ebook img

The AAT/WFI survey of the Monoceros Ring and Canis Major Dwarf galaxy: I. from l = (193 - 276)o PDF

0.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The AAT/WFI survey of the Monoceros Ring and Canis Major Dwarf galaxy: I. from l = (193 - 276)o

Mon.Not.R.Astron.Soc.000,1–22(2006) Printed5February2008 (MNLaTEXstylefilev2.2) The AAT/WFI survey of the Monoceros Ring and Canis Major ◦ Dwarf galaxy: I. from l = (193 - 276) Blair C. Conn1,2, Richard R. Lane1, Geraint F. Lewis1, Rodrigo Gil-Merino1, Mike J. Irwin3, 4 4 5 6 Rodrigo A. Ibata , Nicolas F. Martin , Michele Bellazzini , Robert Sharp , 7 0 Artem V. Tuntsov1 & Annette M. N. Ferguson7 0 1InstituteofAstronomy,SchoolofPhysics,A29,UniversityofSydney,NSW2006,Australia 2 2EuropeanSouthernObservatory,AlonsodeCordova3107,Vitacura,Santiago,Chile.Email:[email protected] n 3InstituteofAstronomy,MadingleyRoad,Cambridge,CB30HA,U.K. a 4ObservatoiredeStrasbourg,11,ruedel’Universite´,F-67000,Strasbourg,France J 5INAF-OsservatorioAstronomicodiBologna,ViaRanzani1,40127,Bologna,Italy 3 6Anglo-AustralianObservatory,Epping,NSW,1710,Australia 2 7InstituteforAstronomy,UniversityofEdinburgh,RoyalObservatory,BlackfordHill,Edinburgh,EH93HJ,U.K. 1 v 5February2008 (Version2.6) 4 6 6 ABSTRACT 1 We present the results of an AAT wide-field camera survey of the stars in the Monoceros 0 Ring and purportedCanis Major overdensityin the Galactic longitudesof l = (193 - 276)◦. 7 Currentnumericalsimulationssuggestthatbothofthesestructuresaretheresultofa single 0 / on-goingaccretion event,althoughan alternativesolution is thatthe warpedand flareddisc h ofthe Galaxy canexplainthe originofboth ofthese structures.Our resultsshow that, with p regardstheMonocerosRing,thewarpedandflareddiscisunabletoreproducethelocations - o and strengths of the detections observed around the Galaxy. This supports a non-Galactic r originforthisstructure.We report8newdetectionsand2tentativedetectionsoftheMono- t s cerosRinginthissurvey.TheexactnatureoftheCanisMajoroverdensityisstillunresolved a althoughthissurveyprovidesevidencethatinvokingtheGalacticwarpisnotasufficientso- : v lutionwhencomparedwith observation.Severalfieldsinthissurveyarehighlyinconsistent i withthecurrentGalacticdiscmodelsthatincludeawarpandflare,tosuchanextentthatex- X plainingtheiroriginswiththesestructuresisproblematic.WealsoreportthattheBluePlume r starspreviouslyinvokedtosupportthedwarfgalaxyhypothesisisunfounded,andassociating a themwithanouterspiralarmisequallyproblematic.StandardGalacticmodelsareunableto accommodatealltheobservationsofthesenewstructures,leadingawayfromawarped/flared disc explanationfortheir originsandmoretowarda non-Galacticsource.Additionally,evi- dence is presented in favour of a detection of the Canis Major dwarf stream away from the CanisMajorregion.AstheouterreachesoftheGalacticdisccontinuetobeprobed,thefas- cinatingstructuresthat are the MonocerosRing and Canis Major overdensitywill no doubt continuetoinformusoftheuniquestructureandformationoftheMilkyWay. Keywords: Galaxy:formation–Galaxy:structure–galaxies:interactions 1 INTRODUCTION graduallyaccreted over time,anddo theyresolveprevious issues suchasthemissingsatelliteproblem? Recentdeepoptical/IRsurveys,suchastheSloanDigitalSkySur- While it may be a little premature to answer these ques- vey(SDSS)(Adelman-McCarthyetal.2006)andtheTwo-Micron tions with the current knowledge of Local Group environment, All Sky Survey (2MASS) (Skrutskieetal. 2006) are revealing there is still little direct evidence to support the idea of a increasingly complex structures in the Halo of the Milky Way. merger history for the Milky Way. The Sagittarius dwarf galaxy Among these, several new dwarf galaxies and tidal streams have (Ibata,Gilmore,&Irwin1994)hasshownthatsuchaccretiondoes beenuncovered,butdotheseresultsfavourthecurrentgalaxyfor- occurandisinfacton-goingbuttherearestilltoofewnearbytidal mation paradigm? Can we consider these new structures as sup- stream remnants to confirm it as the primary Galaxy formation portingtheΛColdDarkMattertheories(Abadietal.2003a,b)of mechanism. However, analyses of these large surveys are uncov- galaxyformation?Arethesethelow-masssatelliteswhichwillbe eringnewdwarfgalaxiesandtidalstreamsintheinnerhaloofthe 2 BlairConn et al. MilkyWay.Forexample,thediscoveryoftidaldebriscovering60◦ tative detections in the fields (l,b) = (61,±15)◦ and (75,+15)◦. oftheskyonly20 kpcfromtheSun,alongwithanewdwarfgalaxy More recently, Belokurovetal. (2006a), while tracing the Sagit- andothertidaldebrisispresentedbyGrillmair&Johnson(2006); tarius stream with SDSS, notes the presence of the MRi in two Grillmair&Dionatos(2006a,b);Grillmair(2006a).Willmanetal. bandsatlatitudesofb=(20-30)◦.Additionally,Grillmair(2006b) (2005a,b)haveuncoveredanewdwarfgalaxyinUrsaMajoralong discussessubstructureintheMRi,againrevealedintheSDSScat- with the tiny Willman I object, which is on the border between alogue.Consistently,theMRiisfoundonbothsidesoftheplaneof globular clusters and dwarf galaxies. Even closer satellite galax- theGalaxyatgalactocentricdistancesof∼17kpc. ieshavebeenfoundwithBelokurovetal.(2006c)andZuckeretal. Revealing an overdensity in the 2MASS data, Martinetal. (2006)presentingthediscoveryofanothertwodwarfgalaxiesus- (2004a) fulfilled a prediction by Newbergetal. (2002) that a po- ingtheSDSSdatabase.ThesetwoinBoo¨tesandCanesVenaticiare tential progenitor of the MRi could lie in the nearby Canis Ma- located heliocentrically at ∼60 and 220kpcrespectively, and are, jor constellation. Nestled under the Galactic disc, this overden- withtheUrsaMajordwarfgalaxy,pointingtoapossibleresolution sity, dubbed the Canis Major dwarf galaxy (CMa), can be found ofthemissingGalacticsatellitesproblemoutlinedinKlypinetal. at (l,b) = (240,−9)◦ and ∼7 kpc from the Sun. Its close prox- (1999). Further structure is also highlighted in the discussion by imityto the Galactic disc led Momanyetal. (2004) to argue that Belokurovetal.