AL-FARABI KAZAKH NATIONAL UNIVERSITY Z. B. Rakisheva A. S. Sukhenko TEXTBOOK ON THEORETICAL MECHANICS Second edition Almaty «Qazaq university» 2017 UDC 531.011 (076) LBC 22.21 R 17 Recommended for publication by the decision of the Academic Council of the Faculty of Mathematics and Mechanics, Editorial and Publishing Council of Al-Farabi Kazakh National University (Protocol №1 dated 29.09.2017); Educational and methodical association on groups of specialties «Natural sciences», «Engineering and technology» of Republican educational-methodical council on basis Al-Farabi Kazakh National University (Protocol №2 dated 29.06.2017) Reviewers: Doctor of Technical Sciences, Professor E.S. Temirbekov Doctor of Technical Sciences, Professor Z.G. Ualiev Doctor of Physical and Mathematical Sciences, Associated Professor K.S. Zhilisbayeva Authors: Z.B. Rakisheva, candidate of physical and mathematical sciences, associated professor – lecture course A.S. Sukhenko, PhD, senior teacher – tasks and exercises Rakisheva Z.B. R 17 Textbook on Theoretical Mechanics / Z.B. Rakisheva, A .S. Sukhenko. – 2nd ed. – Almaty: Qazaq university, 2017. – 354 p. ISBN 978-601-04-2895-9 Textbook was prepared on the base of a compulsorysubjectof theoretical mecha- nics, read by the authors for the students of specialty «Mechanics». It contains a lecture course, covering all topics of the Typical Curriculum of 2016, on the discipline of «Theoretical Mechanics», and includes also thesections of rigid body dynamics and analytical mechanics.After each studiedsection, the practical tasks, tasks for indepen- dent work, control questions and assignments are given. In conclusion, tests on the studied material with the keys of the correct answers are given. The textbook is recommended for teaching students on the specialty «5В060300-Mechanics», as well as for the students of all related specialties of science and technology, where the me- chanics is studied. Publishing in authorial release. UDC 531.011 (076) LBC 22.21 © Rakisheva Z.B., Sukhenko A.S., 2017 ISBN 978-601-04-2895-9 © Al-Farabi KazNU, 2017 Content CONTENT INTRODUCTION ..................................................................................... 7 1. KINEMATICS ....................................................................................... 9 1.1. The subject of mechanics. Kinematics of a point. Problems of kinematic. Methods of the point’s motion setting. ................................. 9 Questions ................................................................................................... 13 1.2. The velocity and acceleration. The decomposition of the velocity and acceleration. ................................................................ 13 Questions ................................................................................................... 18 Practice ...................................................................................................... 18 Self study of the student ............................................................................. 22 1.3. Mechanical system. Basic movements of a rigid body. Translational motion of a rigid body. ......................................................... 23 Questions ................................................................................................... 25 1.4. Rotational motion of a rigid body around a fixed axis. ....................... 25 Questions ................................................................................................... 30 Practice ...................................................................................................... 30 Self study of the student ............................................................................. 33 1.5. Plane-parallel motion of a rigid body. Velocities of the points of a plane figure. Instantaneous center of velocity. .................................... 35 Questions ................................................................................................... 40 1.6. Acceleration of the points of a plane figure. Instantaneous center of acceleration. ................................................................................ 40 Questions ................................................................................................... 43 Practice ...................................................................................................... 43 Self study of the student ............................................................................. 49 1.7. Compound motion of a point. Full and relative derivatives of the vector. Addition of velocities. .......................................................... 52 Questions ................................................................................................... 55 1.8. Theorem on the addition of accelerations (Coriolis theorem) ............. 56 Questions ................................................................................................... 58 Practice ...................................................................................................... 58 Self study of the student ............................................................................. 65 1.9. Complex motion of a solid body. Addition of the translational velocities. Addition of the instant angular velocities. Addition of the instant angular and translational velocities. ..................................... 68 Questions ................................................................................................... 71 3 Textbook on Theoretical Mechanics 1.10. Reduction of the system of sliding vectors. Principle vector and principle moment. Invariants of reduction .......................................... 71 Questions ................................................................................................... 73 2. STATICS ............................................................................................... 74 2.1. Statics. Basic definitions and axioms of statics. Constraints. Constraint reactions. Axiom of constraints. ............................................... 74 Questions ................................................................................................... 78 2.2. System of forces. Convergent system of forces. Parallel forces. Center of gravity. ....................................................................................... 79 Questions ................................................................................................... 87 Practice ...................................................................................................... 87 Self study of the student ............................................................................. 93 2.3. Moment of force relative to center and axis. Theory of couples. ........ 94 Questions ................................................................................................... 98 2.4. Arbitrary system of forces. Reduction of spatial system of forces. Principle vector and principle moment. ..................................................... 98 Questions ................................................................................................... 101 2.5. Equilibrium conditions of arbitrary spatial system of forces. Special cases of the equilibrium conditions ............................................... 102 Questions ................................................................................................... 104 Practice ...................................................................................................... 104 Self study of the student ............................................................................. 120 2.6. Conditions of equlibrium of a constrained solid body. Friction and constraints with friction ......................................................... 122 Questions ................................................................................................... 127 3. DYNAMICS OF THE MASS POINT AND THE SYSTEM ................ 128 3.1. The laws of Newton. Direct and inverse problems of dynamics. Motion equations ....................................................................................... 128 Questions ................................................................................................... 133 Practice ...................................................................................................... 133 3.2. Basic dynamic variables. Properties of internal forces of the system. ............................................................................................. 137 Questions ................................................................................................... 146 3.3. Theorem of change of linear momentum of a mass point and mechanical system. Theorem on the motion of the center of mass ..... 147 Questions ................................................................................................... 151 Self study of the student ............................................................................. 151 3.4. Angular momentum theorem of a mass point and mechanical system ........................................................................................................ 154 Questions ................................................................................................... 160 Practice ...................................................................................................... 160 Self study of the student ............................................................................. 165 3.5. Work of force. Work of potential force. .............................................. 169 4 Content Questions ................................................................................................... 175 3.6. Work-Energy theorem for the mass point and mechanical system. Energy integral........................................................................................... 175 Questions ................................................................................................... 179 Practice ...................................................................................................... 179 Self study of the student ............................................................................. 185 3.7. Rectilinear motion of a mass point. Harmonic oscillations of the mass point. Parameters of oscillations. Oscillations in a resistant medium. ..................................................................................................... 190 Questions ................................................................................................... 200 3.8. Forced oscillations in a medium without resistance and in a resistant medium. Resonance. ................................................................. 200 Questions ................................................................................................... 205 Practice ...................................................................................................... 206 3.9. Motion of mass point under the action of central forces. Law of areas. Binet formulas. ............................................................................ 210 Questions ................................................................................................... 215 3.10. Planetary motion problem. Kepler's laws. Derivation of Newton’s law of gravitaion from Kepler's laws..................................... 215 Questions ................................................................................................... 217 3.11. Motion of a non-free mass point. Concept of a constraint. Motion of a mass point over given curve. Motion of a mass point over given surface. Geodetic line. .............................................................. 218 Questions ................................................................................................... 225 3.12. Relative motion and equlibrium of a mass point. Equations of relative motion. Inertial forces of transportation motion, Coriolis inertial force ................................................................................. 225 Questions ................................................................................................... 229 3.13. Apparent weight of a body. Deflection of bodies falling on the Earth from the vertical. Work-energy theorem for relative motion. Relative motion and equilibrium .................................................. 230 Questions ................................................................................................... 233 4. DYNAMICS OF THE SOLID BODY .................................................. 234 4.1. Mass geometry. Inertia moment. ......................................................... 234 Questions ................................................................................................... 238 4.2. Theorem of Guigens-Shteiner. Inertia moments relative to the axes of the beam, coming from this point. ....................................... 239 Questions ................................................................................................... 241 Practice ...................................................................................................... 241 Self study of the student ............................................................................. 245 4.3. Rotation of solid body around fixed axis. Differential equations of motion. Axle pressure. Motion of absolutely rigid body with one fixed point. ................................................................................................. 248 Questions ................................................................................................... 253 5 Textbook on Theoretical Mechanics Practice ...................................................................................................... 254 Self study of the student ............................................................................. 262 4.4. Motion of absolutely rigid body with one fixed point. Euler kinematic and dynamic equations. ................................................... 264 Questions ................................................................................................... 267 Practice ...................................................................................................... 267 4.5. General formulation of the problem of heavy solid body with one fixed point. .................................................................................. 269 Questions ................................................................................................... 275 4.6. Special cases of integration and its geometrical interpretation: the case of Euler-Puanso, the case of Lagrange-Puasson, the case of Kovalevskaya. ............................................................................................ 276 Questions ................................................................................................... 277 5. ANALYTICAL MECHANICS ............................................................. 278 5.1. The notion of holonomic and nonholonomic systems. Actual and virtual displacement of the point. ............................................ 278 Questions ................................................................................................... 281 Practice ...................................................................................................... 281 Self study of the student ............................................................................. 289 5.2. Virtual work of forces. Ideal constraints. Principle of virtual work. d'Alambert's principle for the point and system. General dynamic equation. .................................................................................................... 293 Questions ................................................................................................... 296 Practice ...................................................................................................... 296 Self study of the student ............................................................................. 300 5.3. Generalized coordinates. Generalized forces. Equations of motion in generalized coordinates (Lagrange equations of 2-nd kind). . 304 Questions ................................................................................................... 307 5.4. Expression of kinetic energy in generalized coordinates. Lagrange equations of 2-nd type for the system under action of potential force. ...... 307 Questions ................................................................................................... 309 Practice ...................................................................................................... 309 Self study of the student ............................................................................. 313 TESTS ....................................................................................................... 318 KEYS TO THE TEST ............................................................................... 351 CONCLUSION ......................................................................................... 352 REFERENCES .......................................................................................... 353 6 Content INTRODUCTION Theoretical mechanics is the science about general laws of mechanical interactions between material bodies, as well as general laws of motion of bodies relative to each other. Mechanical interaction between material bodies is the simplest and at the same time common type of interaction between physical objects. Mechanical motion being the simplest type of motion is a fundamental property of matter. Theoretical mechanics taught in the university contains four sections: kinematics, statics, dynamics and analytical mechanics. Kinematics is a part of mechanics in which the dependences between quantities characterizing the state of systems motion are studied, however the causes changing the state of the motion are not considered. Statics is a study of equilibrium of bodies set of some reference system. Dynamics is the part of mechanics that considers an influence of forces to the state of motion of material objects system. Analytical mechanics is the part of theoretical mechanics and theoretical physics in which general principles of mechanics (differential and integral) are formulated and used, on this basis main differential equations of motion are derived and equations and methods of their integration are investigated. Purpose of studying a discipline «Theoretical mechanics» is a formation of a necessary base of knowledge to study other technical disciplines on a profile of future professional activity as a strength of materials and the theory of mechanisms and machines. Tasks of the discipline «Theoretical mechanics» are: – development of practical skills in solving problems of me- chanics by studying methods and algorithms of constructing mathematical models of motion or state of the considering mechanical systems, also research methods of these mathe- matical models; 7 Textbook on Theoretical Mechanics – education of the natural-science worldview on the basis of studying the basic laws of nature and mechanics. Textbook gives the basic materials on each of main sections of theoretical mechanics including the summary of lectures, tasks and examples of solution, tasks for independent work, and literature on theoretical mechanics. Work with this textbook allows students studying the main concepts, laws and theorems of theoretical mechanics, obtaining the skills of mathematical modeling of physical processes, using the obtained knowledge for the solution of practical tasks, analyzing the solutions of the tasks and making conclusions. This textbook was written on the base of the course of lectures, which are read by prof. Zaure Rakisheva during last 20 years for the students of the mechanical and mathematical faculty of al-Farabi Kazakh National University. 8 1. Kinematics 1 KINEMATICS 1.1. The subject of mechanics. Kinematics of a point. Problems of kinematic. Methods of the point’s motion setting Theoretical mechanics is the science of the general laws of mechanical motion and interaction of material bodies. Motion is the mode of existence of matter. The simplest form of matter in motion is a mechanical movement. The mechanical motion is that the body changes its position in space in relation to other objects in the course of time. The notion of force is used in classical mechanics to account the mechanical interaction that occurs between the bodies. However, the nature of movement of the body depends on the forces as well as on inertia of the body. The measure of inertia of a body is its mass, which depends on the amount of the body. Thus, the basic concepts of classical mechanics are: moving matter (physical bodies), the space and time as forms of existence of matter in motion, mass, as a measure of the inertia of material bodies, the force as a measure of the mechanical interaction between the bodies. The relationships between the basic concepts of mechanics is defined by axioms or basic laws of motion, which were given by Newton. First law (the law of inertia). Every body stays in its state of rest or uniform rectilinear motion as long as it isn’t forced by the applied forces to change this state. Second law (the basic law of dynamics). Change of linear mo- mentum is proportional to the applied driving force and occurs in the direction of the straight line which the force acts along: 9 Textbook on Theoretical Mechanics d(mv) F dt Third law (the law of action and reaction). Every action has an equal and opposite reaction. In other words the interaction of two bodies on each other are equal and opposite in direction: F F A B Theoretical mechanics, as any science that uses mathematical methods, does not deal with the real material objects, but with their models. Such models are mass points, the system of mass points, perfectly rigid bodies, deformable continuum. Kinematics of the point Basic concepts. Kinematics studies the motion of bodies from a geometric point of view, excluding the causes of variation of this motion (forces). Mass point is the body, the size of which can be ignored when studying its motion. The mass of mass point is not taken into account in kinematics. Position of the body in space can be defined only in relation to an arbitrarily chosen another body, called the body or frame of reference. If the position of the body relative to the chosen reference frame doesn’t change with time, the body stays in rest relative to this reference frame. But if the position of the body is changed, this body moves relative to a given reference frame. Thus, the motion and the rest are relative concepts, and make sense only in relation to a particular reference frame. Form of trajectory depends on the reference frame. The motion of the body relative to the chosen reference frame will be known, if at any arbitrary moment of time its position can be determined (relative to this reference frame). The position of the point is determined by the appropriate parameters (coordinates), and 10