ebook img

The $750\,\text{GeV}$ diphoton resonance in the light of a 2HDM with $S_3$ flavour symmetry PDF

0.36 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The $750\,\text{GeV}$ diphoton resonance in the light of a 2HDM with $S_3$ flavour symmetry

DO-TH 16/03 The 750GeV diphoton resonance in the light of a 2HDM with S flavour symmetry 3 A. E. C´arcamo Hern´andez,1,∗ I. de Medeiros Varzielas,2,† and E. Schumacher3,‡ 1Universidad T´ecnica Federico Santa Mar´ıa and Centro Cient´ıfico-Tecnolo´gico de Valpara´ıso Casilla 110-V, Valpara´ıso, Chile 2School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, U.K. 3Fakult¨at fu¨r Physik, Technische Universit¨at Dortmund D-44221 Dortmund, Germany (Dated: April 21, 2016) Very recently we proposed a predictive 2 Higgs Doublet Model with S flavour symmetry that 3 successfully accounts for fermion masses and mixings. In this letter, motivated by the 750 GeV Higgs diphoton resonance recently reported by the ATLAS and CMS collaborations, we modify this model by adding exotic top partners with electric charge 5 and a electrically charged scalar 6 3 singlet. These exotic top partners decay into a charged scalar singlet and the SM up type quarks, 1 whereasthechargedscalarsingletwillmainlydecayintoSMupanddowntypequarks. Thissimple 0 modification enables our model to successfully account for the Higgs diphoton excess at 750GeV 2 provided that the exotic quark masses are in the range [1,2] TeV, for O(1) exotic quark Yukawa r couplings. p A Introduction. Supersymmetric explanations are possible and the ex- 0 2 Recently, the ATLAS and CMS collaborations re- cess has been interpreted in the context of the Minim- ported an excess of events above the expected back- imal Supersymmetric Standard Model (MSSM) [33], its ] ground in the diphoton final state [1, 2]. This is very R-symmetry violating version [34] and other supersym- h p promising as both collaborations have the excess at an metric extensions [35, 36]. - invariant mass of about 750GeV, and with local sta- Extending the SM gauge symmetry can also explain p tistical significance of 3.9σ (ATLAS) and 2.6σ (CMS). the excess, as described by [37–48], and models based on e The confirmation of this excess would constitute proof strongly coupled theories were considered by [3, 4, 49– h [ of physics beyond the Standard Model (SM). Although 56]. An extended broken symmetry with an extra Higgs the excess may turn out to be a statistical fluctuation, it boson and massive vector bosons can account for the di- 3 is very enticing to consider models that include in their boson anomaly and the anomalous tt¯forward-backward v field content something that can account for a resonance asymmetry [57] 1 6 at 750GeV and thus accounts for the excess of events. Models with extra fermions [58], in particular vector- 6 This diphoton final state excess has generated much like fermions had been considered before [59–62] and af- 0 activity in the community. Many works have considered ter the announcement [3–5, 10, 63–71], and other works 0 relate the diphoton excess with loop TeV-scale seesaw the excess of events in a model independent way, see [3– 1. 