(2006a)onthepresenceoftidalarmsinthenearby the overdensity was simply a consequence of the Galactic warp. globularclusterNGC5466. In response to this interpretation, Martinetal. (2005a) presented Ournearestspiralneighbour,M31,alsoshowsacomplicated results from a 2-degree Field (2dF) spectrographic radial veloc- formation history as Fergusonetal. (2002) have revealed in the ity survey taken at the Anglo-Australian Telescope. The initial Isaac Newton Telescope WideFieldCameraSurvey (INT/WFC). results were complicated through difficulties in removing the in- M31waslongthoughttohavebeenarelativelyquietspiralgalaxy strumental signature from the data, but after resolving these is- with a well defined edge, but a faint diffuse outer disc, riddled suesMartinetal.(2005a)maintainedaninterestingpopulationof with substructure, is now visible. Within this substructure, a gi- starswithavelocityanomaloustotheGalacticdisc.Additionally, ant stellar stream (Ibataetal. 2001c), a new class of stellar clus- Connetal. (2005b) showed that in the background of CMa, the ter(Huxoretal.2005)and thenew dwarf galaxy, Andromeda IX MRi was present at a distance of ∼13.5 kpc, with a velocity of (Lewisetal. 2004; Zuckeretal. 2004), have been discovered. As ∼133 kms−1 and a dispersion of 23 kms−1. Finally, using ra- weprobeourownGalaxytosimilardepths,willweuncoversimi- dialvelocitydataoftheCarinadwarfandAndromedagalaxies,the larstructure?TheresultscomingfromtheSDSSand2MASSsur- MRiwasrevealedintheforegroundoftheseobjects(Martinetal. veys are suggestive of this. The Milky Way however, does seem 2006a).InfrontoftheCarinadwarf,ithaspropertiesof<V >= r tobealesscomplexsystem.AlthoughtheMilkyWayshowsevi- 145±5 kms−1 withavelocitydispersionofonly17±5 kms−1. denceoftidaldebrisintheHalo,withintheDiscoftheGalaxya InfrontoftheAndromedagalaxy,withstarstakenfromthe“One majorchangeinrecentyearshasbeenthediscoveryoftheMono- Ring”field(l,b)=(123,−19)◦,ithaspropertiesof<V >=−75±4 r cerosRingbyNewbergetal.(2002)anditspurportedprogenitor, kms−1andadispersionof26±3 kms−1.Slowly,bothavelocity theCanisMajordwarfgalaxy(Martinetal.2004a).Thealternative andspatialdistributionoftheMRiisbeingrevealed. sourceoftheexcessstarsinCanisMajoristheArgoStarSystem The three main sources of evidence for the CMa dwarf asdiscussedinRocha-Pintoetal.(2006). are (in order of significance): the overabundance of Red Clump The focus of the survey presented here has been to extend and RGB stars in this region as seen in the 2MASS catalogue the INT/WFCsurvey of theMonoceros Ring (Connetal. 2005a) (Bellazzinietal.2006);theadditionalvelocitycomponentasseen around the Galacticplane, aswell assurveying around theCanis in the 2dF survey of the CMa region and the presence of a Major region to provide insight into the possibility of locating a strong Blue Plume population as can be seen in Figure 1 of dwarfgalaxythere.Thepresentsurveyhasalsoattemptedtoinves- Mart´ınez-Delgadoetal.(2005a).Recently,theoriginsoftheBlue tigatetheTriangulum-Andromedaeoverdensity(Rocha-Pintoetal. PlumepopulationhasbeenbroughtintoquestionbyCarraroetal. 2004) and the Virgooverdensity (Juric´etal. 2005). Theseresults (2005)andMoitinhoetal.(2006),whodonotassociatethesestars willbepresentedelsewhere. withtheforeground overdensity, butrather part ofamoredistant Thelayoutofthispaperisasfollows:§2summarisesthedis- populationofstars.Thisdistantpopulationisclaimedtobetheex- coveryoftheMonocerosRingandtheCanisMajordwarfgalaxy; tensionoftheNorma-CygnusspiralarmintotheCMaregion;and §3describestheobservational procedureanddatareduction.Sec- sothesestarsnowrequiregreaterscrutinyinlightofthisnewin- tion 4 outlines the method employed to analyse the data, the use terpretation.Momanyetal.(2006)hasalsoproducedamorecom- of a synthetic Galaxy model for comparison and the procedures pletestudyoftheirwarpscenario,inwhichtheyconfrontthefirst fordeterminingdistancesandcompleteness.Section5presentsthe andsecondsourcesofevidenceforCMa.Theyarguethatnotonly dataandthediscussionandconclusionsofthisstudyarefoundin cantheCMaoverdensitybeexplainedbythewarp,butthattheve- §6and§7. locitydispersionaspresentedbyMartinetal.(2005a)isexpected bycurrentGalaxymodelsandshowsnothingnew.Instudyingthe outerdisctheysuggest theMRiisnotatidalarmfromanaccre- tioneventbutrathertheextensionoftheflareofthediscintothose 2 THEMONOCEROSRINGANDTHECANISMAJOR latitudes.Inshort,theyclaimallofthenew structuresinthedisc DWARFGALAXY oftheMilkyWayaresimplyexplainedintermsofknownGalac- Discovering the Monoceros Ring (MRi) via an overdensity of ticstructure.Lo´pez-Corredoira(2006)concludesonthe“Galactic colourselectedF-starsintheSDSSdataset,Newbergetal.(2002) warpversusdwarfgalaxy”debatewiththestatementthatthewarp describeditsoriginalextentfroml=(170-220)◦.Subsequentsur- can be formed by such a wide variety of causes that neither ra- veysin2MASS(Rocha-Pintoetal.2003;Martinetal.2004a)and dialvelocityorphotographicsurveyscandisentangletheirorigins. the INT/WFC (Ibataetal. 2003; Connetal. 