ebook img

Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells PDF

14 Pages·2016·1.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells

Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2016, Article ID 6083136, 14 pages http://dx.doi.org/10.1155/2016/6083136 Research Article Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells NatthineeAnantachoke,1PattamapanLomarat,2WasinPraserttirachai,2 RuksineeKhammanit,3andSupachokeMangmool3 1DepartmentofPharmacognosy,FacultyofPharmacy,MahidolUniversity,Bangkok10400,Thailand 2DepartmentofFoodChemistry,FacultyofPharmacy,MahidolUniversity,Bangkok10400,Thailand 3DepartmentofPharmacology,FacultyofPharmacy,MahidolUniversity,Bangkok10400,Thailand CorrespondenceshouldbeaddressedtoSupachokeMangmool;[email protected] Received29June2016;Revised25October2016;Accepted31October2016 AcademicEditor:G.K.Jayaprakasha Copyright©2016NatthineeAnantachokeetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. Thecellularantioxidantenzymesplaytheimportantroleofprotectingthecellsandorganismsfromtheoxidativedamage.Natural antioxidantscontainedinfruitshaveattractedconsiderableinterestbecauseoftheirpresumedsafetyandpotentialnutritional value.Eventhoughantioxidantactivitiesofmanyfruitshavebeenreported,theeffectsofphytochemicalscontainedinfruitsonthe inductionofantioxidantenzymesinthecellshavenotbeenfullydefined.Inthisstudy,weshowedthatextractsfromAntidesma ghaesembilla,Averrhoabilimbi,Malpighiaglabra,Mangiferaindica,Sandoricumkoetjape,Syzygiummalaccense,andZiziphusjujuba inhibitedH2O2-inducedintracellularreactiveoxygenspeciesproductioninHEK-293cells.Additionally,theseThaifruitextracts increasedthemRNAandproteinexpressionsofantioxidantenzymes,catalase,glutathioneperoxidase-1,andmanganesesuperoxide dismutase.TheconsumptionofThaifruitsrichinphenoliccompoundsmayreducetheriskofoxidativestress. 1.Introduction antistress of physiological conditions including antioxidant andanti-inflammatoryeffects[7]. Oxidativestressisdefinedasanimbalancebetweenendoge- Epidemiologicalstudieshavefoundthatconsumptionof nousantioxidantdefensemechanismsandtheproductionof fruits and vegetables has attracted growing interest because reactiveoxygenspecies(ROS),whichathighlevelscancause oftheirsignificantroleinreducingtheriskofcardiovascular cell injury and damage through modifications of proteins, diseases and other chronic diseases [8]. Consumption of lipids, and DNA. Increased oxidative stress is involved in antioxidants, through diet and supplements, is expected to thepathophysiologyofmanydiseasessuchascardiovascular remove ROS from the living system and provide health diseases[1],neurodegenerativediseases[2],anddiabetes[3]. benefits.Severalstudiesdemonstratedthatmedicinalplants The cellular antioxidant enzymes play the important role andfruitsarearichsourceofantioxidantcompoundssuch of protecting the cells and organisms from the oxidative damage. For instance, superoxide dismutase (SOD) acts as as phenolics, flavonoids, quinones, vitamins, and alkaloids, a catalyst to convert superoxide radicals into oxygen and which can decrease the incidence of oxidative stress and hydrogen peroxide [4]. The hydrogen peroxide converts associated diseases [9–11]. Previous studies showed that the into water and oxygen by catalase to protect the cells from phytochemicals,especiallyphenolics,infruitsarethemajor accumulationofH2O2 [5].Glutathioneperoxidase(GPx)is bioactivecompoundsshowingpotentantioxidanteffects[12– theimportantenzymetoremoveH2O2byusingglutathione 14].Therewasadirectrelationshipbetweenthetotalphenolic as a substrate [6]. Heme oxygenase 1 (HO-1) is involved in contentsandtheantioxidantactivitiesinfruits[13–15]. 2 Evidence-BasedComplementaryandAlternativeMedicine Natural antioxidants that are presented in fruits have 2.4.DeterminationofTotalPhenolicContent. Totalphenolic attracted considerable interest because of their presumed content of the fruit extracts was analyzed by the Folin– safety and potential nutritional and therapeutic value. The Ciocalteucolorimetricmethoddescribedpreviously[16]with increased interest in natural antioxidants has led to the minormodifications.Stocksolutionsofthefruitextractswith antioxidantevaluationofmanyspeciesoffruits.Eventhough concentrationof1.5mg/mlwerepreparedin50%methanol. antioxidantactivitiesofmanyfruitshavebeenreportedand Twenty microliters of the stock solutions