The Abel Prize NielsHenrikAbel1802–1829 TheonlycontemporaryportraitofAbel,paintedbyJohanGørbitzin1826 ©Matematiskinstitutt,UniversitetetiOslo Helge Holden (cid:2) Ragni Piene Editors The Abel Prize 2003–2007 The First Five Years HelgeHolden RagniPiene DepartmentofMathematicalSciences CentreofMathematicsforApplications NorwegianUniversity andDepartmentofMathematics ofScienceandTechnology UniversityofOslo 7491Trondheim 0316Oslo Norway Norway [email protected] [email protected] Photosonthecoverofthebook: PhotoofJean-PierreSerrebyArash.A.Nejad/Scanpix PhotosofSirMichaelAtiyahandIsadoreSingerbyAnne-LiseFlavik PhotoofPeterLaxbyKnutFalch/Scanpix PhotoofLennartCarlesonbyKnutFalch/Scanpix PhotoofS.R.SrinivasaVaradhanbyMortenF.Holm/Scanpix AllphotosinconnectionwiththeAbelPrizeceremoniesaretakenbyScanpix ISBN978-3-642-01372-0 e-ISBN978-3-642-01373-7 DOI10.1007/978-3-642-01373-7 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009926160 MathematicsSubjectClassification(2000):00-02;00A15;01A70 ©Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesign,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In 2002, the year marking the bicentennial of Abel’s birth, the Norwegian Par- liament established the Niels Henrik Abel Memorial Fund with the objective of creating an international prize for outstanding scientific work in the field of mathematics—theAbelPrize. InthisbookwewouldliketopresenttheAbelPrizeandtheAbelLaureatesof thefirstfiveyears.ThebookresultsfromaninitiativeoftheMathematicssectionof theNorwegianAcademyofScienceandLetters.Itisintendedasthefirstvolumein aseries,eachvolumecomprisingfiveyears. ThebookstartswiththehistoryoftheAbelPrize—astorythatgoesbackmore thanahundredyears—writtenbyAbel’sbiographer,ArildStubhaug.Itisfollowed by Nils A. Baas’ biographical sketch of Atle Selberg; at the opening ceremony of the Abel Bicentennial Conference in Oslo in 2002, an Honorary Abel Prize was presentedtoAtleSelberg. Thereisonepartforeachoftheyears2003–2007.Eachpartstartswithanautobi- ographicalpiecebythelaureate(s).Thenfollowsatextonthelaureate’swork:Pilar BayerwritesontheworkofJean-PierreSerre,NigelHitchinonAtiyah–Singer’sIn- dexTheorem,HelgeHoldenandPeterSarnakontheworkofPeterLax,TomKörner onLennartCarleson,andTerryLyonsonSrinivasaVaradhan.Eachpartcontainsa completebibliographyandacurriculumvitae,aswellasphotos—oldandnew. TheDVDincludedinthebookcontainstheinterviewsthatMartinRaussenand ChristianSkaumadewitheachlaureateinconnectionwiththePrizeceremoniesin theyears2003–2007.Everyyearexceptthefirst,theinterviewswerebroadcaston Norwegiannationaltelevision.Transcriptsofallinterviewshavebeenpublishedin theEMSNewsletterandNoticesoftheAMS. Wewouldliketoexpressourgratitudetothelaureatesforcollaboratingwithus onthisproject,especiallyforprovidingtheautobiographicalpiecesandthephotos. Wewouldliketothankthemathematicianswhoagreedtowriteaboutthelaureates, andthusarehelpingusinmakingthelaureates’workknowntoabroaderaudience. Thanks go to Martin Raussen and Christian Skau for letting us use the inter- views, to David Pauksztello for his translations, to Marius Thaule for his LATEX expertiseandthepreparationofthebibliographies,andtoAnne-MarieAstadofthe v vi Preface Norwegian Academy for Science and Letters for her help with the interviews and photos. HH gratefully acknowledgessupport from the Centre for AdvancedStudy attheNorwegianAcademyofScienceandLettersinOsloduringtheacademicyear 2008–09. The technical preparation of the manuscript was financed by the Niels Henrik AbelMemorialFund. Oslo HelgeHoldenandRagniPiene July15,2009 Contents TheHistoryoftheAbelPrize . . . . . . . . . . . . . . . . . . . . . . . . . 1 ArildStubhaug References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2002—anHonoraryAbelPrizetoAtleSelberg . . . . . . . . . . . . . . . 7 NilsA.Baas References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2003:Jean-PierreSerre Jean-PierreSerre:Monpremierdemi-siècleauCollègedeFrance . . . . 13 MyFirstFiftyYearsattheCollègedeFrance . . . . . 13 MarcKirsch Jean-PierreSerre:AnOverviewofHisWork . . . . . . . . . . . . . . . . 33 PilarBayer Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 TheBeginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.1 HomotopyGroupsofSpheres . . . . . . . . . . . . . . . . . . 35 1.2 Hochschild–SerreSpectralSequence . . . . . . . . . . . . . . 36 1.3 SheafCohomologyofComplexManifolds . . . . . . . . . . . 36 1.4 TheAmsterdamCongress . . . . . . . . . . . . . . . . . . . . 37 2 SheafCohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 FAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 GAGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 CohomologyofAlgebraicVarieties . . . . . . . . . . . . . . . 38 3 LieGroupsandLieAlgebras . . . . . . . . . . . . . . . . . . . . . 40 4 LocalAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 ProjectiveModules . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 AlgebraicNumberFields . . . . . . . . . . . . . . . . . . . . . . . 42 7 ClassFieldTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1 GeometricClassFieldTheory . . . . . . . . . . . . . . . . . . 