2005a) extended the Thisismaybethecase,althoughasystematicsurveyoftheages, MRi detections back towards the Galactic centre with some ten- metallicities, distances and abnormal velocity profiles in this re- TheAAT/WFIsurveyof theMonocerosRingandCanis MajorDwarfgalaxy 3 gionshouldprovidestrongindicationsifadwarfgalaxyresidesin the plane or not. Thewarp isan important part of thepuzzle but shouldnotstopprogressinresolvingthisissue. Although the results from this paper are unable to answer questionsregardingthevelocityprofileoftheseouterdiscobjects, itwillattempttounderstandthoseoftheCMaandMRioverden- sities with regard to their distance and position in the Galaxy. In ourdiscussion,wecommentonthelikelihoodoftheproposalsput forward byMomanyetal. (2006) in explaining theMRi interms oftheouterdiscandwhetherthewarpsatisfactorilydescribesthe CMaoverdensity. 3 OBSERVATIONSANDREDUCTION ThedatawereobtainedusingtheAnglo-AustralianTelescopeWide Figure1.Thelocationofthesurveyfieldsintheregion(l,b)=(193-276)◦. Field Imager (AAT/WFI)at Siding Spring Observatory (SSO) in Thesymbolsdenotethenumberofpointingsperfield.Theresultantfields NewSouthWales,Australia.Mountedatthetelescopeprimefocus, havebeenselectedbasedondataqualityandwhileideallyfourpointings thecameraconsistingofeight4k×2kCCDswith0.2295arcsecper wouldcorrespondtoabout1squaredegreeofsky,observationsundertaken pixel,coversafieldofviewapproximately33’×33’perpointing. duringFebruary2006hadonly7outof8CCDsavailableinthearray. Theobservationsweretakenoverfourobservingruns,thefirst onthe22nd-25th January2004,thesecondon30th January-1st February2004,thethirdonthe14th-16thofAugust2004andthe by Schlegel1 was used to determine the extinction for each star. fourthonthe1st-5thFebruary2006.Allofthefieldswereobserved This program interpolates the extinction from the dust maps of withtheg(WFISDSS#90)andr(WFISDSS#91)filters.These Schlegel,Finkbeiner,&Davis (1998). Using the several standard were chosen to minimise the fringing effects that can be present fieldsobservedpernightprovidesacomparisonforthecalibration when observing with other filters. Each exposure consisted of a ofthephotometrytobedetermined.Thestandardsareusedtode- single600secondexposurewiththegfilterandtwo450secondex- rivetheCCDzeropointsfromwhichallthemagnitudesaredeter- posureswiththerfilter.Twoexposureswereperformedinrsoas mined (Irwin&Lewis2001). A catalogue of each colour-band is toavoidpreservingcosmicraysandoverexposingthebrighterstars producedbythepipelineforeachpairedexposureofgandr.Non- whenusingasingle900secondexposure.Eachnight,twilightflats stellarimagesarerejected;however, nearthelimitingmagnitude, weretakenalongwithbiasanddarkframesforcalibrationandthe galaxies begin toappear stellar-likeand thusbecome a source of closestLandoltStandardStarfieldtoourtargetwasobservedevery contaminationinthedataset. twohours. Inthismanner,theremoval ofinstrumentalsignatures andprecisephotometriccalibrationcouldbeachieved.Theseeing at the SSO can vary from 0.9′′ to3.0′′ thus heavily affecting the 4 DATAPREPARATION limitingmagnitudeofthedata.Althoughsomefieldswerelostdue topoorweatherconditions,onlythefieldswiththebestphotometry 4.1 DetectingNon-GalacticStructure havebeenpresentedhere. SearchingforadditionalstructurewithintheColour-Magnitudedi- The present survey was designed as a continuation of the agrams (CMDs) of the AAT/WFIsurvey requires an understand- MonocerosRingSurveyobservedwiththeIsaacNewtonTelescope ingoftheinherent structurespresentwhenobservingthroughthe WideFieldCamera(Connetal.2005a).Thefieldswerechosento Galactic disc. The Milky Way can be roughly divided into four beroughlyseparatedby20degreesinGalacticLongitudewithad- components:Thindisc,Thickdisc,HaloandBulge.TheThindisc justments made on the final location to ensure that the field was isessentiallytheplaneoftheGalaxycontainingthemajorityofthe placed to ensure minimal dust extinction. Altogether the present stars and is where the spiral structure is also present. The Thick surveyhasobservedfieldsfroml=(193-25)◦,acrosstheGalactic discislessdensethantheThindiscandhasagreaterscaleheight bulge; thispaper reports only onthe resultsof those fieldsinthe outoftheplane.TheHaloisconsideredtobeasmoothspherical regionl=(193-276)◦. distributionofstarsaroundthecentreofgravityoftheGalaxyand Thispartofthesurveyconsistsof16fields.Mostfieldsareap- extendsoutbeyond20-30kpc.TheBulgeisthecentralregionof proximatelyonesquaredegreeinsize(fourWFIpointings).How- theGalaxy,includingtheBar,andcontainsaverydenseoldstellar ever some fields are a combination of one, two or three point- population. The Besanc¸on synthetic Galaxy model2 (Robinetal. ingsdependingonthetimeavailableandqualityofdataobtained. 2003)allowsforthesecomponentstobeconsideredseparatelyas Thesinglepointingfieldsmakeupastripofobservations linking shown in Figure 2. Each component is revealed in a distinct re- (240,−9)◦ with(240,+10)◦.Asummaryofthefieldlocationsand gionoftheCMD,allowingforatleastapreliminaryestimateofits areaoftheskyobservedwiththepreliminaryresultsofthissurvey origins when interpreting the CMDs fromthe observational data. isshowninFigure1andTable1. It should be noted that the Besanc¸on model employs a Thin disc A specialised version of the CASU data reduction pipeline cut-offat∼14 kpcfromtheGalacticcentre.Thevalidityofsucha (Irwin&Lewis2001)wasusedtoperformthede-biasingandtrim- cut-offisdisputedinLo´pez-Corredoira(2006). ming, vignetting correction, astrometry and photometry. The flat fielding of the science frames used a master twilight flat gen- erated over each entire observing run. To account for the dust 1 http://www.astro.princeton.edu/∼schlegel/dust/data/data.html extinction in the fields the dust getval.c program supplied 2 http://www.obs-besancon.fr/www/modele 4 BlairConn et al. Table1.SummaryoftheobservationsofCanisMajorTidalStreamwiththeAAT/WFI,orderedinascendingGalacticlongitude(l).Thevariationbetweenthe totalareacalculationsof2004and2006areduetofailedCCDsinthearrayshrinkingthefieldofview. Fields Regions AverageSeeing TotalArea MonocerosRing Average Date (l,b)◦ perfield (arcsec) (deg2) E(B-V) (193,−21)◦ 4 1.3 1.21 Maybe 0.08 30/01/04 (218,+6)◦ 3 1.3 0.8 Yes 0.01 03/02/06 (220,−15)◦ 4 1.0 1.21 Yes 0.22 31/01/04 (220,+15)◦ 3 1.3 0.91 Yes 0.04 25/01/04 (240,−9)◦ 3 1.0 0.91 Yes 0.18 24/01/04 (240,−6)◦ 1 1.0 0.3 No 0.40 31/01/04 (240,−4)◦ 1 1.0 0.3 No 0.99 31/01/04 (240,−2)◦ 1 1.0 0.3 No 1.10 31/01/04 (240,+2)◦ 1 1.0 0.3 No 0.79 31/01/04 (240,+4)◦ 1 1.0 0.3 Yes 0.28 31/01/04 (240,+6)◦ 4 1.2 1.21 Yes 0.13 31/01/04 (240,+10)◦ 2 1.3 0.61 Yes 0.10 01/02/04 (245,−9)◦ 4 1.6 1.21 Yes 0.14 30/01/04 (260,−10)◦ 3 1.3 0.91 No 0.21 01/02/04 (273,−9)◦ 2 1.4 0.53 No 0.29 03/02/06 (276,+12)◦ 3 1.1 0.8 Yes 0.09 01/02/06 Figure2.ThetoppanelsshowtheHessplots(apixelatedColourMagni- tudediagraminwhichtheresultant imageisthesquarerootofthenum- berdensity)of(240,−2)◦fieldfromthesyntheticmodeloftheGalaxyby Figure3.OntheleftistheAAT/WFICMDofthefield(l,b)=(220,+15)◦, Robinetal.(2003)beingsplitintoitsvariousGalacticcomponents-Thin andontherightisthesamefieldasproducedbytheBesanc¸onsynthetic Disc,ThickDiscandHalo.Thisillustrateswherethevariouscomponentsof Galaxy model. The model outputs are CFHTLS-Megacam (AB) Photo- thegalaxylieontheCMD(Colour-MagnitudeDiagram).Thelowerpanels metric system converted to Sloan g′ and r′ using Equation 1. The fidu- arefromthemodelfield(193,−21)◦ andshowhowthecomponentsvary cial sequence is placed with zero offset and uses the raw SDSS data furtherawayfromtheplaneoftheGalaxy. (Newbergetal.2002)fromwhichthefiducialwascreated. Asanexample,Figure2showsthebreakdownoftheGalactic components asseenintwoonesquaredegreefieldsat(240,−2)◦ the CMDs that are observed. The closest Main Sequences, being and(193,−21)◦.AnalysingFigure2revealsthat,asexpected,fields brighterinapparentmagnitude,formatthetopoftheCMDswith closertotheplanehavemorestarsthanthoseawayfromtheplane. thesubsequentMainSequences,beingfainter,forminglowerdown Thismanifestsinthesmoother CMDsinthetoppanels, withthe on the CMDs. The different stellar components of the Thin and bottom panels containing fewer Thin and Thick disc stars. The Thickdiscshowsthesignificantchangeindensitybetweenthetwo, structure of each component is due to the homogeneity of the giving them different characteristics intheCMDs. The Thindisc Galaxy and as a result a Main Sequence forms at every distance beingnarrowanddensehasasmallerscaleheight (typicallyesti- incrementalongthatlineofsight.SoastheMilkyWayisprobed matedatseveralhundredparsecsthick)whichformsamuchtighter deeper, thecollectiveweightof theMainSequencessumtoform sequenceintheCMD.ThemorediffuseThickdiscbeingmoreex- TheAAT/WFIsurveyof theMonocerosRingandCanis MajorDwarfgalaxy 5 sidered out to 100 kpc (heliocentric distance, R ) which en- HC sures that the Halo population extends below the magnitude cut- off of the dataand hence does not introduce additional structure. The synthetic fields contain a broad magnitude range (−99,99) for each passband with zero extinction and the inclusion of all ages/populations and luminosity classes. This then provides as completeapictureoftheregionofinterestasthemodelcansupply. Italsoallowsustoapplycolouranddistancecutsatourdiscretion. Themodelcanoutput directlytothebandsg &r in CFHT CFHT theCFHTLS-Megacam(AB)3 photometricsystemwhichneedto beconvertedtotheSDSS(g′,r′)systemviaEquation1. ′ r =r CFHT g′= gCFHT −0.1480×rCFHT (1) 1−0.1480 Frei&Gunn (1994) report that no conversion is needed be- tween SDSSpassbands (g′,r′) inthe AB system to SDSS(g′,r′) in the Vega system. However, Figure 3 shows that when using onlyABmagnitudes,theAAT/WFIdataintheVegasystemdoes not match the model in the AB system. A fiducial of the ridge- linefromtheoriginal SDSSdetection of theMonoceros Ring by Newbergetal. (2002) can be seen to lie blueward of the bluest Figure4.OntheleftistheAAT/WFICMDofthefield(l,b)=(220,+15)◦, edgeof thedata(See§4.1.2).So,usingtheresultsof Ibataetal. andontherightisthesamefieldasproducedbytheBesanc¸onsynthetic Galaxy model. Themodel isnow the Sloang′ andr′ intheABsystem (2003),whocomparedoverlappingINTandSDSSfieldstodeter- mine a colour conversion between the two systems, the model is converted to the INT/WFC g and r in the Vega Photometric system via Equation2.Thefiducialsequencehasalsoundergonethesamecolourcon- nowshiftedtotheVegasysteminthisway.Thisisapplicabletoour version. dataasboththeINTdatasetandourAATdatasethavebeenreduced usingthesamepipeline(withsmallmodificationstoallowfordif- ferences betweenthe telescopes) and nosuch study has been un- tendedoutoftheplane(severalkiloparsecs,thick)formsabroader dertakenwiththeAAT/WFIinstrument.Theresultantcolourtrans- sequence. Comparing the top and bottom panels in Figure2 also formationtotheINT(g,r)is: showstheimportanceoftheangleoftheobservationswithregard theGalacticPlane. (g−r)=0.21+0.86×(g′−r′) Detecting non-Galactic components then involves visually ′ (2) g=g +0.15−0.16×(g−r) comparingthestrongsequencesdetectedintheobservationswith whatisexpectedfromthemodels.TheMonocerosRingislocated TheeffectofthistransformationcanbeseeninFigure4.The beyond the edge of the Thick disc, and thus should be seen as a converted SDSSfiducial,correctedviaEquation2, isnow anex- coherent sequence below the last sequence of the Thick disc, as cellent fit to the strong sequence in these data. The photometric canbeseeninFigure12ofNewbergetal.