Indag.Mathem.,N.S.,16(3–4),531–551 December19,2005 TheAbel,FourierandRadontransformsonsymmetricspaces bySigurdurHelgason 77MassachusettsAvenue,Cambridge,MA02139,USA DedicatedtoGerritvanDijkontheoccasionofhis65thbirthday CommunicatedbyProf.J.J.DuistermaatatthemeetingofJune20,2005 1. INTRODUCTION In this paper we prove some recent results on the three transforms in the title and discusstheirrelationshipstoolderresults.Thespaceswedealwitharesymmetric spaces X = G/K of the noncompact type, G being a connected noncompact semisimpleLiegroupwithfinitecenterandK amaximalcompactsubgroup. For the two natural Radon transforms on X we prove a new inversion formula andasharpeningofanoldsupporttheorem;fortheAbeltransformweprovesome new identities with some applications and for the Fourier transform a result for integrable functions which has a strong analog of the Riemann–Lebesgue lemma. TheselatterresultsarefromacollaborationwithRawat,SenguptaandSitaram. Notation. Following Schwartz we use the notation D(X) for C∞(X), E(X) for c C∞(X)andS(Rn)forthespaceofrapidlydecreasingfunctionsonRn. 2. DIFFERENT RADON TRANSFORMS ON THE SYMMETRIC SPACE X Radon’s paper [40] suggested the general problem of determining a function on a manifold on the basis of its integrals over certain submanifolds. A natural case of E-mail:[email protected](S.Helgason). 531 thisproblemisthe inversion oftheX-raytransformonaRiemannian manifold.It isthetransformf →fˆdefinedbythearc-lengthintegral (cid:1) (2.1) fˆ(γ)= f(x)dm(x), γ f beingan“arbitrary”functionontheRiemannianmanifoldXandγ anycomplete geodesicinX. In general this injectivity problem seems to be unresolved. For a Cartan sym- metric space X (cid:3)=Sn the injectivity, however, holds. For a symmetric X of the noncompacttheinjectivityholdsinthestrongerformofthe Supporttheorem [26]. Iffˆ(γ)=0forallgeodesicsγ disjointfromaballB⊂X thenf(x)=0forx∈/B. Thislastresultrequiresstrongerdecayassumptionat∞thantheinjectivityresult does. Here we shall prove an explicit inversion formula for the X-ray transform for rankX>1.SeeSection5forthecontactwithRouvière’sdifferentsolution. Funk [11] and Radon [40] inverted this transform for the sphere S2 and R2. Denotingthesetofgeodesicsby(cid:2)wehavethecosetspacerepresentations S2=O(3)/O(2), (cid:2)=O(3)/O(2)Z2, R2=M(2)/O(2), (cid:2)=M(2)/M(1)Z , 2 M(n)denotingtheisometrygroupofRn. Thissuggeststhefollowinggeneralization.LetX=G/K and(cid:2)=G/H becoset spaces of the same locally compact group G, K and H being closed subgroups. Here it will be convenient to assume all these groups as well as L=K∩H to be unimodular. We do not assume the elements ξ ∈(cid:2) to be subsets of X but instead useChern’sconceptofincidence: x=gK isincidenttoξ =γH ifgK∩γH (cid:3)=∅assubsetsofG.Givenx∈X,ξ ∈(cid:2)define xˇ={ξ ∈(cid:2): x,ξ incident}, ξˆ ={x∈X: x,ξ incident}. Theseareorbitsofcertainsubgroupsof Gandhavenaturalmeasuresdm,dµ(up tofactors)andwedefinetheabstractRadontransformf →fˆanditsdual ϕ→ϕˇ by (cid:1) (cid:1) (2.2) fˆ(ξ)= f(x)dm(x), ϕˇ(x)= ϕ(ξ)dµ(ξ). ξˆ xˇ 532 Thenormalizationsofdmanddµareunifiedbytakingx =eK,ξ =eH and 0 0 (cid:1) (cid:1) (2.3) fˆ(γH)= f(γh·x )dh , ϕˇ(gK)= ϕ(gk·ξ )dk 0 L 0 L H/L K/L theinvariantmeasuresdh ,dk beingfixedbyHaarmeasuresofH,K andL. L L Mainproblems. (i) Injectivityoff →fˆ,ϕ→ϕˇ. (ii) Inversionformulas. (iii) Rangeandkernelquestionforthesetransforms. (iv) Applicationselsewhere. An easy general result relevant to problem (iii) is the following. For a suitable normalizationofthemeasuresdx=dg ,dξ =dγ wehave K H (cid:1) (cid:1) (2.4) f(x)ϕˇ(x)dx= fˆ(ξ)ϕ(ξ)dξ, X (cid:2) aresultwhichsuggeststheextensionof(2.3)todistributions. 3. d-PLANES IN Rn Here we consider the space X =Rn and (cid:2)=G(d,n) the set of d-dimensional planesinRn.ThesearebothhomogeneousunderthegroupG=M(n).Fixx ∈Rn, 0 ξ ∈G(d,n)atdistanced(x ,ξ )=p.Thenwehave 0 0 0 (3.1) X=Rn=M(n)/K , (cid:2)=G(d,n)=M(n)/H , p p whereK andH ,respectively,arethestabilitygroupsofx andξ .Sincevarious p p 0 0 p will be considered the transforms (2.2) will be denoted by fˆ and ϕˇ . Since p p the action of M(n) on X and (cid:2) is quite rich it turns out that for the coset space representation(3.1) z∈Xisincidenttoη∈(cid:2) ⇔ d(z,η)=p. Thusthetransformfˆ andϕˇ canbewritten p p (cid:1) (cid:1) (3.2) fˆ (ξ)= f(x)dm(x), ϕˇ (x)= ϕ(ξ)dµ(ξ). p p d(x,ξ)=p d(x,ξ)=p 533 ˆ ˆ Inparticular, f istheusuald-planetransformf,butinordertoinvertitweneed 0 ϕˇ forvariablep.Oneofseveralversionsoftheinversionformulaisthefollowing p (see[25,27]): (cid:2)(cid:3) (cid:4) (cid:1)∞ (cid:7) (3.3) f(x)=c(d) d d p(cid:5)p2−r2(cid:6)d/2−1(cid:5)fˆ(cid:6)∨(x)dp d(r2) p r r=0 ˆ ∨ withc(d)andconstant.Notethat(f) (x)istheaverageoftheintegralsoff over p alld-planesatdistancepfromx. Ford=1thisformulareducesto (cid:1)∞ (cid:5)(cid:5) (cid:6) (cid:6) (3.4) f(x)=−1 d fˆ ∨(x) dp, π dp p p 0 which for n=2 coincides with Radon’s original formula. Radon’s proof is very elegant and is based on an exhaustion of the exterior |x|>r by lines. As far as I know this proof has not been extended to higher dimensions n. Formula (3.4) for n>2iscrucialfortheinversionof(2.1)giveninTheorem5.1. 4. d-DIMENSIONAL TOTALLY GEODESIC SUBMANIFOLDS IN HYPERBOLIC SPACE Hn Asimilarmethodworkshereandtheanalogof(3.3)istheformula (cid:2) (cid:7) (cid:3) (cid:4) (cid:1)∞ (4.1) f(x)=C(d) d d (cid:5)t2−r2(cid:6)d/2−1td(cid:5)fˆ(cid:6)∨ (x)dt , d(r2) s(t) r r=1 whereC(d)isaconstantands(p)=cosh−1(p)(see[25,27]).Otherversionsofthe inversionexist(e.g.,[28]and[6]).Ford=1thisreducesto (cid:1)∞ (cid:5)(cid:5) (cid:6) (cid:6) (4.2) f(x)=−1 d fˆ ∨(x) dp π dp p sinhp 0 aformulawhichforn=2isstatedwithoutproofinRadon[40]. 5. X-RAY INVERSION ON THE SYMMETRIC SPACE X=G/K In communication from 2003, Rouvière proved an extension of formula (4.2) to symmetricspacesX ofrank(cid:7)=1.Inspiredbyhismethods,Iprovedtheinversion formula (5.2) for the X-ray transform for X of rank (cid:7)>1. Then Rouvière [43] extendedhisformulatoXofarbitraryrank(cid:7).Actuallyhehasseveralsuchformulas buttheyarealldifferentfromtheformula(5.2)below. Fix a flat totally geodesic submanifold E of X with dimE = (cid:7) > 1 ((cid:7)therankofX)passingthroughtheorigino=eK ofX.Letp>0andS=S (o) p be the sphere in E with radius p and center o. The geodesics γ in E tangent to 534 S are permuted transitively by the orthogonal group O(E). Let du and dk denote thenormalizedHaarmeasuresonU andK.Thespacesk·E ask runsthroughK constitute all flat totally geodesic subspaces of X through o of dimension (cid:7). Thus theimagesk·γ (k∈K,γ tangenttoS)constitutetheset(cid:8) ofallgeodesicsγ inX p lyingin someflat (cid:7)-dimensionaltotally geodesic submanifoldof X through o and d(o,γ)=p.Theset(cid:8) hasanaturalmeasureω givenbythefunctional p p (cid:8) (cid:9) (cid:1) (cid:1) (cid:5) (cid:6) (5.1) ω :ϕ→ ϕ k(u·γ) du dk. p K O(E) Theorem5.1. TheX-raytransform(2.1)onasymmetricspaceX=G/K ofrank (cid:7)>1isinvertedbytheformula (cid:8) (cid:9) (cid:1)∞ (cid:1) (5.2) f(o)=−1 d fˆ(γ)dω (γ) dp, f ∈D(X). p π dp p 0 (cid:8)p Since(cid:8) anddω areK-invarianttheformulaholdsateachpointx byreplacing p p f byf ◦g whereg∈Gissuchthatg·o=x. Proof. First assume f to be K-invariant and consider the restriction f|E. Fix an orthonormal frame H ,H ∈E , the tangent space to E at o, consider the one 0 0 parameter subgroups exptH , exptH and the geodesic γ (t)=exptH ·o. Then 0 0 0 the geodesic γ(t)=exppH ·γ (t) lies in E and is tangent to S (o). Because of o p (3.4)wehave (cid:1)∞ (cid:5) (cid:6) (5.3) f(o)=−1 d fˆ E(o)dp, π dp p p 0 wherethesuperscriptE standsforthedualtransformongeodesicsinthespaceE. Thus (cid:1) (cid:1) (cid:5) (cid:6) (cid:5) (cid:6) (cid:5) (cid:6) (5.4) fˆ E(o)= fˆ (γ)dν(γ)= fˆ (u·γ)du, p γ⊂E O(E) d(o,γ)=p whereν standsfortheaverageoverthesetofgeodesicstangenttoS (o). p Forf ∈D(X)arbitraryweuse(5.2)onthefunction (cid:1) f(cid:11)(x)= f(k·x)dk. K Takingintoaccountthedefinition(5.1)theinversionformula(5.2)followsimme- diately. (cid:1) 535 Remark. Note that the measure ω in (5.1) is a kind of convolution of the Haar p measuresdk and du.Howeveritisnotastrictconvolutionsincetheproduct ku is notdefined. 6. THE HOROCYCLE TRANSFORM IN X=G/K Consider the usual Iwasawa decomposition of G, G=NAK where N and A are nilpotent and abelian, respectively. A horocycle is by definition [12] an orbit in X ofaconjugategNg−1 ofN.ThegroupGpermutesthehorocyclestransitivelyand thespace(cid:2)ofhorocyclescanbewritten(cid:2)=G/MN whereM isthecentralizerof AinK.Inthedoublefibration G/M (cid:1)(cid:1) (cid:2) (cid:1) (cid:2)(cid:2) X=G/K G/MN =(cid:2) itturnsoutthatx=gK isincidenttoξ =γMN ifandonlyifx∈ξ.Thetransforms (2.2)become (cid:1) (cid:1) (6.1) fˆ(γMN)= f(γn·o)dn, ϕˇ(gK)= ϕ(gk·ξ )dk, 0 N K whereξ =N ·o.Whilethemap ϕ→ϕˇ hasabigkernel,thehorocycletransform o f →fˆisinjective(see[17]or[13]).Thefollowingresultfrom[21]isconsiderably stronger. Theorem6.1 (Supporttheorem). LetB beaclosedballinX.Then fˆ(ξ)=0 forξ ∩B=∅ implies f(x)=0 forx∈/B. Hereonerequiresstrongerdecayconditionsonf