14]. Another study considered the implications of the mechanisms, either at two [44] or three loops [72]. 0 Higgs diphoton resonance for the stability of the Higgs, Relating the excess with dark matter has been exten- 6 naturalness and inflation [15] and [16] considers whether sively considered, see [31, 51, 73–83]. 1 the resonance could be a Coleman-Weinberg inflaton. There are also sgoldstino [84–86], radion [87, 88], : v graviton [89] and exotic heavy axion [49, 50, 90] inter- Previous works have studied the resonant production i pretations of the 750GeV excess. X at the LHC of (pseudo-) scalars coupled to two photons String-motivated models were considered in [91–93]. andgluonsinthemassregionfrom30GeVto2TeV[17], r a and of the observable effects of new scalar particles [18]. Finally, a rather natural and popular framework to explain the excess is that of 2 Higgs Doublet Models A myriad of explanations have been considered since (2HDMs), which have been studied in [63, 94–102] and the announcement of the excess. Adding scalar singlets will also be considered in this letter, where we make a is a fairly straightforward option, see [19–28], and [29] simplemodificationofanexisting2HDM[103],byadding (which explores several scenarios including a scalar sin- exotic top quark partners. glet). The scalar singlet model can be further extended The model. We consider the 2HDM that we recently with extra dimensions [30], or, alternatively, with addi- proposed in [103], with the SM gauge symmetry supple- tional vector leptoquarks, which also allow to simultane- mented by the S ⊗Z ⊗Z(cid:48) ⊗Z discrete group. The ously explain the B decay anomalies [31, 32]. 3 3 3 14 scalar sector has two Higgs doublets (assigned as trivial S singlets) plus four SM singlet scalars assigned as one 3 S trivial singlet (χ), one S non-trivial singlet (ζ) and 3 3 one S doublet (ξ). In order to successfully explain the ∗Electronicaddress:[email protected] 3 †Electronicaddress: [email protected] LHCdiphotonexcessat750GeV, weextendthefermion ‡Electronicaddress: [email protected] sectorofour2HDMbyincludingfourSU(2)L singletex- 2 otic quark fields with electric charge 5, T , T , T , 3 1L 1R 2L T , grouped into two S doublets, i.e., T =(T ,T ), 2R 3 L 1L 2L χ3 χ3 χ5 T = (T ,T ). These exotic quark fields are neutral Ll = ε(l)l φ l +ε(l)l φ l +ε(l)l φ l R 1R 2R Y 33 3L 1 3RΛ3 23 2L 1 3RΛ3 22 2L 1 2RΛ5 under the Z ⊗Z(cid:48) discrete symmetry but charged under 3 3 χ5 χ7ζ the Z14 symmetry as: +ε(3l2)l3Lφ1l2RΛ5 +ε(1l1)l1Lφ2l1R Λ8 χ3 χ3 +ε(1ν1)l1Lφ(cid:101)2ν1RΛ3 +ε(1ν2)l1Lφ(cid:101)2ν2RΛ3 +ε(2ν1)l2Lφ(cid:101)1ν1R+ε(2ν2)l2Lφ(cid:101)1ν2R+ε(3ν1)l3Lφ(cid:101)1ν1R TL →TL, TR →eπ7iTR. (1) +ε(3ν2)l3Lφ(cid:101)1ν2R+M1ν1Rνc1R+M2ν2Rνc2R ρ+ +M ν νc +ε(ρ)l φ ν 12 1R 2R 21 2L 1 1R Λ χ3ρ+ χ3ρ+ In addition, the instability of the exotic quarks T1L, +ε(3l3)l3Lφ(cid:101)1l3R Λ4 +ε(2l3)l2Lφ(cid:101)1l3R Λ4 Tw1iRth, Ta2sLi,ngTl2eRerleecqturiirceasllythcahtawrgeedexSteMndscthalearscsailnagrlestecρt+or. +ε(2ρ2)l2Lφ1ν2RρΛ++ε(3ρ1)l3Lφ1ν1RρΛ+ We assume that ρ+ is a trivial S3 singlet and is neu- ρ+ tral under the Z ⊗Z(cid:48) ⊗Z discrete symmetry. The +ε(ρ)l φ ν +h.c (3) 3 3 14 32 3L 1 2R Λ exotic quarks should then decay into ρ+ and SM up type quarks, through the Yukawa interactions given in As the quark masses are related to the quark mix- Eq. (2), while ρ+ in turn will mainly decay into SM ing parameters, we set the vacuum expectation values up and down type quarks. The remaining particles have (VEVs) of the SM singlet scalars with respect to the the S ⊗ Z ⊗ Z(cid:48) ⊗ Z charge assignments described Wolfenstein parameter λ = 0.225 and the new physics 3 3 3 14 in [103]. In this model, the S symmetry reduces the scale Λ: 3 number of parameters in the Yukawa sector making this v ∼v ∼v =λΛ. (4) 2HDM more predictive, and the remaining symmetries ξ ζ χ control the allowed Lagrangian terms by distinguishing Regarding the Yukawa interactions of ρ+ with quarks the fields. For example, the two scalar SU(2) doublets and leptons, we only consider operators up to dimension L have different Z charges (φ being neutral). The Z(cid:48) eightandneglecthigherdimensionalcontributions. From 3 1 3 and Z symmetries shape the hierarchical structure of the quark Yukawa interactions, it follows that the top 14 the fermion mass matrices necessary to get a realistic partners will decay dominantly into either up or charm pattern of fermion masses and mixing. The assignments quarks and the charged scalar singlet ρ+, whereas the of the scalar and fermion particles particles are given in dominant decay mode of ρ+ will be into top and bot- [103], giving rise to the following Yukawa terms for the tom quarks. Let us note that the charged scalar singlet quark and lepton sectors: ρ+ cannot decay into charged leptons and right handed neutrinos,sincetherighthandedMajorananeutrinosare muchheavierthanρ+,thusnotallowingthatdecaychan- nel. In addition, the charged scalar ρ+ can decay into charged leptons and light active neutrinos but its cor- LqY = ε(3u3)q3Lφ(cid:101)1u3R+ε(2u3)q2Lφ(cid:101)2u3RΛχ22 +ε(1u3)q1Lφ(cid:101)2u3RΛχ33 rseesepnofnrodmingthdeelceapytornatYeuiksaswuappinrteesrsaedctiboynsλ.6CΛv2o2n,saesqucleenatrllyy, the top partners can be searched at the LHC through +ε(2u2)q2Lφ(cid:101)1URξΛχ43 +ε(1u1)q1Lφ(cid:101)1URξχΛ48ζ3 tl3hje(cid:54)Eir de(cmay=ch1a,n2n).elTThmes→e tρo+pupmar→tnetrbsumare→prWodbubcuemd→in T +ε(d)q φ d χ3 +ε(d)q φ d χ5 pairs at the LHC via a gluon fusion mechanism, where 33 3L 1 3RΛ3 22 2L 2 2RΛ5 these exotic quarks are in the triangular loop followed χ6 χ6 by the propagator of the scalar χ, followed again with +ε(d)q φ d +ε(d)q φ d 12 1L 2 2RΛ6 21 2L 2 1RΛ6 a pair of the top partner and its antiparticle (note that the scalar singlet χ has a renormalizable coupling with χ7 χρ− +ε(d)q φ d +y T T χ+ε q φ T these top partners). Thus observing an excess of events 11 1L 2 1RΛ7 T L R ρ 3L 2 R Λ2 with respect to the SM background in the opposite sign ρ− ρ+χ3 +ε(3ρ3)q3Lφ1u3R Λ +ε(3ρ3)q3Lφ(cid:101)1d3R Λ4 datiletphteoLnsHfiCn.alstatecanbeasignaltoconfirmthismodel +ε(2ρ3)q3Lφ(cid:101)2d2Rρ+Λχ43 +ε3(ρ2)q3Lφ2URξρΛ−3χ thaFtrotmhetVhEeVYuokfaξwiastaelrigmnsedgiavsen(1a,b0)ovine tahnedScondsiirdeecrtiinong 3 χ ζ3χ [103], we find that the quark, charged lepton and light +y1ρTLURρ+Λ +y2ρTLURρ+ Λ4 +h.c (2) active neutrino mass matrices are: 3 16 v c1λ8 0 a1λ3  14 MU = √2 00 b10λ4 aa2λ32 , fbγγ)[] 12 MD = √v2ee120λλ76 ff120λλ65 g00λ3 , (5) ppσ(→χ→ 1680 1 4 x λ8 0 0  v 1 2 Ml = √  0 y1λ5 z1λ3 , (6) 1000 1200 1400 1600 1800 2000 2 0 y λ5 z λ3 vχ[GeV] 2 2   W2 κWX WY FIG. 1: Total cross section σ(pp→χ→γγ) as a function of Mν = κWX X2 κXY , κ=cosϕ. v for and different values of the exotic quark Yukawa cou- WY κXY Y2 χ plingsy ∼0.5,1and1.5(inthecurvesfromtoptobottom, Ti √ respectively), assuming s = 13TeV and α (m /2) (cid:39) 0.1. where v =246 GeV and a (k =1,2,3), b , c , g , f , s χ k 1 1 1 1 The horizontal lines denote the experimentally allowed lim- f , e e , x , y , y , z , z and κ are O(1) parameters, 2 1 2 1 1 2 1 2 its of the diphoton signal given by ATLAS and CMS, which whereas X, Y and W are parameters with dimension √ amount to 10 ±3fb and 6±3fb, respectively. The limits m where m has mass dimension. The Cabbibo mixing require v (cid:46)2TeV if natural order one exotic quark Yukawa χ arises from the down-type quark sector whereas the up- couplings are assumed. type quark sector contributes to the remaining mixing angles [104]. Furthermore, light active neutrino masses ariseviaatypeIseesawmechanismwithtwoheavyright- of the exotic quarks y ∼ 1, which with v ≈ 1.2TeV Ti χ handedMajorananeutrinosν andν . Wehaveshown amounts to σ ≈8fb. This is well within the limits given 1R 2R in [103] that the fermion mass textures given above are by the ATLAS and CMS experiments [4] consistent wih the current data on SM fermion masses and mixings. σATLAS =10±3fb, σCMS =6±3fb. The 750 GeV scalar resonance. The recently re- ported excess in the diphoton final state can be at- The total cross section was computed using the tributed to the Z breaking scalar χ, which, taking into MSTW2008 next-to-leading-order gluon distribution 14 accounttheheavyexoticfermions,ispredominantlypro- functions [105] as a function of vχ for different values duced via gluon fusion through the triangular loop dia- of the exotic quark Yukawa couplings. As shown in Fig. grams with T1 and T2. The corresponding total cross 1, the cross section depends crucially on the VEV vχ as section σ is a function of the gluon production rate wellasontheYukawacouplings,whichifsizablecanalso Γ(gg → χ) and the consequent decay rate into photons enhance σ significantly in particular for lower vχ values. Γ(γγ →χ) Ifwefurtherrequirethatσ bewithintheexperimental limits given by ATLAS and CMS, we predict v to be χ Γ(gg →χ)=Kgg3α22sπm3v3χ2(cid:12)(cid:12)(cid:12)(cid:12)F(xT)(cid:12)(cid:12)(cid:12)(cid:12)2, (7) sbmreaalkleinrgthsacnale2TanedV,ownhtihcehootnhetrhehaonndefihxaensdtsheetsexthpeecZte1d4 χ particlemassesofχandtheexoticquarksT tobeinthe α2m3 (cid:12) (cid:12)2 i Γ(γγ →χ)= 64π3vχ2(cid:12)(cid:12)(cid:12)NcQ2TF(xT)(cid:12)(cid:12)(cid:12) , (8) samCeonrecgliuosni.on. The same flavon that is responsible for χ the shaping of the fermion mass and mixing matrices where m (cid:39)750GeV denotes the resonance mass, x = χ T can explain the recently reported 750GeV excess in the 4m2/m2,m =y v ,andKgg ∼1.5accountsforhigher T χ T T χ diphotonchannel. Thisisshownusingapredictiveflavor order QCD corrections. F(x) is a loop function given by model based on the S ⊗Z ⊗Z(cid:48) ⊗Z symmetry with 3 3 3 14 (cid:0) (cid:1) (cid:0) (cid:112) (cid:1)2 theadditionofheavyexoticfermionswithelectriccharge F(x)=2x 1+(1−x)f(x) , f(x)= arcsin 1/x 5 and a electrically charged scalar singlet. These heavy 3 with xT >1⇔4mT >mχ. Finally, we obtain exotic quarks decay into a charged scalar singlet and the SM up type quarks, whereas the charged scalar singlet π2Γ(γγ →χ)1s(cid:82)m12/s dxxfg(x)fg(cid:16)msx2χ(cid:17)Γ(gg →χ) willmainlydecayintoSMupanddowntypequarks. At- σ = χ tributingtheZ breakingscalartotheresonanceallows 8 m Γ 14 χ χ one to fix the energy of the breaking scale and, hence, √ with s=13TeV being the LHC center of mass energy, enables immediate testing of the model at the current Γ thetotaldecaywidthofχandf (x)thegluondistri- LHC run. χ g bution function. To obtain a rough estimate of σ we as- Acknowledgments. This project has received fund- sumeforsimplicityunifiedandnaturalYukawacouplings ing from the European Union’s Seventh Framework Pro- 4 gramme for research, technological development and 2012-327195 SIFT. demonstration under grant agreement no PIEF-GA- [1] ATLAS collaboration [ATLAS Collaboration], ATLAS- [30] C. Cai, Z. H. Yu and H. H. Zhang, arXiv:1512.08440 CONF-2015-081. [hep-ph]. [2] CMS Collaboration [CMS Collaboration], collisions at [31] M. Bauer and M. Neubert, arXiv:1512.06828 [hep-ph]. 13TeV,” CMS-PAS-EXO-15-004. [32] C. W. Murphy, arXiv:1512.06976 [hep-ph]. [3] D. Buttazzo, A. Greljo and D. Marzocca, [33] S. Chakraborty, A. Chakraborty and S. Raychaudhuri, arXiv:1512.04929 [hep-ph]. arXiv:1512.07527 [hep-ph]. [4] R. Franceschini et al., arXiv:1512.04933 [hep-ph]. [34] B.C.Allanach,P.S.B.Dev,S.A.RennerandK.Saku- [5] J.Ellis,S.A.R.Ellis,J.Quevillon,V.SanzandT.You, rai, arXiv:1512.07645 [hep-ph]. arXiv:1512.05327 [hep-ph]. [35] F. Wang, L. Wu, J. M. Yang and M. Zhang, [6] R.S.Gupta,S.Ja¨ger,Y.Kats,G.PerezandE.Stamou, arXiv:1512.06715 [hep-ph]. arXiv:1512.05332 [hep-ph]. [36] F. Wang, W. Wang, L. Wu, J. M. Yang and M. Zhang, [7] J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal arXiv:1512.08434 [hep-ph]. and T. Srivastava, arXiv:1512.05767 [hep-ph]. [37] Q.H.Cao,Y.Liu,K.P.Xie,B.YanandD.M.Zhang, [8] P. Agrawal, J. Fan, B. Heidenreich, M. Reece and arXiv:1512.08441 [hep-ph]. M. Strassler, arXiv:1512.05775 [hep-ph]. [38] S. M. Boucenna, S. Morisi and A. Vicente, [9] C. Csaki, J. Hubisz and J. Terning, arXiv:1512.05776 arXiv:1512.06878 [hep-ph]. [hep-ph]. [39] A.E.C.Herna´ndezandI.Nisandzic,arXiv:1512.07165 [10] A. Falkowski, O. Slone and T. Volansky, [hep-ph]. arXiv:1512.05777 [hep-ph]. [40] K.M.PatelandP.Sharma,arXiv:1512.07468[hep-ph]. [11] D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, [41] Q. H. Cao, S. L. Chen and P. H. Gu, arXiv:1512.07541 arXiv:1512.05778 [hep-ph]. [hep-ph]. [12] F. P. Huang, C. S. Li, Z. L. Liu and Y. Wang, [42] J.Cao,F.WangandY.Zhang,arXiv:1512.08392[hep- arXiv:1512.06732 [hep-ph]. ph]. [13] W.S.Cho,D.Kim,K.Kong,S.H.Lim,K.T.Matchev, [43] G. M. Pelaggi, A. Strumia and E. Vigiani, J. C. Park and M. Park, arXiv:1512.06824 [hep-ph]. arXiv:1512.07225 [hep-ph]. [14] S. Kanemura, N. Machida, S. Odori and T. Shindou, [44] W. Chao, arXiv:1512.08484 [hep-ph]. arXiv:1512.09053 [hep-ph]. [45] W. Chao, arXiv:1512.06297 [hep-ph]. [15] A.SalvioandA.Mazumdar,arXiv:1512.08184[hep-ph]. [46] Y. Jiang, Y. Y. Li and T. Liu, arXiv:1512.09127 [hep- [16] L. Marzola, A. Racioppi, M. Raidal, F. R. Urban and ph]. H. Veerma¨e, arXiv:1512.09136 [hep-ph]. [47] P. V. Dong and N. T. K. Ngan, arXiv:1512.09073 [hep- [17] J. Jaeckel, M. Jankowiak and M. Span- ph]. nowsky, Phys. Dark Univ. 2, 111 (2013) [48] A.Dasgupta,M.MitraandD.Borah,arXiv:1512.09202 doi:10.1016/j.dark.2013.06.001 [arXiv:1212.3620 [hep- [hep-ph]. ph]]. [49] K.HarigayaandY.Nomura,arXiv:1512.04850[hep-ph]. [18] J.deBlas,M.Chala,M.Perez-VictoriaandJ.Santiago, [50] E. Molinaro, F. Sannino and N. Vignaroli, JHEP 1504, 078 (2015) doi:10.1007/JHEP04(2015)078 arXiv:1512.05334 [hep-ph]. [arXiv:1412.8480 [hep-ph]]. [51] L. Bian, N. Chen, D. Liu and J. Shu, arXiv:1512.05759 [19] S. Fichet, G. von Gersdorff and C. Royon, [hep-ph]. arXiv:1512.05751 [hep-ph]. [52] D.CurtinandC.B.Verhaaren,arXiv:1512.05753[hep- [20] Q.H.Cao,Y.Liu,K.P.Xie,B.YanandD.M.Zhang, ph]. arXiv:1512.05542 [hep-ph]. [53] J. M. No, V. Sanz and J. Setford, arXiv:1512.05700 [21] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, [hep-ph]. arXiv:1512.05439 [hep-ph]. [54] S.MatsuzakiandK.Yamawaki,arXiv:1512.05564[hep- [22] A. Alves, A. G. Dias and K. Sinha, arXiv:1512.06091 ph]. [hep-ph]. [55] J.S.Kim,J.Reuter,K.RolbieckiandR.R.deAustri, [23] H. Han, S.WangandS.Zheng, arXiv:1512.06562[hep- arXiv:1512.06083 [hep-ph]. ph]. [56] M. Son and A. Urbano, arXiv:1512.08307 [hep-ph]. [24] J. Chang, K. Cheung and C. T. Lu, arXiv:1512.06671 [57] J. de Blas, J. Santiago and R. Vega-Morales, [hep-ph]. arXiv:1512.07229 [hep-ph]. [25] O. Antipin, M. Mojaza and F. Sannino, [58] L. Basso, O. Fischer and J. J. van der Bij, Eu- arXiv:1512.06708 [hep-ph]. rophys. Lett. 101, 51004 (2013) doi:10.1209/0295- [26] J. Zhang and S. Zhou, arXiv:1512.07889 [hep-ph]. 5075/101/51004 [arXiv:1212.5560 [hep-ph]]. [27] K. Cheung, P. Ko, J. S. Lee, J. Park and P. Y. Tseng, [59] N.BonneandG.Moreau,Phys.Lett.B717,409(2012) arXiv:1512.07853 [hep-ph]. doi:10.1016/j.physletb.2012.09.063 [arXiv:1206.3360 [28] A. E. C. Herna´ndez, arXiv:1512.09092 [hep-ph]. [hep-ph]]. [29] W. Altmannshofer, J. Galloway, S. Gori, A. L. Kagan, [60] G. Moreau, Phys. Rev. D 87, no. 1, 015027 (2013) A. Martin and J. Zupan, arXiv:1512.07616 [hep-ph]. doi:10.1103/PhysRevD.87.015027 [arXiv:1210.3977 5 [hep-ph]]. ph]. [61] J. A. Aguilar-Saavedra, R. Benbrik, S. Heine- [83] J. C. Park and S. C. Park, arXiv:1512.08117 [hep-ph]. meyer and M. P´erez-Victoria, Phys. Rev. D 88, [84] B. Bellazzini, R. Franceschini, F. Sala and J. Serra, no. 9, 094010 (2013) doi:10.1103/PhysRevD.88.094010 arXiv:1512.05330 [hep-ph]. [arXiv:1306.0572 [hep-ph]]. [85] C. Petersson and R. Torre, arXiv:1512.05333 [hep-ph]. [62] A. Angelescu, A. Djouadi and G. Moreau, [86] S. V. Demidov and D. S. Gorbunov, arXiv:1512.05723 arXiv:1510.07527 [hep-ph]. [hep-ph]. [63] A. Angelescu, A. Djouadi and G. Moreau, [87] A.Ahmed,B.M.Dillon,B.Grzadkowski,J.F.Gunion arXiv:1512.04921 [hep-ph]. and Y. Jiang, arXiv:1512.05771 [hep-ph]. [64] A. Kobakhidze, F. Wang, L. Wu, J. M. Yang and [88] D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, M. Zhang, arXiv:1512.05585 [hep-ph]. S.RaychaudhuriandT.Samui, arXiv:1512.06674[hep- [65] R. Benbrik, C. H. Chen and T. Nomura, ph]. arXiv:1512.06028 [hep-ph]. [89] M. T. Arun and P. Saha, arXiv:1512.06335 [hep-ph]. [66] M.DhuriaandG.Goswami,arXiv:1512.06782[hep-ph]. [90] A. Pilaftsis, arXiv:1512.04931 [hep-ph]. [67] K. Das and S. K. Rai, arXiv:1512.07789 [hep-ph]. [91] J. J. Heckman, arXiv:1512.06773 [hep-ph]. [68] J.Liu,X.P.WangandW.Xue,arXiv:1512.07885[hep- [92] M. Cvetiˇc, J. Halverson and P. Langacker, ph]. arXiv:1512.07622 [hep-ph]. [69] Y. L. Tang and S. h. Zhu, arXiv:1512.08323 [hep-ph]. [93] L. A. Anchordoqui, I. Antoniadis, H. Goldberg, [70] G. Li, Y. n. Mao, Y. L. Tang, C. Zhang, Y. Zhou and X. Huang, D. Lust and T. R. Taylor, arXiv:1512.08502 S. h. Zhu, arXiv:1512.08255 [hep-ph]. [hep-ph]. [71] P. S. B. Dev, R. N. Mohapatra and Y. Zhang, [94] S. Di Chiara, L. Marzola and M. Raidal, arXiv:1512.08507 [hep-ph]. arXiv:1512.04939 [hep-ph]. [72] S. Kanemura, K. Nishiwaki, H. Okada, Y. Orikasa, [95] D.Becirevic,E.Bertuzzo,O.SumensariandR.Z.Fun- S. C. Park and R. Watanabe, arXiv:1512.09048 [hep- chal, arXiv:1512.05623 [hep-ph]. ph]. [96] X. F. Han and L. Wang, arXiv:1512.06587 [hep-ph]. [73] Y. Mambrini, G. Arcadi and A. Djouadi, [97] M. Badziak, arXiv:1512.07497 [hep-ph]. arXiv:1512.04913 [hep-ph]. [98] S. Moretti and K. Yagyu, arXiv:1512.07462 [hep-ph]. [74] M. Backovic, A. Mariotti and D. Redigolo, [99] X. J. Bi et al., arXiv:1512.08497 [hep-ph]. arXiv:1512.04917 [hep-ph]. [100] N. Bizot, S. Davidson, M. Frigerio and J.-L. Kneur, [75] Y. Nakai, R. Sato and K. Tobioka, arXiv:1512.04924 arXiv:1512.08508 [hep-ph]. [hep-ph]. [101] S. K. Kang and J. Song, arXiv:1512.08963 [hep-ph]. [76] S. Knapen, T. Melia, M. Papucci and K. Zurek, [102] W. C. Huang, Y. L. S. Tsai and T. C. Yuan, arXiv:1512.04928 [hep-ph]. arXiv:1512.07268 [hep-ph]. [77] R. Martinez, F. Ochoa and C. F. Sierra, [103] A. E. C. Herna´ndez, I. d. M. Varzielas and E. Schu- arXiv:1512.05617 [hep-ph]. macher, arXiv:1509.02083 [hep-ph]. [78] X. J. Bi, Q. F. Xiang, P. F. Yin and Z. H. Yu, [104] A. E. C. Herna´ndez and I. d. M. Varzielas, J. arXiv:1512.06787 [hep-ph]. Phys. G 42, no. 6, 065002 (2015) doi:10.1088/0954- [79] D.Barducci,A.Goudelis,S.KulkarniandD.Sengupta, 3899/42/6/065002 [arXiv:1410.2481 [hep-ph]]. arXiv:1512.06842 [hep-ph]. [105] A.D.Martin,W.J.Stirling,R.S.ThorneandG.Watt, [80] U.K.Dey,S.MohantyandG.Tomar,arXiv:1512.07212 Eur.Phys.J.C63,189(2009)doi:10.1140/epjc/s10052- [hep-ph]. 009-1072-5 [arXiv:0901.0002 [hep-ph]]. [81] P. S. B. Dev and D. Teresi, arXiv:1512.07243 [hep-ph]. [82] H. Han, S.WangandS.Zheng, arXiv:1512.07992[hep-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.