43 vii viii Contents 7.2 LocalClassFieldTheory . . . . . . . . . . . . . . . . . . . . 45 7.3 ALocalMassFormula . . . . . . . . . . . . . . . . . . . . . . 46 8 p-adicAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9 GroupCohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.1 CohomologyofProfiniteGroupsandp-adicLieGroups . . . . 47 9.2 GaloisCohomology . . . . . . . . . . . . . . . . . . . . . . . 48 9.3 GaloisCohomologyofLinearAlgebraicGroups . . . . . . . . 48 9.4 Self-dualNormalBasis . . . . . . . . . . . . . . . . . . . . . 50 9.5 EssentialDimension . . . . . . . . . . . . . . . . . . . . . . . 50 10 DiscreteSubgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1 CongruenceSubgroups . . . . . . . . . . . . . . . . . . . . . 52 10.2 CohomologyofArithmeticGroups . . . . . . . . . . . . . . . 53 11 ArithmeticofAlgebraicVarieties . . . . . . . . . . . . . . . . . . . 54 11.1 ModularCurves . . . . . . . . . . . . . . . . . . . . . . . . . 54 11.2 VarietiesOverFiniteFields . . . . . . . . . . . . . . . . . . . 56 11.3 NumberofPointsofCurvesOverFiniteFields . . . . . . . . . 56 11.4 DiophantineProblems . . . . . . . . . . . . . . . . . . . . . . 58 12 FieldTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 13 GaloisRepresentations. . . . . . . . . . . . . . . . . . . . . . . . . 62 13.1 Hodge–TateModules . . . . . . . . . . . . . . . . . . . . . . 62 13.2 EllipticCurvesand(cid:2)-adicRepresentations . . . . . . . . . . . 62 13.3 ModularFormsand(cid:2)-adicRepresentations . . . . . . . . . . . 65 13.4 AbelianVarietiesand(cid:2)-adicRepresentations . . . . . . . . . . 69 13.5 Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 14 GroupTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 14.1 RepresentationTheory . . . . . . . . . . . . . . . . . . . . . . 73 14.2 AlgebraicGroups . . . . . . . . . . . . . . . . . . . . . . . . 76 14.3 FiniteSubgroupsofLieGroupsandofAlgebraicGroups . . . 77 15 MiscellaneousWritings . . . . . . . . . . . . . . . . . . . . . . . . 78 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ListofPublicationsforJean-PierreSerre . . . . . . . . . . . . . . . . . . 81 CurriculumVitaeforJean-PierreSerre . . . . . . . . . . . . . . . . . . . 95 2004:SirMichaelAtiyahandIsadoreM.Singer Autobiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 SirMichaelAtiyah Autobiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 IsadoreM.Singer TheAtiyah–SingerIndexTheorem . . . . . . . . . . . . . . . . . . . . . . 115 NigelHitchin 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Contents ix 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.1 TheIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.2 Riemann–Roch . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.3 TheBeginning . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.4 TheSignature . . . . . . . . . . . . . . . . . . . . . . . . . . 118 2.5 Hirzebruch–Riemann–Roch . . . . . . . . . . . . . . . . . . . 121 2.6 TheDiracOperator . . . . . . . . . . . . . . . . . . . . . . . 123 3 TheIntegerIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.1 FormulationoftheTheorem . . . . . . . . . . . . . . . . . . . 126 3.2 IntegralityTheorems . . . . . . . . . . . . . . . . . . . . . . . 128 3.3 PositiveScalarCurvature . . . . . . . . . . . . . . . . . . . . 129 3.4 Gauge-TheoreticModuliSpaces. . . . . . . . . . . . . . . . . 130 4 TheEquivariantIndex . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.1 K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2 FixedPointTheorems . . . . . . . . . . . . . . . . . . . . . . 134 4.3 RigidityTheorems . . . . . . . . . . . . . . . . . . . . . . . . 137 5 Themod2Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1 RealK-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 ThetaCharacteristics . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 PositiveScalarCurvature . . . . . . . . . . . . . . . . . . . . 140 6 TheIndexforFamilies . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.1 FredholmOperators . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 JumpingofDimension . . . . . . . . . . . . . . . . . . . . . . 142 7 TheLocalIndexTheorem . . . . . . . . . . . . . . . . . . . . . . . 144 7.1 TheHeatKernel . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.2 TheEtaInvariant . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3 QuantumFieldTheory . . . . . . . . . . . . . . . . . . . . . . 147 7.4 TheSupersymmetricProof . . . . . . . . . . . . . . . . . . . 148 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 ListofPublicationsforSirMichaelAtiyah . . . . . . . . . . . . . . . . . 151 ListofPublicationsforIsadoreM.Singer . . . . . . . . . . . . . . . . . . 165 CurriculumVitaeforSirMichaelFrancisAtiyah,OM,FRS,FRSE . . . 173 CurriculumVitaeforIsadoreManualSinger . . . . . . . . . . . . . . . . 177 2005:PeterD.Lax Autobiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 PeterD.Lax ASurveyofPeterD.Lax’sContributionstoMathematics . . . . . . . . . 189 HelgeHoldenandPeterSarnak 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Description: