Topics Fast neutron detectors, Methods and facilities for the production of fast neutrons, Simulation of detectors and fast neutron facilities, Signal processing and data analysis techniques, Applications Jointly organized by: SOREQ NRC, Israel; Physikalisch-Technische Bundesanstalt, Germany; Weizmann Institute of Science, Israel; University of Cape Town, South Africa www.FNDA2011.de The 2nd International Workshop on Fast Neutron Detectors and Applications (FNDA 2011) Proceedings Articles have been published in Journal of Instrumentation (JINST), 2012, number 7 Detection of explosives and other illicit materials by a single nanosecond neutron pulses — Monte Carlo simulation of the detection process R Miklaszewski, U Wiacek, D Dworak, K Drozdowicz and V Gribkov 2012 JINST 7 C07006 A single-shot nanosecond neutron pulsed technique for the detection of fissile materials V Gribkov, R A Miklaszewski, M Chernyshova, M Scholz, R Prokopovicz, K Tomaszewski, K Drozdowicz, U Wiacek, B Gabanska, D Dworak, K Pytel and A Zawadka 2012 JINST 7 C07005 Performance improvement of neutron flux monitor at KSTAR Y -K Kim, S -K Lee, B -H Kang, J -B Son and G -D Kim 2012 JINST 7 C06013 A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy A Breskin, I Israelashvili, M Cortesi, L Arazi, S Shchemelinin, R Chechik, V Dangendorf, B Bromberger and D Vartsky 2012 JINST 7 C06008 Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator I Sabo-Napadensky, R Weiss-Babai, A Gayer, D Vartsky, D Bar, I Mor, R Chacham-Zada, M Cohen and N Tamim 2012 JINST 7 C06005 Fast beam chopper at SARAF accelerator via RF deflector before RFQ A Shor, D Vartsky, V Dangendorf, D Bar, Y Ben Aliz, D Berkovits, M Brandis, M B Goldberg, A Grin, I Mardor, I Mor and L Weissman 2012 JINST 7 C06003 Diamond detectors for fast neutron measurements at pulsed spallation sources M Rebai, L Giacomelli, C Andreani, A Fazzi, C D Frost, E Perelli Cippo, A Pietropaolo, N Rhodes, M Tardocchi, E Schooneveld and G Gorini 2012 JINST 7 C05015 MONSTER: a time of flight spectrometer for ?-delayed neutron emission measurements A R Garcia, T Martinez, D Cano-Ott, J Castilla, C Guerrero, J Marin, G Martinez, E Mendoza, M C Ovejero, E M Reillo, C Santos, F J Tera, D Villamarin, R Nolte, J Agramunt, A Algora, J L Tain, K Banerjee, C Bhattacharya, H Pentilla, S Rinta-Antila and D Gorelov 2012 JINST 7 C05012 Diagnostic neutron activation system for KSTAR M S Cheon, Y S Lee, A C England, H S Kim, S Pak, C R Seon and H G Lee 2012 JINST 7 C05009 Fast-neutron detectors for nuclear physics experiments R C Haight 2012 JINST 7 C05002 Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries I Mor, D Vartsky, M Brandis, M B Goldberg, D Bar, I Mardor, V Dangendorf and B Bromberger 2012 JINST 7 C04021 Image recovery by removing stochastic artefacts identified as local asymmetries K Osterloh, T Bucherl, U Zscherpel and U Ewert 2012 JINST 7 C04018 A new recoil proton telescope for characterisation of energy and fluence of fast neutron fields J Taforeau, S Higueret, D Husson, L Lebreton, T D Le and M Petit 2012 JINST 7 C04015 Nuclear astrophysics with neutrons I Dillmann and R Reifarth 2012 JINST 7 C04014 Fusion neutron diagnostics on ITER tokamak L Bertalot, R Barnsley, M F Direz, J M Drevon, A Encheva, S Jakhar, Y Kashchuk, K M Patel, A P Arumugam, V Udintsev, C Walker and M Walsh 2012 JINST 7 C04012 Characterization of the IRSN neutron multisphere spectrometer (HERMEIS) at European standard calibration fields A Cheminet, V Lacoste, V Gressier, G Hubert, A Martin and M Pepino 2012 JINST 7 C04007 Liquid scintillators and composites in fast neutron detection J Iwanowska, L Swiderski and M Moszynski 2012 JINST 7 C04004 Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector M Brandis, D Vartsky, V Dangendorf, B Bromberger, D Bar, M B Goldberg, K Tittelmeier, E Friedman, A Czasch, I Mardor, I Mor and M Weierganz 2012 JINST 7 C04003 Pyroelectric crystal D-D and D-T neutron generators Y Danon2012 JINST 7 C04002 Light yield and n-? pulse-shape discrimination of liquid scintillators based on linear alkyl benzene T Kogler, A R Junghans, R Beyer, R Hannaske, R Massarczyk, R Schwengner and A Wagner 2012 JINST 7 C03047 C03047 Neutron medical treatment of tumours — a survey of facilities F M Wagner, B Loeper-Kabasakal and H Breitkreutz 2012 JINST 7 C03041 SNM detection by means of thermal neutron interrogation and a liquid scintillation detector A Ocherashvili, E Roesgen, A Beck, E N Caspi, M Mosconi, J -M Crochemore and B Pedersen 2012 JINST 7 C03037 Fast neutron detection with pressurized 4-He scintillation detectors R Chandra, G Davatz, H Friederich, U Gendotti and D Murer 2012 JINST 7 C03035 Feasibility of a large area detector for fast neutron imaging E Bogolubov, A Koshelev, V Mikerov and A Sviridov 2012 JINST 7 C03034 Neutron measurements in ITER using the Radial Neutron Camera D Marocco, B Esposito and F Moro 2012 JINST 7 C03033 Novel neutron sources at the Radiological Research Accelerator Facility Y Xu, G Garty, S A Marino, T N Massey, G Randers-Pehrson, G W Johnson and D J Brenner 2012 JINST 7 C03031 Two detector arrays for fast neutrons at LANSCE R C Haight, H Y Lee, T N Taddeucci, J M O'Donnell, B A Perdue, N Fotiades, M Devlin, J L Ullmann, A Laptev, T Bredeweg, M Jandel, R O Nelson, S A Wender, M C White, C Y Wu, E Kwan, A Chyzh, R Henderson and J Gostic 2012 JINST 7 C03028 Electrometric sensors for neutron radiation: conceptual study E Bogolubov, A Koshelev, V Mikerov and A Sviridov 2012 JINST 7 C03026 Neutron diagnostics at the Wendelstein 7-X stellarator W Schneider, B Wiegel, F Grunauer, R Burhenn, S Koch, H Schuhmacher and A Zimbal 2012 JINST 7 C03025 Monte-Carlo simulations of neutron-induced activation in a Fast-Neutron and Gamma-Based Cargo Inspection System B Bromberger, D Bar, M Brandis, V Dangendorf, M B Goldberg, F Kaufmann, I Mor, R Nolte, M Schmiedel, K Tittelmeier, D Vartsky and H Wershofen 2012 JINST 7 C03024 Results for the response function determination of the Compact Neutron Spectrometer F Gagnon-Moisan, M Reginatto and A Zimba l2012 JINST 7 C03023 Determination of the photon spectrum in an intense fission neutron beam M Jungwirth, H Breitkreutz, F M Wagner and T Bucher l2012 JINST 7 C03022 Towards high efficiency solid-state thermal and fast neutron detectors Y Danon, J Clinton, K C Huang, N LiCausi, R Dahal, J J Q Lu and I Bhat 2012 JINST 7 C03014 nGEM neutron diagnostic concept for high power deuterium beams G Croci, M Rebai, G Claps, M Cavenago, M Dalla Palma, G Gervasini, G Grosso, F Murtas, R Pasqualotto, E Perelli Cippo, M Tardocchi, M Tollin and G Gorini 2012 JINST 7 C03010 Neutron resonance spectroscopy for the characterization of materials and objects P Schillebeeckx, A Borella, F Emiliani, G Gorini, W Kockelmann, S Kopecky, C Lampoudis, M Moxon, E Perelli Cippo, H Postma, N J Rhodes, E M Schooneveld and C Van Beveren 2012 JINST 7 C03009 Liquefied Noble Gas (LNG) detectors for detection of nuclear materials J A Nikkel, T Gozani, C Brown, J Kwong, D N McKinsey, Y Shin, S Kane, C Gary and M Firestone 2012 JINST 7 C03007 First neutron spectrometry measurements in the ASDEX Upgrade tokamak G Tardini, A Zimbal, B Esposito, F Gagnon-Moisan, D Marocco, R Neu, H Schuhmacher and the ASDEX Upgrade Team 2012 JINST 7 C03004 Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications M Cortesi, R Zboray, R Adams, V Dangendorf and H -M Prasser 2012 JINST 7 C02056 Time and position sensitive single photon detector for scintillator read-out S Schossler, B Bromberger, M Brandis, L Ph H Schmidt, K Tittelmeier, A Czasch, V Dangendorf and O Jagutzki 2012 JINST 7 C02048 Characterization methods for an accelerator based fast-neutron facility C Franklyn and G C Daniels 2012 JINST 7 C02043 The investigation of fast neutron Threshold Activation Detectors (TAD) T Gozani, M J King and J Stevenson 2012 JINST 7 C02042 Fast neutron inelastic scattering at the nELBE facility R Beyer, D Bemmerer, E Grosse, R Hannaske, A R Junghans, M Kempe, T Kogler, R Massarczyk, R Nolte, R Schwengner and A Wagner 2012 JINST 7 C02020 PUBLISHEDBYIOPPUBLISHINGFORSISSAMEDIALAB RECEIVED:January9,2012 REVISED:April12,2012 ACCEPTED:May21,2012 PUBLISHED:July16,2012 2nd INTERNATIONAL WORKSHOP ON FAST NEUTRON DETECTORS AND APPLICATIONS, NOVEMBER 6–11 2011, EIN GEDI, ISRAEL 2 0 1 2 Detection of explosives and other illicit materials by J a single nanosecond neutron pulses — Monte Carlo I simulation of the detection process N S T R. Miklaszewski,a,1 U. Wia˛cek,b D. Dworak,b K. Drozdowiczb and V. Gribkovc 7 aInstituteofPlasmaPhysicsandLaserMicrofusion, 23Herystr.,01-497Warszaw,Poland C bInstituteofNuclearPhysics,PolishAcademyofSciences, 0 147Radzikowskiegostr.,31-342Krako´w,Poland 7 cBaikovInstituteofMetallurgyandMaterialsScience, 49Leninskiipr.,119991Moscow,Russia 0 E-mail: [email protected] 0 6 1Correspondingauthor. (cid:13)c 2012IOPPublishingLtdandSissaMedialabsrl doi:10.1088/1748-0221/7/07/C07006 ABSTRACT: Recent progress in the development of a Nanosecond Impulse Neutron Investigation System(NINIS)intendedforinterrogationofhiddenobjects(explosivesandotherillicitmaterials) bymeansofmeasuringelasticallyandnon-elasticallyscatteredneutronsispresented. Themethod uses very bright neutron pulses having durations of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with pure deuterium or a deuterium-tritium mixture as a working gas. A very short duration of the neutron pulse, as well as its high brightness and mono- chromaticity allows using time-of-flight methods with bases of about few meters to distinguish signalsfromneutronsscatteredbydifferentelements. ResultsoftheMonteCarlosimulationsofthescatteredneutronfieldfromseveralcompounds (explosives and everyday use materials) are presented. The MCNP5 code has been used to get 2 information on the angular and energy distributions of neutrons scattered by the above mentioned 0 compoundsassumingtheinitialneutronenergiestobeequalto2.45MeV(DD)and14MeV(DT). 1 A new input has been elaborated that allows modeling not only a spectrum of the neutrons scat- 2 tered at different angles but also their time history from the moment of generation up to the de- tection. Such an approach allows getting approximate signals registered by hypothetic scintil- lator+photomultiplerprobesplacedatvariousdistancesfromthescatteringobject,demonstrating J principalcapabilityofthemethodtoidentifyanelementalcontentoftheinspectedobjects. Theex- I tensivecomputationsreveledalsoseverallimitationsoftheproposedmethod,namely: lownumber N ofneutronsreachingdetectorsystem,distortionsandinterferencesofscatteredneutronsignalsetc. S Furthermore,preliminaryresultsoftheMCNPmodelingofthehiddenfissilematerialsdetec- tionprocessarepresented. T KEYWORDS: Detectionofexplosives;Detectionofcontrabandanddrugs;Neutrondetectors(cold, 7 thermal,fastneutrons) C 0 7 0 0 6 Contents 1 Introduction 1 2 Themethod 1 3 MCNPmodelingofthemethod 3 3.1 Modellingoftheneutronscatteringfromsimpleobjects 3 3.2 Morerealisticcase-modelingofaluggage 6 2 3.3 Modelingofsignalsfromobjectsplacedinarow 7 0 4 Detectionofhiddenfissilematerials,Monte-Carlosimulation 8 1 4.1 Spectraofscatteredneutrons 8 2 4.2 Modelingofscatteredneutronssignalsdetectedbytheneutronprobes 10 5 Conclusions 11 J I N 1 Introduction S A new approach to the detection of explosives and other illicit materials was proposed in [1, 2]. T Taking advantage of the capabilities of modern neutron generators (based on the Plasma-Focus principle)thatarecapabletoproduceflashesofveryintense(upto109 of2.45MeVneutronsfrom 7 DD and up to 1011 of 14MeV neutrons per shot from DT reaction) and very short neutron pulses (<10ns),itispossibletodetermineelementalcontentofunknownbulksamplesfrominformation C existinginafieldofscatteredneutrons. Duetoshortneutronpulsedurationatime-of-flightmethod canbeinvolvedintheidentificationprocedure. 0 7 2 Themethod 0 Themethodisbasedonthewellknowfactthatnuclide-specificinformationispresentinthescat- 0 tered neutron field. By detecting neutrons elastically and in-elastically scattered at different labo- 6 ratoryanglesfortwodifferentincidentneutronenergies(2.45MeVand14MeV),theamountsand positionsofthescatteringnuclidesmaybedetermined(figure1). Scattering signatures of different elements (especially H, C, N and O) should be precisely measured and a data basis of such signatures established. Then, using the data basis, scattering signaturesmeasuredforunknownsamplesareunfoldedtodeterminetheirelementalcomposition. The method proposed belongs to the wider group of approaches that make use of specific interactionofneutrons(fastorthermal)withdifferentmaterials. Asaresultofsuchinteractionan inducedgammaradiationisemittedfromanobjectirradiatedaswellasafieldofscatteredneutrons appears(duetoelasticandinelasticscatteringofprimaryneutrons). Theinformationonelemental composition of the object can be drown from both the gamma radiation and the scattered neutron field[3]–[7]. –1– Figure1. Theschemeillustratingideaoftheproposedmethod. 2 0 1 2 J I N S T 7 C 0 7 0 Figure2. Schemeofthe“singleshot”detectingsystem. 0 6 Weproposetobringintoplayaneutronsourcebasedonaplasmaaccelerator. whichgenerates verypowerfulpulsesofneutronsinthenanosecondrangeduration. NeutronsourcesofthePlasma Focus type can generate neutron pulses with durations in the nano-second range, and provide a veryhighneutronyieldinthesepulses. For example our device PF-6 (operating at the Institute of Plasma Physics and Laser Micro- fusion, Warsaw, Poland) with 7.4kJ of energy in its capacitor storage, is capable to generate in one pulse of ∼=10ns duration up to 109 DD (2.5MeV) neutrons or 1011 DT (14MeV) neutrons. This feature allows to create a “single-shot” detection system. It means that all necessary infor- mation will be received using a limited number of very bright pulses of neutrons having duration in a nanosecond range and registered by means of the time-of-flight technique. A proposal of the generalschemeofsuchdetectionsystemispresentedinfigure2. –2– 2 0 1 Figure3. ThegeometryoftheMCNPcalculation(R : source-objectandR : object-detectordistances). 1 2 2 3 MCNPmodelingofthemethod J TheMCNP(version5)[8]codehasbeenusedtoinvestigatevariousfeaturesandpropertiesofthe I method. The complexity of the input-files increased together with increasing knowledge of the team. The most important progress was the achievement of the capability of simulating scattered N neutronsignalsasregisteredbyfactiousscopes(time-amplitudesignals). S T 3.1 Modellingoftheneutronscatteringfromsimpleobjects In the first step the MCNP code was used to simulate scattering of neutrons from simple objects (spheres with radius = 5cm) made of basic elements like Oxygen, Nitrogen, Carbon, Sulphur 7 as well as some compounds e.g. explosives (RDX) and everyday use materials like melamine, glucose and acetamide. The aim of these investigations was to examine the dependence of the C registered neutron signals on angles and distances: neutron source-sample, sample-detector etc. 0 TheneutronpulsefromthepointDDsource(E =2.45MeV)wasassumedtobeGaussianintime n 7 withtherealisticfullwidthathalfmaximum(FWHM)of10ns. Thegeometryofthecomputation ispresentedinfigure3. 0 Results of the computations performed using the geometry presented in figure 3 have been 0 alreadypublishedin[9]. Herewepresentonlysomeofthemconnectedwiththechoiceofascat- 6 teringangle,theimportantfactorforthecapabilityofthesystemtodeterminetheelementalcontent oftheinvestigatedcompound. Infigure4,signalsweredetectedwhiletheinitial2.45MeVneutron pulse interacts with the investigated object (a sphere filled with the RDX explosive material) in a geometrycorrespondingtotheonepresentedinfigure3. The following conclusions can be drawn from the basic investigations with the use of the simplegeometryshowninfigure3: 1. Capabilityofthesystemtodistinguishesignalscorrespondingtoneutronsscatteredbydiffer- entelements(C,N,O)dependsstronglyonthescatteringangle. Fromtheresultspresented infigure4itisevidentthatratherhighscatteringangles150◦–170◦ (practicallybackscatter- ing)shouldbeusedforthedeterminationoftheelementalcontentofunknownobjectsasfor loweranglesthesignalsoriginatedfromvariouselementsmergegradually. –3–