................................................... 213 9.2.4. Archeological Wood ........................................................................................................... 214 References .................................................................................................................................................... 217 Chapter 10 Acoustic Emission 10.1. Principles and Instrumentation ....................................................................................................... 221 10.1.1. Principles .............................................................................................................................. 221 10.1.2. Instrumentation .................................................................................................................... 223 10.1.2.1. Systems................................................................................................................. 223 10.1.2.2. Material Conditioning ........................................................................................ 224 10.1.2.3. Transducers........................................................................................................... 225 10.1.2.4. Amplifiers and Signal Processors..................................................................... 225 10.1.2.5. Signal Processing ................................................................................................ 225 10.1.2.6. Factors Affecting Acoustic Emission Responses from Wooden Materials ............................................................................................... 226 10.2. Acoustic Emission for the Structural Evaluation of Trees, Solid Wood, Particleboard, and Other Wood-Based Composites ..................................................................... 227 10.2.1. Cavitation ............................................................................................................................. 227 10.2.2. Detecting the Activity of Biological Agents................................................................... 229 10.2.3. Acoustic Emission and Fracture Mechanics ................................................................... 230 10.2.3.1. In Solid Wood ..................................................................................................... 232 10.2.3.2. In Wood Composites .......................................................................................... 235 10.3. Acoustic Emission for Monitoring Technological Processes ..................................................... 236 10.3.1. Adhesive Curing and Adhesive Strength ........................................................................ 236 10.3.2. For Controlling Drying of Lumber .................................................................................. 238 10.3.3. As a Strength Predictor in Timber and Large Wood Structures .................................. 241 10.3.4. Signals in Wood Machining .............................................................................................. 247 References .................................................................................................................................................... 249 Chapter 11 High-Energy Ultrasonic Treatment for Wood Processing ILL Modifications Induced in Anatomic Structure by high-Energy Ultrasonic Waves ................ 257 11.2. High-Energy Ultrasonic Treatment, A Tool for Wood Processing ........................................... 257 11.2.1. Drying ................................................................................................................................... 257 11.2.2. Defibering ............................................................................................................................. 257 11.2.3. Cutting .................................................................................................................................. 261 11.2.4. Plasticizing Effect ............................................................................................................... 261 11.2.5. Regeneration Effect on Aged Glue Resins ..................................................................... 262 11.3. Improving Wood Preservation Using Ultrasound ........................................................................ 263 References .................................................................................................................................................... 265 Appendix: List of Wood Species Cited in this Book ........................................................................... 267 Index 271 FOREWORD The Hooke’s law of elasticity I0 #] = [CijkliiZ-ki] appears in its general forms as Equation 4.1 at the beginning of this book, as it usually does in many texts of elasticity or acoustics. In order to thoroughly appreciate the spirit that inspired the author in writing the “Acoustics of Wood”, one should have seen the very same formula projected by the same author on the screen of one of the Erice lecture halls during the presentation of an advanced research lecture, as the author herself quotes in the Preface to this volume, few, elegantly handwritten letters “[o-y] = [Qu][€*J” filled the whole screen in a symphony of pastel colours. The attention of the audience was gently captured. Science and art were locked together within a simple formula, as science and art link together in the author’s life, as science and art frequently share common fate in wood history. The making of violins, cellos, or pianos or other musical instruments has been an art long before being an object of scientific investigation. Architectural wood structures are artists’ representations that rely on advanced achievements of mechanics. The scientific knowledge of wood properties and characteristics is a necessary step toward its best use in artistic representations. This might really be a rather personal interpretation of the reading of the book, but it could be really one of the ways to approach the reading. Acoustics of wood deals with wood in all aspects that are of concern to acoustics: from sound barriers produced by forests and trees, to the use of wood in acoustical panels; from the crystallographic symmetry classes of different woods, to the surface wave propagation in wood structures; from the influence of aging and moisture in the elastic propagation in wood, to the chemical methods for improving acoustic properties; from the counting of the average ring width in violin tops, to the high Q properties of guitar wood for sustaining “sing” modes; from acoustic micrographs of acoustic microscopy techniques, to the acoustic emissions characteristics of different wood species. Acoustics of wood, however, preliminarily needs information about wood, from seed germination to forest growth, through moisture, aging and anatomical properties. The intrinsic coordinate system of wood is a cylindrical system, that follows the axial direction of growth of the stem, the azimuthal and radial directions, the commonest case of wood materials presents an orthotropic symmetry, where three mutually perpendicular mirror planes of symmetry exist, related to the directions of growth. Velocity of ultrasonic waves present a wide spread of values, from 6000 m/s for longitudinal waves along the fiber direction to 400 m/s for shear waves in the radial-tangential plane. An interesting general review of wave equations and solutions accompanies Part I devoted to material characterization, where elastic constant relations to technical constants is duely reviewed together with Christoffel equations and eigenvalue properties of the wave equation. That is the science part, as we said at the beginning, that matches with the technical part reported as the last section of the book, where probing of materials and common techniques of testing are also reviewed. And all is treated with meticulous care as to completeness and with careful attention to biographical sources, that are listed by subject at the end of each chapter. But art and style are blended with science, and that is materially achieved with a series of color plates properly selected to show grain and fiber structure in different samples. Wood is technically studied because of its importance in the manufacture of musical instruments: what are the characteristics of a guitar plate or of a harp soundbox or a violin bow and what are the wood species to be used? Names with exotic charm like Manilkara, Mauritius ebony or Pernambuco wood, alternate with those of cultural Latin origin, like Picea abies or Acer pseudoplatanus and so on. And they are of interest because of their Young’s modulus or Poisson ratio or high quality factor. What was known about quality factor or Poisson ratio by the handcraft masters of the past? Why is wood the best material for many musical instruments, still not overtaken by the ubiquitous power of plastics? Perhaps Nature is science and art at the same time and we usually follow different routes to get to the target, only to discover at the end that it could have been achieved through either route. Adriano Alippi Istituto di Acustica “O. M. Corbino” Rome, Italy

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.