(2002).Differentiating systemofthemodelCMDisnowthesameastheAAT/WFICMD it from the Halo component is simpler due to the Halo not hav- and no further changes have been applied to the model or data. ing any strong Main Sequences present below the Thick disc in AllfiguresinthispaperwillbeshowninthesameformatasFig- therangeofourCMDs.So,anystrongsequencebelowtheThick ure 4, utilising Equations 1 and 2, with the resultant (g,r) from disc will most likely be of non-Galactic origins. Although given thesyntheticGalaxymodelconsideredthesameastheextinction the recent hypothesis on the MRi being attributed to the flare of corrected observational dataset (g◦,r◦). The Besanc¸on synthetic the disc, this will also need to be considered. Another possibil- Galaxymodel employsdifferentdensityprofilesforeachcompo- ityisthatanon-sphericalhalocouldbemisinterpretedasa“non- nentoftheGalaxy.ThesehavebeenoutlinedinConnetal.(2005a) Galactic” feature in the outer Thick disc. Comparisons with the and in more detail in Robin&Creze (1986); Robinetal. (1996); Besanc¸onsynthetic galaxy model reveals that theirspheroid den- Robin,Reyle´,&Cre´ze´(2000)andReyle´&Robin(2001). sitydistributionhasaflatteningof0.76andapowerindexof2.44 (Robin,Reyle´,&Cre´ze´ 2000)whichismoderatelynon-spherical. 4.1.1 MagnitudeCompleteness Theynoteasignificantdegeneracybetweentheseparameterswhich could allow for spheroids with a (c/a) of 0.85 (close to spheri- Most of the fields presented here, consist of several overlapping cal) or 0.6 (quite oblate). As discussed in the following sections, subfields, see column 2, Table 1. The completeness of this sam- the synthetic galaxy model does not introduce structures into the ple isdetermined in asimilar manner to that of the2MASS All- outer Thickdiscandsotheinfluence of anon-spherical halocan SkyPointSourceCatalogue(Skrutskieetal.2006).Thisapproach beassumedtobeminimal.TheexistenceoftheCanisMajordwarf determines thefraction of starsthat aredetected inboth overlap- galaxyiscurrentlybeingscrutinisedandsotheCMDsoftheCMa pingimagesasafunctionofmagnitude.Sobymatchingthestars regionwillbeusedtoinvestigatetheinfluenceoftheGalacticwarp withinthoseoverlappingregionsandcalculatingtheproportionof on thestellarpopulations present thereand whether it isaviable solutiontoresolvingthedwarfgalaxydebate. ThesyntheticCMDsfromtheBesanc¸onmodeldataarecon- 3 http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/ 6 BlairConn et al. Determiningavaluefortheerrorassociatedwithsuchamea- Table2.Parametersusedtomodelthecompletenessofeachfield,ordered inascendingGalacticlongitude(l).mcistheestimated50%completeness surement is dependent on several factors. Most predominant of level for each filter with λ describing the width ofthe rollover function theseiswhether thefieldshavebeencorrectlycalibratedwithre- (Equation3). gard totheir photometry and taking into account the dust extinc- tionpresentwithinthefields.Thedustcorrectionforthisdatawill Fields(l,b) mc(g◦) mc(r◦) λ always over-correct for stars within the Galaxy, because the dust value is based on the entire cumulative impact of the dust along (193,−21)◦ 22.40 21.80 0.40 (218,+6)◦ 23.40 22.40 0.50 that line-of-sight (Schlegel,Finkbeiner,&Davis 1998). The stars (220,−15)◦ 22.90 21.90 0.30 inthissurveydonotresideattheendofthatline-of-sightandso (220,+15)◦ 23.60 22.60 0.30 willbeover-correctedinthedustextinctionprocess.Inmostofthe (240,−9)◦ 23.60 22.50 0.40 fields,thelevelsofdustaresufficientlylowthatthedifferencebe- (240,+6)◦ 24.00 22.70 0.40 tweenthedustvalueusedandthe“correct”valueshouldbesmall, (240,+10)◦ 22.65 21.70 0.25 seeTable1. (245,−9)◦ 23.30 22.20 0.60 To determine whether the colour transformations applied to (260,−10)◦ 22.80 21.80 0.40 thedata set correspond to reliabledistance estimates, threefields (273,−9)◦ 23.40 22.20 0.50 to which there are distance estimates to these structures from (276,+12)◦ 23.70 22.50 0.40 other surveys have been analysed. Those are (l,b) = (220,+15)◦, (240,−9)◦ and(245,−9)◦.Thefirstfieldisveryclosetotheorig- inal Monoceros Ring detection of Newbergetal. (2002) and the matchedstarsineachmagnitudebinwithrespecttothetotalnum- second and third are part of the Canis Major detection fields of berofstarsobserved,anestimateofthecompletenessismade.This Martinetal.(2005a).TheMRiisknowntohaveadistanceof11.0 producesaphotometriccompletenesscurvewhichcanfitapproxi- kpcintheNewbergetal.(2002)field,at(220,+15)◦ itisalsolo- matelybytheequation: catedat11.0 kpc.FortheCMafields,thedistancedeterminedby 1 CF = (3) Martinetal.(2005a)isabout7.2 kpc.Thepresentsurveylocates 1+e(m−mc)/λ thecentreofthestrongsequenceat7.3 kpcor−0.9magnitudesof wheremisthemagnitudeofthestar,mc isthemagnitudeat50% offset.Importantly then, eachdistance estimatehereisconsistent completenessandλisthewidthoftherolloverfrom100%to0% withindependentmeasurementsofthosestructures. completeness.Thevaluesusedtomodeleachfieldcanbefoundin Havingunderstoodtheerrorsinvolvedinboththedetermina- Table2. tion of the photometry, extinction correction and the fiducial se- Althoughthecompletenessofoursurveyisnotakeyproblem, quence, manually placing this fiducial at the centre and two ex- attemptingtocharacteriseitdoesprovideamannerinwhichwecan tremesofanacceptablefit“by-eye”providesarangeofdistances comparethedataqualityofthevariousfields.Ingeneral,thisallows overwhichthisstructureresides.Giventhelargeerrorsinvolved, anestimateofthemagnitudeatwhichthedatabecomesuntrustwor- these distances can only be considered indicative of the true dis- thy. Additionally, sincethe model ismostly used tohelp identify tance. However, the range of magnitude offsets defining the ex- the major structures in the CMDs, it is unnecessary to apply the tremesdogiveasenseofthewidthofthestructure.Severalfields completeness function to the model. This is because those struc- haveonlyonedistanceestimate,aslocatingtheextremesisnotpos- turesaretypicallywellawayfromthe50%completenesslimit.It sibleduetothedataqualityorthenarrownessofthesequence.The isalsoimportanttonotethatwhilethismethoddoesnotaccountfor dominantstrongsequenceineachfield,whichcouldbeattributed starsincrowdedfields,noneofoursurveyfieldscanbeconsidered toeithertheThin/ThickdiscorCMaoverdensityhasonlyasingle crowdedandsothisapproachisvalidfortheentiredataset. distance estimate, corresponding to the faintest edge of that fea- ture.Thisisdue,ingeneral,tothelackofadefiniteupperedge,see Table3. 4.1.2 EstimatingtheDistanceandAdditionalCalibration DeterminingthedistancetotheCanisMajorandMonocerosRing 4.1.3 SignaltoNoiseEstimationTechnique sequences isachieved bytaking theridge-lineof the detectionin the SDSS S223+20 field [Newbergetal. (2002), Figure 12] and Estimatingthesignal tonoise ratio(S/N)oftheMonoceros Ring creatingafiducialsequence.TheAAT/WFIusesSDSSfiltersand Main Sequence found in the data has been attempted for several sothefiducialsequence canbedirectlyusedonthedatawiththe fields.ThecriteriaforS/NdeterminationisthattheMRiMainSe- colourtransformationsdescribedinEquation2. quenceissufficientlydistinctfromtheCMa/Discsequencetoavoid TheheliocentricdistanceestimateoftheSDSSS223+20de- potential contamination. The model field is assumed to represent tectionisassumedtobe11.0 kpc(Newbergetal.2002),thisthen thepropertiesofthebackgroundGalacticstarswhichshouldbere- is the zero offset distance. Since the fields have been extinction movedtohighlighttheadditionalMRiMainSequence.Themodel correcteditisassumedthatonlydistancevariationsarethecause needstobeadjustedfirsttomoreaccuratelyreflectthepropertiesof for any deviation in magnitude from this location. This method thedataandthensubtractedtorevealtheexcessMRistars.Before doesnotaccountforpossibledifferencesinageormetallicitybe- subtractionthemodelisdegradedtomatchboththecompleteness tweenMainSequences.Theheliocentricdistanceiscalculatedus- profileofthedataasshowninTable2andtherelevantmagnitude ingEquation4andassumingtheSunis8.0 kpcfromtheGalactic errorproperties.Toensurethatsimilarnumbersofstarsarepresent centre,thegalactocentricdistanceisfoundfromsimpletrigonom- inboththedataandmodelpriortosubtractionanadditionalscaling etry. factorisapplied.Theseprocessesresultinthedataandthemodel beingessentiallyidenticalwiththeexclusionoftheadditionalMRi offset Main Sequence. The S/N isestimated by dividing the number of RHC =11.0ׄ10 5.0 « (4) starsinthefeaturebythePoissonnoiseduetothemodellednum- TheAAT/WFIsurveyof theMonocerosRingandCanis MajorDwarfgalaxy 7 inthemodelandtheCMaMainSequenceisinferredtobeassoci- atedwiththe strongest Main Sequence inthe CMD. Thefiducial isthenplacedontheCMDandshiftedinmagnitudetobealigned “by-eye”withtherespectivefeatures.Amoreaccuratetechniqueis unneccessarygiventheinherentuncertaintiesalreadypresentina distanceestimateofthiskind.Itisimportanttonotethatthefidu- cialsplaced onthe dominant featuresof the CMD arenot neces- sarily considered detections, but rather placed to provide insight into all the features present in the CMDs. For the dominant and strongestsequenceineachCMD,onlythefainteredgehasbeenfit withthefiducialsequenceprovidingasingledistanceestimate.For thefaintercoherentsequences,boththeupperandlowerextremes have been fitted giving a range of distances to that structure, see Figure5.Thecompletelistofthemagnitude offsetsanddistance estimatesiscontainedinTable3.Thebrighter,nearerormoredom- inantsequencehasbeenlistedundertheheadingMW/CMa(Milky Way/CanisMajor)toillustratethatdifferentiatingbetweenthetwo isnotstraightforwardwhenusingCMDs.Althoughsomefieldsare mostlikelytocontainonlyMilkyWaystars,thereareseveralthat arepossiblyamix,orcompletelydominatedbyCMastars.Forthis reason,thisstructureisleftambiguouslyidentifiedinTable3.The fainter,moredistantorlessdominantsequenceislistedunderthe headingMRi.Tounderstandthewidthsofthestructuresandhence Figure 5. Hess plot (a pixelated Colour-Magnitude diagram where the grayscaleisthesquarerootofthenumberdensityforthatpixel)of(l,b)◦ anestimationoftheerrorsforeachfield,thistableshouldberefer- =(220,+15)◦(Left)andthecorrespondingBesanc¸onmodel(Right).This enced.ThefinalstructureofinterestaretheBluePlumestarswhich figureillustratesthealignmentofthefiducialwithboththedominantMain arelocatedaround18thmagnitudeandinthecolourrange(g−r) SequenceintheCMDassociatedwithbrighternearbystarsandthefiducial = 0.0 - 0.3. These stars can be seen clearly in Figure 10 and are alignedwiththeMRifeature.Asillustrated,thedominantMainSequence discussedfurtherin§6.2.2. isonlydefinedbyitsfainteredgewhiletheMRifeatureislocatedalong thecentreoftheMainSequence.Forthisfeaturetheoffsetsemployedare −2.5and0.0mag.Toavoidunnecessarily cluttering thedataCMDs,the following figures only show the placement of the fiducial onthe model. 5.1 MonocerosRegion Thisallowsadirectcomparisonwithmodelandhighlightswherethenew featuresliewithrespecttotheexpectedGalacticcomponents. Thefourfieldspresentedhereareincloseproximitytotheoriginal detections of the Monoceros Ring as presented in Newbergetal. (2002).Importantly,thepresentsurveyhassampledbothsidesof berofstarsintheregion4.Onlyfivefieldshavebeensuitablefor theplane,findingtheMRitobepresentacrosstheGalacticplane. thisestimatenamely(l,b)◦=(218,+6)◦,(220,+15)◦,(220,−15)◦, ThishasimplicationsregardingwhethertheMRicouldbeaphe- (240,+10)◦ and (276,+12)◦, see Table 3. These fields have MRi nomenarelatedtotheGalacticwarpandflare. detectionswhichareeasilydistinguishedfromthedominantMain SequencesintheCMDandthusaresuitableforthistechnique.The remainingdetectionsaretooclosetotheCMa/Discpopulationto easilymeasuretheirS/Nratiowiththismethod. 5.1.1 Fieldsat(193,−21)◦ ThisisthefurthestfieldWestfromCanisMajor(towardstheanti- centredirection)thatisincludedinthissurvey(Figure6).Despite 5 SURVEYFIELDS thegoodseeingandareacoveredinthisfield,manyofthefainter Thelocationof eachfieldisshowngraphicallyinFigure1.Each starshavebeenlostduetotherelativeproximityoftheMoon.This fieldpresentedinthissectionshowstheCMDswiththeappropri- has removed a lot of the detail present in other fields of similar atefiducialsequencetakenfromtheoriginalNewbergetal.(2002) size.Usingthefiducialsequence onthetwomainfeaturesinthis detectionasdescribedintheprevioussection.TheCMDsthatwe CMD,weobtain twodistance estimates.Thefirstusinganoffset haveusedaredensitymapsoftheunderlyingdistributionwiththe of−1.2magcorrespondingtoaheliocentricdistanceof∼6.3 kpc. squarerootofthenumberofstarsperpixelbeingpresentedinall Thesecondmoredistantfeature,somewhatmoretentative,isfound oftheCMDsinthispaper,calledaHessdiagram.Thismethodpro- at an offset of 0.5 mag, or RHC ∼ 13.8 kpc. Given the lack of videsbettercontrastofthestructuresespeciallyinhighstardensity clarityregardingthepotentialMonocerosRingfeatureinthedata, regions.Inthefollowingsections,thedistanceestimatestothema- noattempthasbeenmadetomeasurethespreadofdistancesover jor features present in each CMD are provided with an analysis whichitisvisible.Indeed,itisuncertainwhetherthisissimplythe of these results in the Discussion section. The principal features strongoverdensityofstarsseenatthefaintblueendofthemodel of the CMD have been identified by visual comparison with the CMD.ThestarslocatedatthefaintblueendoftheCMDaremost Besanc¸onmodel.TheMRiMainSequenceisevidentbyitsabsence likelymisclassifiedgalaxiesandareunlikelytorepresentanyreal Galacticstructure,theyhaveaconsiderableerrorincolourascan beseenbytheerrorbarsontherighthandsideofthepanel.The 4 Parametersavailableonrequest:[email protected] 50%completenessing◦forthisCMDis22.4mag. 8 BlairConn et al. Table3.SummaryoftheobservationsofCanisMajorTidalStreamwiththeAAT/WFI,orderedinascendingGalacticlongitude(l). Fields(l,b)◦ MRioffset MRidist MRiS/N MW/CMaoffset MW/CMadist &width(mag) &width(kpc) estimate Loweredge(mag) (kpc) (193,−21)◦ 0.5 13.8 - −1.2 6.3 (218,+6)◦ 0.0+−00..335 11.0+−11..94 ∼34 −1.5 5.5 (220,−15)◦ 0.2+−00..33 12.1+−11..76 ∼32 −1.4 5.8 (220,+15)◦ 0.0+−00..335 11.0+−11..66 ∼14 −2.5 3.5 (240,−9)◦ 0.4 13.2 - −0.6 8.3 (240,−6)◦ - - - - - (240,−4)◦ - - - - - (240,−2)◦ - - - - - (240,+2)◦ - - - - - (240,+4)◦ 0.1 11.5 - −1.4 5.8 (240,+6)◦ 0.3+−00..33 12.6+−11..96 - −1.2 6.3 (240,+10)◦ 0.5+−00..33 13.8+−21..17 ∼22 −2.2 4.0 (245,−9)◦ 0.5 13.8 - −0.6 8.3 (260,−10)◦ - - - −0.3 9.6 (273,−9)◦ - - - −0.3 9.6 (276,+12)◦ 0.3 12.6 ∼26 −2.0 4.4 Figure 6. Hess plot (a pixelated Colour-Magnitude diagram where the Figure 7. Hess plot of (l,b)◦ = (218,+6)◦ (Left) and the corresponding grayscale isthesquarerootofthenumberdensity forthat pixel)of(l,b) Besanc¸onmodel(Right).ThefigureisotherwisethesameasFigure6.The =(193,−21)◦ (Left)andthecorrespondingBesanc¸onmodel(Right).The sequencesfittedhereareoffsetby−1.5magand0.0+−00..335mag.Thehelio- synthetic GalaxymodelistakenfromtheBesanc¸ononlinegalaxymodel centricdistanceoftheseoffsetsare∼5.5 kpcand11.0+−11..94 kpc.TheCMD website.Themodelhasadistanceintervalof100 kpcfromthesuntoen- is50%completeatg◦=23.4mag. surenoartificialcutsenterintotheCMDs.ThemodelisselectedinUband andthenconvertedtog,rusingcolourcorrectionsfromtheINT/WFCweb- site.Therearetwostructuresinthisfield,thestrongsequencebeginningat g◦∼19.0andafainter coherent sequence atabout 20th-21st magnitude. TheoffsetsrequiredtofitthefiducialsequencefromNewbergetal.(2002) sequence and 0.0+0.35 mag for the fainter coherent sequence. are−1.2magand0.5mag.Heliocentrically, this corresponds to6.3and Theseresultindist−a0n.c3eestimatesof∼5.5kpcand∼11.0+1.9 kpc 13.8 kpc.The50%completenessing◦forthisCMDis22.4mag. respectively.TheCMDis50%completeatg◦ =23.4ma−g1..G4iven thebroadnatureoftheMilkyWaysequence, onlythedistanceto 5.1.2 Fieldsat(218,+6)◦ thelowerboundaryisstated.TheS/NestimatefortheMRiinthis fieldis∼34.Thisvalueishigherthanexpected,probablyduetothe AtthesameGalacticlongitudeastheoriginalMonocerosRingde- closeproximityofthedominantMainSequence.Themodeldoes tection made by Newbergetal. (2002), the CMD is presented in notcleanlysubtractthisfeatureandsosomecountsremaintoboost Figure7.Thetwofiducialsareoffsetby−1.5magforthebrighter thesignaltonoiseestimate. TheAAT/WFIsurveyof theMonocerosRingandCanis MajorDwarfgalaxy 9 Figure8.Hessplotof(l,b)◦ =(220,−15)◦ (Left)andthecorresponding Figure9.Hessplotof(l,b)◦ =(220,+15)◦ (Left)andthecorresponding Besanc¸onmodel(Right).ThefigureisotherwisethesameasFigure6.The Besanc¸onmodel(Right).ThefigureisotherwisethesameasFigure6.The sequencesfittedhereareoffsetby−1.4and0.2+−00..33mag.Theheliocentric sequencesfittedhereareoffsetby−2.5and0.0+−00..335mag.Theheliocentric distance oftheseoffsets are5.8and12.1+−11..76 kpc.Atg◦ =22.9magni- distanceoftheseoffsetsare3.5and11.0+−11..66 kpc.The50%completeness tudes,theCMDis50%complete. ing◦forthisCMDis23.6mag. 5.1.3 Fieldsat(220,−15)◦ latitudeshasdistortedtheCMDs;however,thereisstillinformation inthesefieldsandforthisreasontheyhavebeenleftin.Thedustis AstheSouthern counterpart for theoriginal Monoceros Ringde- tectionmadebyNewbergetal.