was mixed with theresultsshowedthatsomeofthemcouldberichsourcesof 50𝜇l of 10% Folin–Ciocalteu reagent in 96-well plates and allowedtoreactfor3min.Themixtureswerethenneutralized naturalantioxidants,theeffectsofphytochemicalscontained byadding80𝜇lof7.5%ofsodiumcarbonatesolution.After infruitsontheinductionofantioxidantenzymesinthecells incubationatroomtemperaturefor2h,theabsorbancewas havenotbeenfullydefined.Therefore,theobjectivesofthis recorded at 765nm by an Infinite M200 Microplate Reader studyweretodeterminetheprofilesoftotalphenolics,total (Tecan).Theassaywasmeasuredintriplicateandtheresults flavonoids,theantioxidantactivitiesofThaifruitextracts,and werecalculatedusingacalibrationcurveforgallicacid(0.625 the molecular mechanisms of Thai fruit extracts on H2O2- to 30𝜇g/ml) and expressed as mg gallic acid equivalent inducedoxidativestressinHEK-293cells. (GAE)per100gfreshweight(mgGAE/100gFW). 2.MaterialsandMethods 2.5.DeterminationofTotalFlavonoidContent. Totalflavon- oid content was determined by aluminium chloride colori- 2.1.Chemicals. 2,2-Diphenyl-1-picrylhydrazyl(DPPH),gallic metrictestmodifiedfrompreviousstudy[17].Onehundred acid, ascorbic acid, 6-hydroxy-2,5,7,8-tetramethylchroman- and sixty microliters of sterile water was added to the test 2-carboxylicacid(Trolox(cid:2)),sodiumnitrite,aluminiumchlo- tubefollowedby40𝜇lofthefruitextractsdissolvedinsterile ridehexahydrate,sodiumhydroxide,hydrogenperoxide,3- waterattheconcentrationof1mg/mland15𝜇lof5%NaNO2. [4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide After5min,24𝜇lof10%AlCl3⋅6H2Owasadded.Themixture (MTT),anddichlorodihydrofluorescein(DCF)acetatewere was allowed to react for 6min. Lastly, 80𝜇l of 1M NaOH purchasedfromSigma-Aldrich(SaintLouis,MO).Dulbecco’s and 80𝜇l of sterile water were added and well mixed. Then ModifiedEagleMedium(DMEM),fetalbovineserum,0.25% 250𝜇l of reaction mixture was transferred to 96-well plate. trypsin-EDTAsolution,andpenicillin-streptomycinsolution The plate was shaken for 30sec and the absorbances were were purchased from Gibco (Grand Island, NY). Folin– read at 510nm by microplate reader. The total flavonoid Ciocalteu’sphenolreagentwaspurchasedfromMerckKGaA contentwasexpressedasquercetinequivalentper100gfresh weight (mg QE/100g FW) which was calculated from the (Darmstadt, Germany). Anhydrous sodium carbonate was regression equation obtained from graph plotted between availablefromAjaxFinechem(Auckland,NewZealand). theabsorbanceandtheconcentrationofquercetinatvarious concentrations(4–1,500𝜇g/ml).Theassaywasperformedin 2.2. Plant Materials. The fruits of Antidesma ghaesembilla triplicate. Gaertn.(Phyllanthaceae),Artocarpusinteger(Thumb.)Merr. (Moraceae), Averrhoa bilimbi L. (Oxalidaceae), and Mangi- 2.6. DPPH Radical-Scavenging Assay. Free radical-scaveng- ferafoetidaLour.(Anacardiaceae)werecollectedfromRan- ingactivityofthefruitextractswasdeterminedbasedonthe ongProvince,Thailand,whilethefruitsofDuriozibethinusL. reductionofDPPHradicalsbymeansofthemodifiedspec- cultivarMonThong(Malvaceae),MalpighiaglabraL.(Mal- trophotometric method in 96-well plates. The test samples pighiaceae), Mangifera indica L. cultivar Aok Rong (Anac- werepreparedatconcentrationof2mg/mlinmethanoland ardiaceae), Musa paradisiaca cultivar Awak (Musaceae), mixedwith0.02%w/vDPPHradicalmethanolicsolution1:1 Sandoricumkoetjape(Burm.f.)Merr.cultivarTuptim(Meli- ratiointriplicate.Thereactionmixtureswereallowedtostand aceae),Syzygiummalaccense(L.)Merr.&Perry(Myrtaceae), inthedarkfor30minatroomtemperature.Theabsorbance andZiziphusjujubaMill.cultivarMilkJujube(Rhamnaceae) was measured at 517nm using Infinite M200 Microplate werepurchasedfromlocalmarketsinBangkok,Thailand.The Reader (Tecan). The DPPH radical-scavenging ability was calculated as percent inhibition by the following equation: plants were identified by Professor Wongsatit Chuakul, the % Inhibition=[(𝐴 −𝐴 )/𝐴 ]×100.TheDPPH botanist and lecturer in the Department of Pharmaceutical control sample control radical-scavengingactivityofthefruitextractswasexpressed Botany,FacultyofPharmacy,MahidolUniversity. astheIC50values(𝜇g/ml)(inhibitionofDPPHradicalforma- tionby50%atconcentrationof1mg/ml).6-Hydroxy-2,5,7,8- 2.3. Preparation of Extracts. Edible portions of the fresh tetramethylchroman-2-carboxylicacid(Trolox)wasusedas fruitswererunthroughafoodchopper.Thefinelychopped apositivecontrol. fruits were dried by freeze dryer (FreeZone, Labconco). The coarsely ground dried fruits (50g) were extracted with 2.7.CellCulture. Humanembryonickidney-293(HEK-293) methanol (300–500ml × 3 times). After filtration through cellswereculturedusingDMEMsupplementedwith10%FBS filter paper (number 1, Whatman Inc.), the solvent was and1%(v/v)penicillin-streptomycinsolutioninahumidified removed under reduced pressure using a rotary evaporator atmosphereof5%CO2 at37∘Caspreviouslydescribed[18]. andthecrudemethanolextractswerestoredat−20∘Cuntil Under serum starvation conditions, cells were treated with analysis. crudeextractofThaifruits. Evidence-BasedComplementaryandAlternativeMedicine 3 󸀠 󸀠 󸀠 2.8. MTT Assay. Cell viability was performed by the MTT 5 -aaggccgtgtgcgtgaa-3; antisense, 5 -caggtctccaacatgcctct- 󸀠 󸀠 󸀠 assay according to the method previously described [19]. 3 ), human GRe (sense, 5 -cagtgggactcacggaagat-3 ; anti- 󸀠 󸀠 Cells were seeded in 96-well culture plates at a density of sense, 5 -ttcactgcaacagcaaaacc-3 ), and human GAPDH 1 × 104cells/well, in a total volume of 200𝜇l of DMEM (sense,5󸀠-cgagatccctccaaaatcaa-3󸀠;antisense,5󸀠-gtcttctgggtg- 󸀠 supplementedwith1%FBSplus1%penicillin/streptomycin. gcagtgat-3 ). Cells were allowed to adhere to plate for 24h, before beingtreatedwithsolvent(vehiclecontrol)andcrudeextracts 2.11. Western Blotting. Protein expression of antioxidant at various concentrations (0.01–2000𝜇g/ml) for 24h. The enzymes was performed by Western blotting as previously experimentswereperformedin2replicatewells.Therelative described[20].Followingstimulation,cellswerewashedonce number of viable cells was then determined at 24h after with PBS and solubilized in lysis buffer containing 20mM incubation,byadding2mg/mlofMTTsolutionandfurther Tris-HCl, pH 7.4, 0.8% Triton X-100, 150mM NaCl, 2mM incubating the cell for 4h. The formazan crystals formed EDTA, 10% glycerol, 100𝜇M PMSF, 5𝜇g/ml aprotinin, and werethensolubilizedwithDMSO.Theplatewasreadusing 5𝜇g/ml leupeptin. Protein concentration of cell lysates was an Infinite M200 Microplate Reader (Tecan) at wavelength determined using a Bio-Rad protein assay kit with bovine of 570nm. The absorption value of the solution at 570nm serumalbuminasstandard.Samplesweremixedwithloading directly represents relative cell numbers. The percentage bufferanddenaturedbyheatingat95∘Cfor5minpriortosep- of cell viability was calculated according to the following aration by SDS-PAGE. Separated proteins were transferred equation: topolyvinylidenefluoride(PVDF)membrane(Bio-Rad)and subjected to immunoblotting with primary antibodies to The%ofcellviability catalase (Cell Signaling), Mn-SOD (Cell Signaling), GPx-1 (Abcam),andGAPDH(CellSignaling).Immunoblotswere (1) =[Absorbanceoftreatedcells]×100. visualizedwithHRP-conjugatedsecondaryantibodiesanda Absorbanceofcontrolcells chemiluminescencedetectionsystem(GEHealthcare). 2.9.MeasurementofIntracellularROSLevel. Theintracellular 2.12. Statistical Analysis. Data were presented as mean ± antioxidant activities of the crude extract of Thai fruits SEM.Thestatisticalanalysiswasdeterminedusingone-way were quantified using a fluorescent probe dichlorodihy- analysisofvariance(ANOVA)andStudent’st-test,andvalues drofluorescein(DCF)diacetate(Sigma-Aldrich)toestimate of𝑃<0.05wereconsideredtobesignificant. the intracellular ROS production in the cell as previously described[20].HEK-293cellswereseededina12-wellplate 3. Results (5 × 104cells/well) or 35-mm glass bottomed dishes (1 × 5 10 cells/dish) and treated with Thai fruit extracts (10 and 3.1. Yields of Thai Fruit Extracts. Eleven fruit samples were 100𝜇g/ml)for12h.After12h,thecellswerethenincubated collected and bought from southern and central regions of with100𝜇MofH2O2for2handwashedoncewithphosphate Thailandandwereauthenticatedbyabotanist.Thescientific buffered saline (PBS), pH 7.4. Thereafter, 10𝜇M DCFH-DA names of the plants are shown in Table 1. Although there ∘ wasaddedandincubatedwiththecellsat37 Cinthedarkfor aremanykindsoffruitsinThailand,inthisstudy,wechose 30min. The fluorescence intensity of DCF was determined only 11 fruits that have a potential effect on inhibition of using Multi-Detection Microplate Reader (BioTek Instru- oxidativestress.Thaipeopleconsumesignificantamountof ments)withanexcitationwavelengthof485nmandemission the investigated fruits at a ripe stage and the yields of the wavelength of 530nm. To monitor the ROS production in crude methanol extracts of Thai fruits ranged from 2.68 to living cells, HEK-293 cells were visualized using single-line 9.28% of fresh weight (edible part of fresh fruits weight) excitation (488nm) of an IX-81 fluorescence microscope (Table1). (Olympus)witha40x(NA1.4)objectivelens(Olympus). 3.2.DeterminationofTotalPhenolicandFlavonoidContents 2.10.mRNAExpressionAnalysisbyRT-qPCR. Theextraction of Thai Fruit Extracts. The total phenolic contents were of RNA was performed by using the RNeasy Mini Kit determinedusingtheFolin–Ciocalteumethod,asimpleand (Qiagen) as previously described [21]. RT-qPCRs for RNA widelyusedmethod,whichreliedonthetransferofelectrons expressionwereperformedbyusingtheKAPASYBRFAST fromphenoliccompoundstotheFolin–Ciocalteureagentin One-StepRT-qPCRKit(KAPAbiosystems)accordingtothe alkaline medium. As shown in Table 1, the total phenolic manufacturer’s instructions. RT-qPCRs were performed on contentsof11selectedThaifruitsareexpressedasmgofgallic Mx3005pReal-TimePCRSystem(Stratagene).Wedesigned acidequivalent(GAE)per100goffreshweight(FW).Among andsynthesizedtheprimersasfollows:humanGPx-1(sense, allthefruitsanalyzed,thehighestphenoliccontentwasfound 5󸀠-ctcttcgagaagtgcgaggt-3󸀠; antisense, 5󸀠-tcgatgtcaatggtctg- inM.glabra(723.83±36.94mgGAE/100gFW),followedby gaa-3󸀠), human catalase (sense, 5󸀠-gcagatacctgtgaactgtc-3󸀠; S.koetjape(241.01±16.51),A.ghaesembilla(98.38±6.48), antisense, 5󸀠-gtagaatgtccgcacctgag-3󸀠), human HO-1 (sense, M.indica(45.39±1.33),Z.jujuba(45.29±3.45),M.foetida 5󸀠-caggcagagaatgctgag-3󸀠; antisense, 5󸀠-gcttcacatagcgctgca- (38.83 ± 3.15), A. bilimbi (33.77 ± 1.37), and S. malaccense 3󸀠),humanMn-SOD(sense,5󸀠-gcacattaacgcgcagatca-3󸀠;anti- (29.55±0.91)(Table1).Phenoliccontentwasslightlylower 󸀠 󸀠 sense,5 -agcctccagcaactctcctt-3 ),humanCuZn-SOD(sense, inA.integerandD.zibethinus.M.paradisiacacultivarAwak 4 Evidence-BasedComplementaryandAlternativeMedicine Table1:Yieldofmethanolextracts,totalphenolicandflavonoidcontents,andDPPHscavengingactivitiesofThaifruitextracts. Yieldof Totalphenolic Totalflavonoid Fruits DPPHscavengingactivity Scientificname crudeextract content content (ripestage) (%inhibitionat1mg/mL) (%FW) (mgGAE/100gFW) (mgQE/100gFW) Maokhaipla Antidesma 4.83 98.38±6.48 134.06±2.90 67.65±0.31 (Thai) ghaesembillaGaertn. Champedak Artocarpusinteger 6.85 21.45±2.28 158.31±1.02 15.42±1.52 (Thumb.)Merr. Bilimbi AverrhoabilimbiL. 2.68 33.77±1.37 55.33±0.70 30.66±1.96 Durian DuriozibethinusL. 4.86 9.65±0.71 93.85±0.36 6.80±0.97 cultivarMonThong Escobillo MalpighiaglabraL. 4.40 723.83±36.94 195.36±0.14 96.62±0.44 Horsemango Mangiferafoetida 6.74 38.83±3.15 46.13±1.85 25.63±1.32 Lour. Mango MangiferaindicaL. 9.12 45.39 ±1.33 ND 44.85±0.71 cultivarAokRong PisangAwak MusaparadisiacaL. 7.24 0.34±0.15 3.70±1.31 5.15±1.15 cultivarAwak Sandoricumkoetjape Santol (Burm.f.)Merrill 9.28 241.01±16.51 851.49±0.30 84.73±1.38 cultivarTuptim Malayapple, Syzygiummalaccense 4.28 29.55±0.91 3.99±1.65 16.75±1.08 Pomerac (L.)Merr.&Perry Jujube ZiziphusjujubaMill. 7.63 45.29±3.45 1.36±1.67 4.45±0.91 cultivarMilkJujube ND=notdetected. hadthelowesttotalphenoliccontentamongthetestedfruits 6.2𝜇g/ml), M. indica (44.85 ± 0.71), and A. bilimbi (30.66 (Table1). ± 1.96). The extracts of D. zibethinus, M. paradisiaca, and Thetotalflavonoidcontentsof11selectedThaifruitsare Z. jujuba had DPPH scavenging activity less than 10% of expressed as mg of quercetin equivalent (QE) per 100g of inhibition(Table1). fresh weight (mg QE/100g FW). As shown in Table 1, total flavonoidcontentsofThaifruitextractsrangedfrom1.36± 3.4. Correlation between Antioxidant Capacity and Total 1.67to851.49±0.30mgQE/100gFW.Thehighestflavonoid Phenolic Content. The correlation between total phenolic content was found in S. koetjape, which had 851.49 ± content and antioxidant activity using DPPH assay of fruit 0.30mg QE/100g FW, followed by M. glabra, A. integer, A. extracts was determined and shown in Figure 1. A positive ghaesembilla, D. zibethinus, A. bilimbi, and M. foetida, the correlation (𝑅2 = 0.6317) between the DPPH scavenging valuesofwhichwere195.36±0.14,158.31±1.02,134.06±2.90, value and total phenolic content indicated that phenolic 93.85±0.36,55.33±0.70,and46.13±1.85mgQE/100gFW, compoundsmainlycontributedtotheantioxidantactivities respectively. Flavonoid content was lower in S. malaccense ofthesefruits.Thisresultwasinagreementwithseveralpre- and M. paradisiaca. On the other hand, Z. jujuba had the viousstudies[15].However,somefruitscontaininghightotal lowestcontentoftotalflavonoid(1.36±1.67),whilethatof flavonoid compounds, such as A. integer and D. zibethinus M.indicawasnotdetected. (158.31±1.02and93.85±0.36mgQE/100gFW,resp.)didnot exhibit strong antioxidant capacity. In contrast, S. koetjape 3.3. DPPH Scavenging Activities of Thai Fruit Extracts. We and M. glabra that contained higher flavonoid contents next determined the antioxidant activity of fruit extracts elicited strong DPPH scavenging activity with 84.73 ± 1.38 usingDPPHmethod.Thisassaybasedonthemeasurementof and 96.62 ± 0.44% of inhibition, respectively. Thus, the theantioxidantabilitytoscavengethestableorganicradical correlationsbetweenantioxidantactivityandtotalflavonoid DPPH and used Trolox as positive control with the IC50 of contents of Thai fruit extracts were poor (𝑅2 = 0.3843) 4.12 ± 0.3𝜇g/ml. As shown in Table 1, the extract of M. (Figure1).Accordingtotheirhighantioxidantsactivities,it glabraattheconcentrationof1mg/mlexhibitedthehighest could be speculated that these fruits will be beneficial for DPPHfreeradical-scavengingactivitywith96.62±0.44%of inhibitionofoxidativestress. inhibition (IC50of 45.00 ±1.90𝜇g/ml), which related to the high total phenolic content (723.83 ± 36.94mg GAE/100g 3.5. Thai Fruit Extract Inhibits H O -Induced Intracellular 2 2 FW). The extracts of S. koetjape showed moderate DPPH ROSProductioninHEK-293Cells. Wefirstassessedthecell scavengingactivities84.73±1.38(IC50 of415.8±1.5𝜇g/ml), cytotoxicity of crude extracts of 11 Thai fruits on HEK- followed by A. ghaesembilla (67.65 ± 0.31; IC50 of 648.0 ± 293 cells by using MTT assay to determine the optimal Evidence-BasedComplementaryandAlternativeMedicine 5 300 300 R2=0.6317 R2=0.3843 n) n) o 250 o 250 biti biti hi hi n 200 n 200 % i % i ng ( 150 ng ( 150 gi gi n n e e v 100 v 100 a a c c H s H s P 50 P 50 P P D D 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 Phenolic content (mg GAE/100g FW) Flavonoid content (mg QE/100g FW) Figure1:Correlationbetweenantioxidantcapacitiesandtotalphenolicandflavonoidcontentsin11Thaifruits.Antioxidantcapacitiesof ThaifruitextractsweremeasuredbytheDPPHfreeradical-scavengingassay.GAE:gallicacidequivalent.QE:quercetinequivalent.FW: freshweight. concentrations of the crude extract for measurement of suggesting that these fruits suppressed the ROS production intracellular antioxidant activity. We found that Thai fruit in intact cells. However, treatment with fruits extracts of extractsattheconcentrationof0.01–100𝜇g/mlwerenottoxic A. integer, D. zibethinus, M. foetida, and M. paradisiaca did toHEK-293cells(Figure2).Upontreatmentofthecellswith not reduce the fluorescence intensity of DCF inducing by the crude extracts more than 100𝜇g/ml, the cell viabilities H2O2comparedtothatofcontrol.Takentogether,thesedata of HEK-293 were less than 80%. The concentrations used demonstratedthatThaifruitshavetheantioxidanteffectsby in further experiment were 10 and 100𝜇g/ml for the fruit preventingtheproductionofROSinHEK-293cells. extractsinordertopreventthecytotoxiceffectandallowat least80%cellssurvival. 3.6. Induction of mRNA Expression of Antioxidant Enzymes We next investigated whether Thai fruit extract inhibits by Thai Fruit Extracts. Antioxidant enzymes (e.g., GPx-1, H2O2-induced intracellular ROS production in HEK-293 catalase, Mn-SOD, CuZn-SOD, and HO-1) are the major cells.TheintracellularROSlevelsweremeasuredbyusinga components of antioxidant signaling cascade in many cell fluorescentprobe,DCFH-DA.AfterincubationwithH2O2, types.TreatmentwithA.bilimbiextractelicitstheantioxidant the levels of intracellular ROS significantly increased com- effect by increasing the activity of SOD and GPx both in paredtothatofcontrol(vehicle)group(Figure3).Asshown bloodandintissues(e.g.,liver,kidney,andheart)ofrats[22]. inFigure3(a),treatmentwithA.ghaesembillaandA.bilimbi Moreover,anaqueousextractofM.indicainhibitedoxidative significantly inhibited H2O2-induced ROS production in a stress by enhancing the production of antioxidant enzymes dose-dependent manner, whereas treatment with A. integer suchasSODandcatalase[23].Consistentwiththeseprevious andD.zibethinusdidnotshowtheinhibitoryeffectonH2O2- studies, we showed that treatment with fruit extracts of M. inducedROSproduction.Inaddition,thecrudeextractsof glabra,S.malaccense,M.indica,andA.bilimbisignificantly M. glabra and M. indica showed a significant reduction in elevatedthemRNAlevelofMn-SOD(Figure5(a)).Moreover, ROSproduction,whichhaseffectssimilartothoseofvitamin the GPx-1 mRNA expression significantly increased when C(apotentantioxidant),whereastreatmentwithextractsof treated with fruit extracts of S. malaccense, S. koetjape, M. M. foetida and M. paradisiaca had no effect (Figure 3(b)). indica,A.bilimbi,Z.jujuba,andA.ghaesembilla(Figure5(b)). Moreover, treatment with fruit extracts of S. koetjape, S. Inaddition,themRNAlevelofcatalasealsoincreasedafter malaccense, and Z. jujuba also suppressed H2O2-induced treatment with fruit extracts from M glabra, M. indica, ROSproductioninadose-dependentmanner(Figure3(c)). Z. jujuba, and A. ghaesembilla (Figure 5(c)). However, all AsshowninFigure3,thefruitextractsofA.ghaesembilla, Thai fruit extracts failed to induce the mRNA expressions A. bilimbi, M. glabra, M. indica, S. koetjape, S. malaccense, of CuZn-SOD, GRe, and HO-1 in HEK-293 cells (Figures andZ.jujubahavetheantioxidanteffectsbypreventingthe 5(d)–5(f), resp.). Collectively our results showed that Thai productionofintracellularROSinducedbyH2O2.Wefurther fruit extracts play an important role in the prevention of quantified ROS production in intact HEK-293 cells using oxidativestressbyenhancingthemRNAexpressionofthese the fluorescent microscope. Incubation of HEK-293 cells antioxidantenzymesinHEK-293cells. withH2O2inducedasignificantincreaseinthefluorescence intensity of dichlorodihydrofluorescein (DCF) as shown in 3.7.ThaiFruitExtractsIncreasedProteinLevelofAntioxidant green color in intact cells of the control (vehicle) group Enzymes. As shown in Figure 5, the mRNA expressions of (Figure4).TreatmentwithfruitextractsofA.ghaesembilla, Mn-SOD,GPx-1,andcatalasewereincreasedaftertreatment A. bilimbi, M. glabra, M. indica, S. koetjape, S. malaccense, withtheThaifruitextracts.Wenextinvestigatedtheeffects and Z. jujuba decreased the fluorescence intensity of DCF, of these fruit extracts on the protein expressions of these 6 Evidence-BasedComplementaryandAlternativeMedicine Antidesma ghaesembilla Artocarpus integer Averrhoa bilimbi 120 120 120 100 100 100 bility 80 bility 80 bility 80 % cell via 4600 % cell via 4600 % cell via 4600 20 20 20 0 0 0 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 Concentration (𝜇g/ml) Concentration (𝜇g/ml) Concentration (𝜇g/ml) Durio zibethinus Malpighia glabra Mangifera foetida 120 120 120 100 100 100 bility 80 bility 80 bility 80 % cell via 4600 % cell via 4600 % cell via 4600 20 20 20 0 0 0 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 Concentration (𝜇g/ml) Concentration (𝜇g/ml) Concentration (𝜇g/ml) Mangifera indica Musa paradisiaca Sandoricum koetjape 120 120 120 100 100 100 bility 80 bility 80 bility 80 % cell via 4600 % cell via 4600 % cell via 4600 20 20 20 0 0 0 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 Concentration (𝜇g/ml) Concentration (𝜇g/ml) Concentration (𝜇g/ml) Syzygium malaccense Ziziphus jujuba Vehicle 120 120 120 100 100 100 % cell viability 468000 % cell viability 846000 % cell viability 468000 20 20 20 0 0 0 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 0.01 0.1 1 10 100 10002000 Concentration (𝜇g/ml) Concentration (𝜇g/ml) Concentration (𝜇g/ml) Figure2:CytotoxicityprofileofThaifruitextractsinHEK-293cells.HEK-293cellsweretreatedwithThaifruitextracts(0.01–2,000𝜇g/ml) for36h.Cellviabilitywasquantified,expressedasapercentageofcellviability,andshownasthemean±SEM(𝑛=4). antioxidant enzymes. We found that treatment with fruit results of protein expression revealed that treatment with extracts of M. glabra, S. malaccense, M. indica, and A. fruit extracts of S. malaccense, S. koetjape, M. indica, A. bilimbiattheconcentrationof100𝜇g/mlfor24hsignificantly bilimbi,Z.jujuba,andA.ghaesembillacausedanincreasein elevatedtheproteinlevelofMn-SOD(Figure6,upper-right theGPx-1proteinlevelcomparedwiththecontrol(vehicle) panel). Similar to the mRNA expression experiments, the (Figure 6, lower-left panel). Moreover, the protein levels of Evidence-BasedComplementaryandAlternativeMedicine 7 250 ∗ 200 %) on ( 150 # # cti # u d o pr 100 S O R 50 0 VehicleVehicle 10 100 10 100 10 100 10 100 10 100 A. ghaesembilla A. integer A. bilimbi D. zibethinus Vit. C (𝜇g/ml) (𝜇g/ml) (𝜇g/ml) (𝜇g/ml) (𝜇M) +H2O2 (a) 250 ∗ 200 %) on ( 150 # # # cti # # u d o pr 100 S O R 50 0 VehicleVehicle 10 100 10 100 10 100 10 100 10 100 M. glabra M. foetida M. indica M. paradisiaca Vit. C (𝜇g/ml) (𝜇g/ml) (𝜇g/ml) (𝜇g/ml) (𝜇M) +H2O2 (b) 250 ∗ 200 n (%) 150 # # # # uctio # # d o pr 100 S O R 50 0 Vehicle Vehicle 10 100 10 100 10 100 10 100 S. koetjape S. malaccense Z. jujuba Vit. C (𝜇g/ml) (𝜇g/ml) (𝜇g/ml) (𝜇M) +H2O2 (c) Figure3:EffectsofThaifruitextractsonH2O2-inducedROSproductioninHEK-293cells.(a–c)Cellsweretreatedwithvehicle(control),10 and100𝜇MvitaminC,or10and100𝜇g/mlfruitextractsfor6h.Cellswerethenincubatedwith200𝜇MH2O2for30min.Theintracellular ROSproductionwasquantified,expressedasapercentageofthecontrol,andshownasthemean±SEM(𝑛=4).∗𝑃<0.05versuscontrol; #𝑃<0.05versusH2O2. 8 Evidence-BasedComplementaryandAlternativeMedicine DCF fluorescence intensity +H2O2 A. ghaesembilla A. integer A. bilimbi D. zibethinus M. glabra Vehicle Vehicle (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) DCF Phase contrast (a) DCF fluorescence intensity +H2O2 M. foetida M. indica M. paradisiaca S. koetjape S. malaccense Z. jujuba Vit. C (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) (100𝜇g/ml) 100𝜇M DCF Phase contrast (b) Figure4:ThaifruitextractsattenuatedintracellularROSproductioninHEK-293cells.(a-b)Cellsweretreatedwithvehicle(control),10and 100𝜇MvitaminC,or10and100𝜇g/mlfruitextractsfor6h.Cellswerethenincubatedwith200𝜇MH2O2for30min.Cellswerewashedand incubatedwith10𝜇MDCFH-DA.CellswerevisualizedbygreenfluorescenceforDCFandbybrightfield.Scalebar,10𝜇m(𝑛=4). catalase significantly increased after treatment with crude Oxidativestresshasbeenimplicatedinthepathogenesis extractsofM.glabra,M.indica,andA.ghaesembillafor24h, ofvariouschronicdiseases,suchascancer,heartdiseases,and whereas the catalase protein level tended to increase after diabetes[1–3].Thenonenzymaticantioxidantdefensesystem treatment with crude extract of Z. jujuba (Figure 6, lower- ofthebodyismadeupofsomeantioxidants,suchasvitamin rightpanel).TheseresultsindicatedthatThaifruitsprevent C, vitamin E, vitamin K, and glutathione. The exogenous the oxidative stress by enhancing the protein synthesis of antioxidants are mainly comprised of synthetic and natural antioxidantenzymes. antioxidants.Medicinalplantshavebeenusedtotreathuman diseasesforthousandsofyears.Peoplearebecomingincreas- inglyinterestedinmedicinalplants,includingfruitsbecause 4.Discussion oftheirgoodtherapeuticperformanceandlowtoxicity.Fruits are potential sources of natural antioxidants and have been In this study, we provide a new molecular mechanism of shown in epidemiological studies to be protective against Thai fruits extracts on the inhibition of oxidative stress in severalchronicdiseasesassociatedwithagingsuchascancer, HEK-293 cells. We demonstrate that ethanol extracts from immunedysfunction,andcardiovasculardiseases[8].These A.ghaesembilla,A.bilimbi,M.glabra,M.indica,S.koetjape, naturalprotectiveeffectshavebeenattributedtovariouscom- S. malaccense, and Z. jujuba have antioxidant effects by ponentssuchascarotenoids,vitaminsCandE,andphenolic suppressing ROS production and inducing the synthesis of compounds [24, 25]. Thus, the interest in phytochemicals antioxidant enzymes such as GPx-1, catalase, and Mn-SOD includingphenoliccompoundsderivedfromfruitsandtheir inHEK-293cells. rolesininhibitionofoxidativestressarethereforeincreasing. Evidence-BasedComplementaryandAlternativeMedicine 9 Mn-SOD GPx-1 0.8 0.8 H D ∗ H Mn-SOD/GAPNA expression 00..46 ∗ ∗ ∗ e GPx-1/GAPDNA expression 00..46 ∗ ∗ ∗ ∗ ∗ ∗ elative mR 0.2 RelativmR 0.2 R 0 0 Vehicle M. S. S. M. A. Z. A. Vehicle M. S. S. M. A. Z. A. glabra malac koet indica bilim jujuba ghaes glabra malac koet indica bilim jujuba ghaes 100𝜇g/ml 100𝜇g/ml (a) (b) Catalase CuZn-SOD 1.2 1.2 1.0 H 1.0 H ∗ D D ∗ P Pn An alase/GAexpressio 00..68 ∗ ∗ n-SOD/Gexpressio 00..68 atA ZA Relative cmRN 00..24 elative CumRN 00..24 R 0 0 Vehicle M. S. S. M. A. Z. A. Vehicle M. S. S. M. A. Z. A. glabra malac koet indica bilim jujuba ghaes glabra malac koet indica bilim jujuba ghaes 100𝜇g/ml 100𝜇g/ml (c) (d) GRe HO-1 1.0 1.4 1.2 H 0.8 H Relative GRe/GAPDmRNA expression 000...246 Relative HO-1/GAPDmRNA expression 0001....4680 0.2 0 0 Vehicle M. S. S. M. A. Z. A. Vehicle M. S. S. M. A. Z. A. glabra malac koet indica bilim jujuba ghaes glabra malac koet indica bilim jujuba ghaes 100𝜇g/ml 100𝜇g/ml (e) (f) Figure5:EffectsofThaifruitextractsonthemRNAexpressionofantioxidantenzymes.(a–f)Cellsweretreatedwithvehicle(control)or 100𝜇g/mlfruitextractsfor6h.Aftertreatment,thetotalRNAwasextractedfromcellsandthemRNAexpressionwasanalyzedusingspecific primers.TherelativeMn-SOD(a),GPx-1(b),catalase(c),CuZn-SOD(d),GRe(e),andHO-1(f)mRNAlevelswerequantifiedandshown asthemean±SEM(𝑛=4).∗𝑃<0.05versusvehicle. 10 Evidence-BasedComplementaryandAlternativeMedicine Mn-SOD 2.0 22kD Mn-SOD asal) ver b 1.5 ∗ ∗ ∗ ∗ o 22kD GPx-1 old H (f 1.0 D P 60kD Catalase A G D/ 0.5 O S 37kD GAPDH n- M 0 Vehicle M. S. S. M. A. Z. A. Vehicle M. S. S. M. A. Z. A. glabramalac koet indica bilim jujuba ghaes glabra malac koet indica bilim jujuba ghaes 100𝜇g/ml 100𝜇g/ml GPx-1 Catalase ver basal) 12..50 ∗ ∗ ∗ ∗ ∗ ∗ over basal) 22..05 ∗ ∗ ∗ DH (fold o 1.0 PDH (fold 11..05 P A A G x-1/G 0.5 alase/ 0.5 GP Cat 0 0 Vehicle M. S. S. M. A. Z. A. Vehicle M. S. S. M. A. Z. A. glabra malac koet indica bilim jujuba ghaes glabra malac koet indica bilim jujuba ghaes 100𝜇g/ml 100𝜇g/ml Figure6:EffectsofThaifruitextractsontheproteinexpressionofantioxidantenzymes.Cellsweretreatedwithvehicle(control)or100𝜇g/ml fruitextractsfor24h.Aftertreatment,thecelllysateswereimmunoblottedwithanti-Mn-SOD,anti-GPx-1,oranti-catalaseantibodies.The expressionofGAPDHservedasaloadingcontrol.Theproteinexpressionwasquantified,expressedasthefoldincreaseovervehicle(control) level,andshownasthemean±SEM(𝑛=4).∗𝑃<0.05versuscontrol. 2 The antioxidative effects of Thai fruit extracts could be total antioxidant activities in the tested 11 Thai fruits (R = due to the presence of phenolic compounds. Studies have 0.6317). The higher total phenolic content in fruits resulted also shown that phenolic compounds from various sources inhighertotalantioxidantactivity.Similarly,previousstudy are effective in improving antioxidant enzymes, suggesting reportedasignificantpositivecorrelationbetweentheantiox- theirroleinthepreventionandtreatmentofoxidativestress- idantcapacityandthecontentsoftotalflavonoidsandtotal related diseases. Hence, the consumption of phenolic-rich phenolics in celery [30]. Moreover, antioxidant activities fruitshasbeenassociatedwithreducedlevelsofROSinani- assayed by DPPH and FRAP methods showed strongly malexperiments[10,26].Likewise,ahighintakeofphenolic- positive relationship with total phenolic content in Oxal- richfruitshasbeenreportedtoenhancetheactivitiesofthe idaceae fruits [31]. Taken together, these results suggested antioxidantenzymes[27].Itwasreportedthattheantioxidant that phenolic compounds may be the major contributor to activity of raspberry and santol (S. koetjape) was directly thetotalantioxidantactivitiesoffruits.However,ourresults 2 related to the phenolic content [28]. In addition, the juice demonstrated a weak correlation (R = 0.3843) between of Ziziphus mauritiana that has a moderate total phenolic the DPPH scavenging activity and total flavonoid content contentandlowcontentofvitaminCelicitstheantioxidant suggesting that flavonoid compounds could not be main activity [29]. Consistent with these previous studies, our components responsible for DPPH scavenging activity of study demonstrated that the extract from M. glabra has somefruits,suchasM.indica,S.koetjape,andM.glabra. the highest phenolic content, followed by S. koetjape, A. In our present study, we found that, among the tested ghaesembilla,M.indica,Z.jujuba,M.foetida,A.bilimbi,and 11 Thai fruits tested, 7 of them showed the ability to inhibit S.malaccense(Table1).TheseThaifruitextractsexhibitedthe H2O2-induced oxidative stress in HEK-293 cells. Previous antioxidantactivityasdeterminedbyDPPHassay. studydemonstratedthattheadministrationofphenolicacids The correlation between total antioxidant capacities (i.e., gentisic acid, gallic acid, ferulic acid and p-coumaric obtainedfromDPPHassayisshowninFigure1.Therewasa acid) in rat at a concentration of 100mg/kg exhibited an directlinearrelationshipbetweenthephenoliccontentsand inductionofhepaticantioxidantenzymessuchasSODand

Description:
1Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok Received 29 June 2016; Revised 25 October 2016; Accepted 31 October 2016 [26] C. Y. Lim, S. Mat Junit, M. A. Abdulla, and A. Abdul Aziz,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.