thanfortheinjectivity.Adif- ferentproofwasgivenin[14].WehavealsothefollowinginversionandPlancherel formula for the Radon transform [18,19]. The pseudodifferential operator (cid:12) and thedifferentialoperator (cid:1) belowareconstructedbymeansoftheHarish-Chandra c-function, and w denotes the order of the Weyl group. For G complex a result similarto(6.2)appearsin[12]. Theorem 6.2. For f ∈ D(X) or sufficiently rapidly decreasing we have the inversionformula (cid:5) (cid:6) (6.2) f = 1 (cid:12)(cid:12)¯fˆ ∨. w 536 IfallCartansubgroupsofGareconjugatetheformulahastheimprovedversion (cid:5)(cid:5) (cid:6) (cid:6) f = 1(cid:1) fˆ ∨ . w ForGarbitrary (cid:1) (cid:1) (cid:10) (cid:10) (cid:10) (cid:10) (6.3) w (cid:10)f(x)(cid:10)2dx= (cid:10)(cid:12)fˆ(cid:10)2(ξ)dξ, X (cid:2) withasuitablenormalizationoftheinvariantmeasuresdx anddξ. The range question (iii) for f → fˆ is more complicated. Consider first the hyperbolic plane H2 in the Poincaré unit disk model D. Here the horocycles are the circles in the disk tangential to the boundary {eiθ: θ ∈R}. Let ξ denote the t,θ horocyclethrougheiθ withdistancet (withsign)fromtheorigin.Thenwehavethe followingresultfrom[23]. Theorem6.3. TherangeD(D)(cid:11)consistsofthefunctionsψ∈D((cid:2)) (cid:12) ψ(ξ )= ψ (t)einθ t,θ n n where (cid:3) (cid:4) (cid:3) (cid:4) d d (6.4) ψ (t)=e−t −1 ··· −2|n|+1 ϕ (t) n n dt dt whereϕ ∈D(D)iseven. n This implies a relationship between ψ(ξt,θ) and ψ(ξ−t,θ). More specifically, if f(cid:11)(t)=f(−t),(cid:15) =etψ then∗denotingconvolutiononR n n (cid:15)(cid:11) =S ∗(cid:15) n n n wherethedistributionS onRhasFouriertransform n Sˆ = (iλ+1)···(iλ+2|n|−1), λ∈R. n (iλ−1)···(iλ−2|n|+1) Thisrelationshipbetweenψ(ξ−t,θ)andψ(ξt,θ)impliesthatin(6.3)f →(cid:12)fˆdoes notmapL2(X)ontoL2((cid:2)). For the generalization of (6.4) to X=G/K we need some additional notation. Let Kˆ betheunitarydualof K and d(δ) thedegreeofa δ∈Kˆ.Given δ actingon V let δ (cid:13) (cid:14) VM = v∈V : δ(m)v=vform∈M δ δ 537 andput(cid:7)(δ)=dimVM.Let δ (cid:13) (cid:14) Kˆ = δ∈Kˆ: (cid:7)(δ)>0 . M Inthefollowingtheoremfrom[25]theexpansion(6.5)isageneralizationof(6.4). Putρ(H)= 1Trace(adH|n). 2 Theorem6.4. TherangeD(X)(cid:11)consistsofthefunctionsψ∈D((cid:2)) (cid:12) (cid:5) (cid:6) (6.5) ψ(ka·ξ )= d(δ)Tr δ(k)(cid:15) (a) 0 δ δ∈KˆM (Tr = Trace) where (cid:15) is a function on A with values in Hom(V ,VM), i.e., δ δ δ (cid:15) ∈D(A,Hom(V ,VM)),givenby δ δ δ (cid:5) (cid:6) (6.6) (cid:15) (a)=e−ρ(loga)Qδ(D) (cid:19) (a) , a∈A, δ a δ where (cid:5) (cid:5) (cid:6)(cid:6) (6.7) (cid:19) ∈D A,Hom V ,VM δ δ δ is W-invariant and Qδ(D) is a certain (cid:7)(δ)×(cid:7)(δ) matrix of constant coefficient differentialoperatorsonA. From this result we can derive the following (unpublished) refinement of the + support theorem above. Let A be the Weyl chamber corresponding to the choice ofthegroupN. Theorem6.5. Supposef ∈D(X)satisfies fˆ(ka·ξ )=0 fork∈K, a∈A+, |loga|>R. 0 Then fˆ(ka·ξ )=0 fork∈K, |loga|>R, a∈A 0 sobyTheorem6.1 f(x)=0 ford(0,x)>R. Proof. LetQ (D)bethematrixofcofactorsofQδ(D)sothat