(2002),theCMDfor(220,−15)◦is moreprominentintheSouthernfieldsascharacterisedbythelesser distortionoftheCMDsintheNorthernfields.Allofthefieldsfrom presentedinFigure8.Thetwofiducialsareoffsetby−1.4magfor thebrighterstrongersequenceand0.2+0.3 magforthefainterco- b=−6◦tob=+6◦wereobservedunderthesameconditionswith −0.3 the(240,+10)◦fieldobservedthefollowingnight. herentsequence.Theseresultindistanceestimatesof∼5.8kpcand ∼12.1+−11..76 kpc respectively. At g◦ = 22.9 magnitudes, the CMD is50% complete. Thefainter sequence isfound tohavea S/N∼ 5.2.1 Fieldsat(240,−9)◦ 32,althoughthisestimateisprobablycontaminatedbythenearby brighterMainSequence. ThisfieldiscentredonthelocationoftheputativecoreoftheCanis Majordwarfgalaxy(Figure10).Theverystrongsequencerunning thelengthoftheCMDcanbefitalongthefaintedgewithafidu- 5.1.4 Fieldsat(220,+15)◦ cialoffsetby−0.6magwhichcorrespondsto∼8.3 kpc.Placingit Thisfield,Figure9,istheclosesttotheoriginalMonocerosRing roughlyalongthecentreofthefeaturerequiresanoffsetof−0.9 detectionmadebyNewbergetal.(2002)takenduringthepresent magor∼7.6 kpc.InConnetal.(2005b),thepresenceoftheMRi survey. Thetwofiducialsareoffset by−2.5magfor thebrighter inthebackgroundoftheCMaoverdensitywasrevealed.Thiswas strongersequenceand0.0+0.3 magforthefaintersequence.These determinedtobeatadistanceof13.5±0.3 kpc.Indeed,justbelow −0.35 result in distance estimates of ∼3.5kpc and ∼11.0+1.6 kpc re- thesequencedominatingtheCMDtheredoesseemtobeanexcess −1.6 spectively. Being only five degrees from the fields presented in ofstarswhichmaybeanothercoherentsequence,itscontrastislow Newbergetal. (2002), the distance to the MRi here is the same duetothedominatingeffectoftheCMasequence.Anoffsetof0.4 astheirdistanceestimateof11 kpc.The50%completenessing◦ magisneededtoalignthefiducialwiththisfeature,corresponding for this CMD is 23.6 mag. A S/N ∼ 14 is found for the fainter toaheliocentricdistanceof13.2 kpc.Giventhematchthismakes sequence. withtheAAT/2dFdetectionthisisconsideredatentativedetection. TheCMDis50%completeatg◦=23.6mag. 5.2 CanisMajorRegion 5.2.2 Fieldsat(240,−6)◦ The following fields are part of a strip of observations linking (240,−9)◦to(240,+10)◦.Thefieldsfromb=−6◦tob=+4◦are In Figure 11, the strong sequence is still present in this field al- singlepointings,while(240,+6)◦ hasfourpointingsfillingouta though distorted by the increased level of dust and possible non- ∼1◦×1◦fieldand(240,+10)◦ hastwopointings.Theseobserva- photometricconditions.TheBlue-Plumestars(see§6.2.2)arestill tionsprovideaglimpseastohowtheGalaxyprofilechangesacross easilyvisibleandwhilethereiscontentionovertheirorigins,they theGalacticplane.ThehighdustextinctionofthelowerGalactic arestillindicativethat thegeneral structurespresent here areun- 10 BlairConn etal. Figure 10. Hess plot of (l,b) = (240,−9)◦ (Left) and the corresponding Figure11.AsforFigure6,Hessplotof(l,b)=(240,−6)◦ (Left)andthe Besanc¸onmodel(Right).AsforFigure6.Thestrongsequenceinthisfield correspondingBesanc¸onmodel(Right).NooffsetisplacedonthisCMD isdeterminedtobeat∼8.3kpcfromanoffsetof−0.6magwiththefiducial duetotheobviousdistortionpresentwhichismostlikelyduetotheincrease sequence.Belowthisstrongsequenceisanexcessofstarsatag◦=20-21 industandnon-photometricconditions.TheCMDdoesshowallthesame magand(g◦−r◦)∼0.5.Thisexcessfollowsbelowthestrongsequence featuresaspresentinthe(240,−9)◦field.Consistingofonlyoneexposure, asitincreasesincolour.Fittingafiducialtothisexcessatanoffsetof0.4 the50%completenesslevelhasnotbeencalculated. magadistanceof13.2 kpcisobtained.Thisinexcellentagreementwith estimateddistancetotheMRiof13.5kpcasderivedintheAAT/2dFsurvey ofConnetal.(2005b).ThisisdeemedatentativedetectionoftheMRiin thisfield.TheCMDis50%completeatg◦=23.6mag.Notethepresence ofBPstarsatg◦.18. changedfromthepreviousfield.Consistingofonlyoneexposure, the50%completenesslevelhasnotbeencalculated. 5.2.3 Fieldsat(240,−4)◦ Thisfield(Figure12),aswiththoseclosesttoplane,isheavilyaf- fected by dust extinction. In particular, it has the second highest dust levelsin our survey, where E(B-V)istypically around 0.99. Again, despite the loss of structure in this field, the CMD still shows evidence for a Blue Plume population although it appears alittleweaker thanthepreceding (240,−6)◦ field.TheCMD has beenleftinthelocationasdeterminedbythecalibrationprocessof theCASUpipeline.Thehighdustlevelsarethemostlikelycause forthedistortionontheMainSequencespresentintheCMD.No completenessestimatehasbeenmadeforthisfield. 5.2.4 Fieldsat(240,−2)◦ Figure12.Hessplots of(l,b)=(240,−4)◦ (Left)andthecorresponding Besanc¸on model (Right). The high dust levels in this field E(B-V)∼1.4, Thedustextinctioninthisfield,Figure13,isextremelyhigh,typ- hasdistortedtheresultantCMD.AlthoughtheexactfeaturesoftheCMD ically around an E(B-V)∼1.1. There is a faint suggestion of the areindistinguishable, thepresenceoftheBluePlumestarsremainsobvi- presence of Blue Plume stars, although less so than in the previ- ous,althoughseeminglyweakerthanthe(240,−6)◦field.Nocompleteness ousfield.Thestrongsequencevisibleinthisregionofskyisstill estimatehasbeenmadeforthisfield. apparent.However,itisimpossibletoprovideadistanceestimate tothisstructure.Thelimitingmagnitudeofthisfieldismostlikely heavilyaffectedbythedustaccountingforitspositionwithregard theCMDsintheremaining survey locations. Asfor thetwopre-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.