ebook img

Tetrahedral Mesh Generation with Good Dihedral Angles Using PDF

99 Pages·2007·2.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tetrahedral Mesh Generation with Good Dihedral Angles Using

Tetrahedral Mesh GenerationwithGood DihedralAngles UsingPointLattices by Franc¸oisLabelle B.Sc. (McGillUniversity)1997 M.Sc. (McGillUniversity)2000 A dissertationsubmittedinpartial satisfactionofthe requirementsfor thedegreeof DoctorofPhilosophy in ComputerScience inthe GraduateDivision ofthe UniversityofCalifornia, Berkeley Committeeincharge: ProfessorJonathanShewchuk,Chair ProfessorJames F. O’Brien ProfessorPanayiotisPapadopoulos Fall2007 ThedissertationofFranc¸oisLabelleisapproved: Chair Date Date Date UniversityofCalifornia, Berkeley Fall2007 Abstract Tetrahedral Mesh GenerationwithGood DihedralAngles UsingPointLattices by Franc¸oisLabelle DoctorofPhilosophy in ComputerScience UniversityofCalifornia, Berkeley ProfessorJonathanShewchuk,Chair Three-dimensionalmeshesarefrequentlyusedtoperformphysicalsimulationsinsci- ence and engineering. This involves decomposing a domain into a mesh of small ele- ments, usually tetrahedra or hexahedra. The elements must be of good quality; in partic- ular there should be no plane or dihedral angle close to 0 or 180 degrees. Automatically creatingsuchmeshesforcomplicateddomainsisachallengingproblem,especiallyguar- anteeing good dihedral angles, agoal thathas eluded researchers for nearly two decades. By using point lattices, notably the body centered cubic lattice, we develop two tetrahe- dralmeshgenerationalgorithmsthat,forthefirsttime,comewithmeaningfulguarantees onthequalityoftheelements. Fordomainsboundedbyanisosurface,wegenerateatetrahedralmeshwhosedihedral anglesareboundedbetween10.7and164.8degrees,or(withachangeinparameters)be- tween8.9and 158.8degrees. Thealgorithmisnumericallyrobustandeasy toimplement because it generates tetrahedra from a small set of precomputed stencils. The algorithm isso fastthat itcan beinvokedat each timestepofasimulation,possiblyinreal timefor smallmeshes. Thetetrahedraareuniformlysizedontheboundary,butintheinterioritis possibletomakethemprogressivelylarger. Thiscombinationoffeaturesmakesthealgo- rithm well suited for dynamic fluid simulation. If the isosurface is a smooth 2-manifold with bounded curvature, and the tetrahedra are sufficiently small, then the boundary of themeshisguaranteedtobeageometricallyandtopologicallyaccurateapproximationof theisosurface. For polyhedral domains, Delaunay refinement is a common mesh generation tech- niquethatproducesguaranteed-qualitytetrahedrawithoneexception: sliver-shapedtetra- hedra that can have dihedral angles arbitrarily close to 0 and 180 degrees. We show how sliversawayfromtheboundarycanbeavoidedbyinsertinglatticepointswhilemaintain- ingtheDelaunaypropertyofthemesh. Itispossibletocontrolthesizeoftetrahedra, this timeboth in the interior and on the boundary, and a user may input a set of points which 1 must be vertices of the output mesh. The resulting dihedral angles are guaranteed to be between 30and 135degrees, exceptnear theboundary. Mostangleboundsareobtainedbyrecursivebisectionofthespaceofpossibletetrahe- dron configurations together with interval arithmetic. They are guaranteed by computer- assistedproofs. Chair Date 2 Acknowledgments I would like to thank my advisor Jonathan Shewchuk for his guidance and support, and the Berkeley Graphics group for feedback. I also thank Nuttapong Chentanez for providingisosurfacecodeandgeometricmodels,andCarloSe´quinfortheWhirledWhite Web model. This work was supported in part by the National Science Foundation under Awards CCR-0204377, CCF-0430065 and CCF-0635381, and in part by an Alfred P. Sloan Re- search Fellowship. i Contents 1 Introduction 1 1.1 TheMeshGeneration Problem . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 DomainRepresentation . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Mesh Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 QualityMeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Size-Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Point Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Summary ofResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Previous Work 11 2.1 Background Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Surface Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 VolumeMeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Quadtreeand Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Delaunay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 OtherMeshGeneration Techniques . . . . . . . . . . . . . . . . . . . . 18 3 Tetrahedral Meshing InsideanIsosurface 20 3.1 UniformTetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Creating theBackground Grid . . . . . . . . . . . . . . . . . . . 24 3.1.2 ComputingCut Points . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.3 Warping theBackground Grid . . . . . . . . . . . . . . . . . . . 25 3.1.4 TriangulatingtheBackgroundGrid . . . . . . . . . . . . . . . . 28 3.2 Mesh Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Computer-AssistedProofs ofAngleBounds . . . . . . . . . . . . . . . . 32 3.3.1 ExtremaofaFunctionofnVariables . . . . . . . . . . . . . . . 34 3.3.2 ExtremaofElementaryGeometricComputations . . . . . . . . . 35 3.3.3 Dihedral Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.4 PlaneAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ii 3.4 ApproximationGuarantees . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 Arbitrary Isosurfaces . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 Isosurfaces withBounded Curvature . . . . . . . . . . . . . . . . 42 3.5 Graded InteriorTetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.1 FourKindsofTetrahedra . . . . . . . . . . . . . . . . . . . . . . 48 3.5.2 Non-Standard Octree . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5.3 ConditionsCloseto theIsosurface . . . . . . . . . . . . . . . . . 51 3.5.4 InteriorGrading . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.5 MeshGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Delaunay Refinement WithoutSlivers 57 4.1 Delaunay Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1.1 Delaunay TriangulationAlgorithms . . . . . . . . . . . . . . . . 59 4.1.2 DataStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Simplified MeshGeneration . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 Sizing Functionand LocalFeature Size . . . . . . . . . . . . . . 61 4.3 UniformTetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Graded Tetrahedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.5 AddingVertex Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Bibliography 85 iii Chapter 1 Introduction Meshes of small elements are often used to simulate physical phenomena numerically on a computer. In engineering, numerical simulations can help design and test planes, bridges or components before they are built. This can decrease costs and increase de- velopment speed where prototypes were once needed. In science, the same techniques can be used for a wide range of problems like modeling tides or star interiors. Due to thesuccessofthesemethods,moredifficultproblemsaretackled,forexampleinbiology where geometry tends to be complicated and curved, hence harder to mesh. Figure 1.1 showsexampleapplications. In computer graphics, the traditional thinking is that only the surface of an object is visibleso onlysurface meshes are necessary. However,volumemeshesare used increas- inglyasresearchersincorporatephysicalsimulationsingraphicstoautomaticallyanimate liquids and gasses, or objects that bend, crack or break. As computing performance im- proves, some of these simulations are starting to appear in computer games to make the virtualenvironmentmorerealistic. The finite element method (FEM) is the most common way of solving a partial dif- ferential equation (PDE) overa meshed domain. The theory for ellipticproblems is well understoodandenjoyssomeniceresults;forexampleapiecewiselinearapproximationis sufficient to solve an elliptic PDE of order 2 (such as heat diffusion or elasticity), and in generalapiecewiseapproximationofdegreemissufficienttosolveanellipticPDEofor- der2m. SeethebookbyJohnson[48]foranintroductiontotheFEMandthemathematics behindit. The meshcan followthe material as it moves(Lagrangian formulation),or stay fixed in space as the material flows through it (Eulerian formulation). Those two possibilities arenormallyusedforsolidsandfluids,respectively,butthereverseistechnicallypossible. There is a third possibility: the mesh is allowed to move but doesn’t necessarily have to track the material. This extremely flexible formulation is called Arbitrary Lagrangian 1 Chapter 1. Introduction Figure 1.1: Part of an exterior mesh used for computational fluid dynamics and part of a mesh of a femur used for stress analysis. Eulerian(ALE); seeforexamplethesurveyofDoneaet al. [30]. Inverydifficultapplications,somepeoplehavedevelopedmethodsthatdonotrequire amesh,called“meshfreemethods”. Onecommonlycitedearlyexampleissmoothedpar- ticle hydrodynamics, introduced in 1977 by Lucy [60] and Gingold and Monaghan [44]. Meshfreemethodshavesomedrawbacks: theyarecomputationallyexpensiveandbound- ary conditions are harder to impose. Ironically, a mesh is often used at one step of the method,for exampleto perform thenumerical integrationofthespecial basisfunctions. 1.1 The Mesh Generation Problem Givenadescriptionofthedomaingeometry,thegoalistoproduceameshofelementsthat fillthedomain. Sometimeswearealsogivenasizingfunctiondefinedoverthedomainto controlelementsizes. The mesher doesn’t usually depend on other details of the application (for example which differential equation is going to be solved with the mesh). This means that the samemesh generationcodecan beused formanydifferentapplications. Formorebackgroundonmeshgeneration,seethesurveybyBernandPlassmann[10]. 1.1.1 Domain Representation Domaingeometrycanberepresentedinmanydifferentwayswhichweclassifyasexplicit orimplicit. 2 Chapter 1. Introduction Figure 1.2: A piecewise linear complex can be the input to a mesh generator (J. Shewchuk). ExplicitRepresentation Inanexplicitrepresentation,wearegivenalistofvertices,segmentsandfacetsbounding the domain. A common example is a piecewise linear complex [62] which can be used torepresent polyhedraldomains(internalvertices,segmentsandfacetsarealsoallowed). Self-intersectionisnotallowedunlesstheintersectionisexplicitlyresolvedwithvertices, segmentsand facets. See Figure1.2. When meshing such a domain, input vertices must be part of the output mesh. Input segmentsand facets mustappearunchanged oras a unionofsubsegmentsorsubfacets. Extension to curved segments and facets is possible [72, 15]. Sharp features are ex- plicitlylistedandmustbeaccuratelyrepresentedbythemesh. Thisissimilartoboundary representation(B-rep) in computer-aideddesign. ImplicitRepresentation In an implicit representation, the domain is defined as the volume bounded by a given isosurface. Anisosurfaceisasurfaceofconstantvalue p : f(p) = c wheref : R3 R { } → is a scalar field called a cut function that the mesher can interrogate. See Figure 1.3. Minimally, the domain can be defined implicitly by a black box that tells if a point is “inside”or“outside”withoutreturninganynumericalvalue. This is a convenient representation in many cases. For example when simulating a moving liquid, an inside/outside query at a point p for the current time step can be answered by moving p backward in time using the estimated velocity field and querying the previous time step—a method called semi-Lagrangian advection [7]. By contrast, maintainingan explicitrepresentationofaliquidsurfacewouldbeconsiderablyharder. Isosurfacesareproducedbyseveralalgorithmsforsurfacereconstruction[88,67,77]. Even for geometric models that do not use isosurfaces, it is usually possible to compute 3

Description:
ular there should be no plane or dihedral angle close to 0 or 180 degrees See the book by Johnson [48] for an introduction to the FEM and the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.