c (6.8) Q (D)Qδ(D)=detQδ(D)I. c Then(6.6)implies (6.9) Q (D)(eρ(cid:15) )=detQδ(D)(cid:19) . c δ δ 538 Nowitisknown[34],[25,pp.267,348]thatdetQδ(D)isaproductoflinearfactors δ(H )+cwhereH ∈aand∂(H )thecorrespondingdirectionalderivative. i i i Supposethefunctionψ=fˆsatisfies ψ(ka·ξ )=0 fork∈K, a∈A+, |loga|>R. 0 Since (cid:1) (cid:15) (a)= ψ(ka·ξ )δ(k−1)dk δ 0 K wededucefrom(6.8)and(6.9)that detQδ(D)(cid:19) (a)=0 fora∈A+, |loga|>R. δ + Consider this equation on a ray in A starting at e. Because of the mentioned factorization of detQδ(D) we deduce that on this ray (cid:19) satisfies an ordinary δ differential equation on the interval (R,∞). Having compact support we deduce that(cid:19) (a)=0fora∈A+,|loga|>R.ByitsWeylgroupinvarianceitvanishesfor δ alla∈A,|loga|>R whichby(6.5)provesthetheorem. (cid:1) ConsiderthecaserankX=1.LetB (o)beaballinXwithradiusR andcenter R 0.FixaunitvectorH intheLiealgebraofAsuchthatexpH ∈A+.Puta =exptH. (cid:15) t TheinteriorofthehorocyclekNa ·oistheunion kNa ·o.Ahorocycleξ is t τ>t τ saidtobeexternaltoB (o)ifitsinteriorisdisjointfromB (o);ξ issaidtoenclose R R B (o)ifitsinteriorcontainsB (o). R R Corollary6.6. LetXhaverankoneandB (o)asabove.Letf ∈D(X).Thenthe R followingareequivalent: (i) fˆ(ξ)=0wheneverξ isexternaltoB (o). R (ii) fˆ(ξ)=0wheneverξ enclosesB (o). R (iii) f ≡0outsideB (o). R ForhyperbolicspacethisisclearfromTheorem6.3andwasprovedinadifferent waybyLaxandPhillips[35]. Problem(iii)forthedualtransformϕ→ϕˇ hasasatisfactoryanswer(see[25,IV §§2 and 4]). The kernel can be described in the spirit of Theorem 6.5 and for the rangeonehasthesurjectivity (6.10) E((cid:2))∨=E(X). 539 7. THE ABEL TRANSFORM LetD (X)denotethespaceofK-invariantfunctionsinD(X).TheAbeltransform K f →Af isdefinedby (cid:1) (7.1) (Af)(a)=eρ(loga) f(an·o)dn, a∈A, f ∈D (X). K N Except for the factor eρ it is the restriction of the Radon transform to K-invariant functions (7.2) Af =eρfˆ. Someofitspropertiesarebestanalyzedbymeansofthesphericalfunctions (cid:1) (7.3) ϕ (g)= e(iλ−ρ)(H(gk))dk, g∈G, λ∈a∗, λ c K whereH(g)∈aisdeterminedbyg∈kexpH(g)N anda∗ isthecomplexdualofa. c Thesphericaltransform (cid:1) (7.4) f˜(λ)= f(x)ϕ−λ(x)dx, f ∈DK(X) X (whereϕ (g·o)=ϕ (g))isahomomorphismrelativetoconvolution×onX: λ λ (7.5) (f ×f )∼(λ)=f˜(λ)f˜(λ). 1 2 1 2 Asprovedin[15],AintertwinesthesphericaltransformandtheEuclideanFourier transformF →F∗ onAso (cid:1) (cid:1) (7.6) (Af)(a)e−iλ(loga)da= ϕ−λ(x)f(x)dx, (Af)∗=f˜. A X ThusAf isW-invariantandby(7.5) (7.7) A(f ×f )=Af ∗Af , 1 2 1 2 where∗isconvolutiononA.LetD(X)denotethealgebraofG-invariantdifferential operators on X and (cid:8):D(X) → D (A) the isomorphism onto the W-invariant W constantcoefficientdifferentialoperatorsonA. TheAbeltransformisasimultaneoustransmutationoperatorbetweenD(X)and D (A),i.e., W (7.8) ADf =(cid:8)(D)Af, D∈D(X), f ∈D (X) K as shown in [29] which for example can be used to prove that each D has a fundamental solution. By the Paley–Wiener theorem for (7.3) one has that 540
Description: