ebook img

Testing the electroweak sector and determining the absolute luminosity at LHCb using dimuon final PDF

143 Pages·2009·7.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Testing the electroweak sector and determining the absolute luminosity at LHCb using dimuon final

Testing the electroweak sector and determining the absolute luminosity at LHCb using dimuon final states Jonathan Steven Anderson UCD School of Physics 0 2 0 - 09 A thesis submitted to University College Dublin 0 2 - for the degree of Doctor of Philosophy S I S E H8 0 T0 N-/2 1 R1 E/ C18 Head of School: Prof. L. Hanlon Supervisor: Dr. R. McNulty October 2008 ii iii Abstract The LHCb[1] detector, which commenced data-taking at the Large Hadron Collider[2] in September 2008, is a foward single arm spectrometer optimised for measurements of CP- violatingandraredecaysinthebquarksector. ThisthesisdescribespreparatoryMonte-Carlo basedstudiesoftwoproposedphysicsmeasurementsthatwillbemadeatLHCb. Firstly, the trigger, reconstruction and selection efficiencies for recording Z → µ+µ− events at the LHCb experiment are presented. From simulation we conclude that LHCb will be capable of reconstructing Z bosons via this channel with rapidities in the range 1.7<y<4.9 with an overall efficiency of 0.358±0.002(stat.), yielding ∼172,500 events for an integrated luminosityof1fb−1. Thebackgroundhasbeenstudiedatthefour-vectorlevelandisestimated tobe(3.0±2.9)%ofthesignallevelwiththedominantcontributioncomingfromeventswhere twohadronsaremisidentifiedasmuons,abackgroundsourcethatcanbestbeestimatedfrom the data themselves. Systematic uncertainties in the efficiency and purity are discussed and expected to be <0.5% for a cross-section measurement in the forward region (1.7<y<4.9). Assuming the luminosity can be determined at a similar level, LHCb will rapidly be able to make a unique measurement of σ ·Br(Z → µ+µ−) at high rapidities with a precision of Z about 1%. This measurement will provide an important cross-check for the corresponding measurements at CMS and ATLAS, and, in conjunction with a measurement of the W cross section, precisely test the electroweak sector at LHC energies. In addition measurements of the differential distributions, dσ/dy and dσ/dP , will constrain the proton parton distribution T functionsandprovideastringenttestofQCDathigh-Q2. Secondly, the feasibility of using the elastic two photon process pp → p+µ+µ−+ p to make luminosity measurements at LHCb is investigated. The overall efficiency at LHCb for recording and selecting pp → p+µ+µ−+p events produced within the pseudorapidity range1.6<η<5hasbeendeterminedusingMonte-Carlotobe0.059±0.001(stat.),yielding ∼5200 events for an integrated luminosity of 1fb−1. The main background processes where dimuons are produced via inelastic two-photon fusion and double pomeron exchange have been studied using the full LHCb detector simulation while the other background sources, including backgrounds caused by K/π mis-identification, have been studied at the four-vector level. Thebackgroundisestimatedtobe(4.1±0.5(stat.)±1.0(syst.))%ofthesignallevelwith the dominant contribution due to K/π mis-identification. Systematic uncertainties on a lumi- nositymeasurementatLHCbusingthischannelareestimatedtobe ∼1.3%andaredominated by the uncertainty on the predicted cross-section for events containing dimuons produced via doublepomeronexchange,anuncertaintythatisexpectedtobereducedinthenearfuture. iv Declaration This thesis is the result of my own work, except where explicit reference is made to the work ofothers,andhasnotbeensubmittedforanotherqualificationtothisoranyotheruniversity. JonathanAnderson v vi Acknowledgements I am immensely grateful to Ronan McNulty for his excellent supervision during the last five years. Almost every aspect of the work outlined in this thesis has benefited from his wisdom and experience. I thank him for having faith in my abilities, dedicating so much of his time to me, teaching me a great deal and for dissuading me from quitting when my enthusiam for physicswasatitslowest. ThanksRonan! My thanks go to the Head of the UCD School of Physics, Gerry O’Sullivan, for giving me the opportunity to undertake this research, and to University College Dublin for providing financialassistanceintheformofaResearchdemonstratorshipandaUCDpresidentsresearch award. I also acknowledge the funding provided by the European Union via the Marie-Curie grantMTKD-CT-2004-003134. I would like to express my gratitude to the other members of the LHCb group at UCD, espe- cially Aidan Smoker, Karol Hennessy, Tahar Kechadi and Zoltan Mathe, for their friendship and for making the last five years so enjoyable. In particular I would like to thank Karol for being such a great flat mate during our stay at CERN and for his patience when answering all ofmycomputingrelatedquestions. I thank the members of the LHCb group at the University of Liverpool, in particular Tara ShearsandThemisBowcock,fortheirfriendshipandadvice,especiallyduringthelastmonths ofmyPhDwhenIwasbasedatCERN. I thank Alan Martin, James Stirling, Robert Thorne and Greame Watt for invaluable discus- sions and suggestions regarding the Z cross-section measurement work outlined in chapter 4. I also thank Tara Shears for initially bringing the Z →µ+µ− channel to my attention and subsequentlyforhermanyusefulsuggestionsandcomments. I thank Mike Albrow, Valery Khoze, Alan Martin and Andrey Shamov for many useful com- ments and suggestions regarding the work outlined in chapter 5. I am particularly grateful to Andrey Shamov for providing me with a copy of his modified version of the LPAIR Monte- Carlogenerator. Aboveall,IwouldliketothankmyparentsSusanandSteven. Withouttheirloveandsupport I would never have made it this far. Mum, Dad: I love you both very much, thank you for everything! I would also like to express by love and gratitude to my sisters, Heidi and Lynn, andtomyGrandmotherElla. Finally, I would like to dedicate this work to the memory of my Grandfather Bob who passed away as this thesis was nearing completion. It was his influence more than anything else that has lead me towards a life in science. His friendship, wisdom, intelligence and advice are sorelymissed. vii viii Contents 1 Introduction 1 2 Theoretical context 3 2.1 TheStandardModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 TheFundamentalParticles . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 MathematicalFramework . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 QuantumElectrodynamics . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4 QuantumChromodynamics . . . . . . . . . . . . . . . . . . . . . . 7 2.1.5 ElectroweakTheory . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.6 QuarkmixingandCPviolation . . . . . . . . . . . . . . . . . . . . 12 2.1.7 Feynmandiagramsandperturbativecalculations . . . . . . . . . . . 14 2.2 HardscatteringprocessesattheLHC . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Hardscatteringandthefactorisationtheorem . . . . . . . . . . . . . 15 2.2.2 Partonshowering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Hadronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Experimental environment 21 3.1 TheLargeHadronCollider . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Designconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 TheLHCacceleratorsystem . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Luminosityatcollidingbeamexperiments . . . . . . . . . . . . . . . 24 3.1.4 ThedesignluminosityoftheLHC . . . . . . . . . . . . . . . . . . . 25 3.1.5 OptimalrunningluminosityatLHCb . . . . . . . . . . . . . . . . . 27 3.1.6 ExpectedLHCrunningconditionsduringstart-up . . . . . . . . . . . 28 3.2 TheLHCbexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 ProductionofBhadronsattheLHC . . . . . . . . . . . . . . . . . . 29 3.2.2 ThelayoutoftheLHCbdetector . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Thetrackingsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.4 Trackreconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ix x Contents 3.2.5 Theparticleidentificationsystem . . . . . . . . . . . . . . . . . . . 43 3.2.6 Muonidentification . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.7 Thetriggersystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.8 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Measuring σ ·Br(Z →µ+µ−) at LHCb 57 Z 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Theoreticalcontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 Signalevents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.1 Signaleventcharacteristics . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.2 Geometricacceptance . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.3 Reconstructionandtriggerefficiencies . . . . . . . . . . . . . . . . . 67 4.4 Backgroundprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Electroweakprocesses . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.2 QCDprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.3 Hadronmis-identification . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Signalselectionandbackgroundreduction . . . . . . . . . . . . . . . . . . . 77 4.6 Systematicandstatisticaluncertainties . . . . . . . . . . . . . . . . . . . . . 80 4.6.1 Signalcandidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6.2 Expectedbackgrounds . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6.3 Acceptances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6.4 Reconstructionefficiency . . . . . . . . . . . . . . . . . . . . . . . . 84 4.6.5 Triggerefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.6.6 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7 Expectedmeasurementaccuracy . . . . . . . . . . . . . . . . . . . . . . . . 87 4.7.1 Totalcross-sectionmeasurement . . . . . . . . . . . . . . . . . . . 87 4.7.2 Forwardmeasurement . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.7.3 Differentialdistributions . . . . . . . . . . . . . . . . . . . . . . . . 89 4.8 PDFsensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Luminosity measurements at LHCb using pp→ p+µ+µ−+p events 95 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Accuracyofpredictedcross-section . . . . . . . . . . . . . . . . . . . . . . 97 + − 5.2.1 Elasticµ µ productionviaphotonfusion . . . . . . . . . . . . . . 97 + − 5.2.2 Inelasticµ µ productionviaphotonfusion . . . . . . . . . . . . . . 98 5.2.3 Rescatteringcorrections . . . . . . . . . . . . . . . . . . . . . . . . 99

Description:
the differential distributions, dσ/dy and dσ/dPT , will constrain the proton I thank the members of the LHCb group at the University of Liverpool, 4. I also thank Tara Shears for initially bringing the Z → µ. +. µ. − channel to my .. left hand parts of Dirac fields separately by grouping
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.