entropy Article Testing the Beta-Lognormal Model in Amazonian Rainfall Fields Using the Generalized Space q-Entropy HernánD.Salas* ID,GermánPoveda ID andOscarJ.Mesa ID FacultaddeMinas,DepartamentodeGeocienciasyMedioAmbiente,UniversidadNacionaldeColombia, SedeMedellín,Carrera80#65-223,Medellín050041,Colombia;[email protected](G.P.); [email protected](O.J.M.) * Correspondence:[email protected] Received:9October2017;Accepted:8December2017;Published:13December2017 Abstract:WestudyspatialscalingandcomplexitypropertiesofAmazonianradarrainfallfieldsusing theBeta-LognormalModel(BL-Model)withtheaimtocharacterizeandmodeltheprocessatabroad range of spatial scales. The Generalized Space q-Entropy Function (GSEF), an entropic measure definedasacontinuoussetofpowerlawscoveringabroadrangeofspatialscales,S (λ) ∼ λΩ(q), q is used as a tool to check the ability of the BL-Model to represent observed 2-D radar rainfall fields. Inaddition,weevaluatetheeffectoftheamountofzeros,thevariabilityofrainfallintensity, thenumberofbinsusedtoestimatetheprobabilitymassfunction,andtherecordlengthontheGSFE estimation. Ourresultsshowthat: (i)theBL-Modeladequatelyrepresentsthescalingproperties of the q-entropy, S , for Amazonian rainfall fields across a range of spatial scales λ from 2 km to q 64km;(ii)theq-entropyinrainfallfieldscanbecharacterizedbyanon-additivityvalue,q ,atwhich sat rainfall reaches a maximum scaling exponent, Ω ; (iii) the maximum scaling exponent Ω is sat sat directlyrelatedtotheamountofzerosinrainfallfieldsandisnotsensitiveto eitherthenumber ofbins toestimatetheprobabilitymassfunctionorthevariabilityofrainfallintensity;and(iv)for small-samples,theGSEFofrainfallfieldsmayincurinconsiderablebias. Finally,forsynthetic2-D rainfallfieldsfromtheBL-Model,welookforaconnectionbetweenintermittencyusingametric basedongeneralizedHurstexponents, M(q ,q ),andthenon-extensiveorder(q-order)ofasystem, 1 2 Θ ,whichrelatestotheGSEF.Ourresultsdonotexhibitevidenceofsuchrelationship. q Keywords: hydrology;tropicalrainfall;statisticalscaling;Tsallisentropy;multiplicativecascades; Beta-Lognormalmodel 1. Introduction 1.1. StatisticalScalingandMultiplicativeRandomCascades Statisticalscalinghasprovidedarichframeworktounderstandandmodelthespatiotemporal dynamicsandthecomplexityandintermitencyofrainfallfields,including(multi-)fractal,multiscaling, andrandomcascademodels[1–19]. Thestrongvariabilityandintermittenceofconvectivetropicalrainfallconstituteanadequate settingtostudythescalingcharacteristicsofrainfallinawiderangeofspatio-temporalscales[19–31]. Inparticular,Ref. [19]foundthat2-DrainfallfieldsoverAmazoniaexhibitmultiscalingpropertiesin space,whichmeansthattherelationship M (λ) ∼ λ−τ(r) exhibitsanon-linearbehavior,whereλis r thespatialscale,rtheorderofthestatisticalmomentandτ(r)isther-thmomentscalingexponent. Additionally, they show that both the diurnal cycle and the predominant atmospheric regime of Amazonianrainfall(EasterlyorWesterly)exertastrongcontrolonthescalingpropertiesofAmazonian Entropy 2017,19,685;doi:10.3390/e19120685 www.mdpi.com/journal/entropy Entropy 2017,19,685 2of25 storms,thussheddinglighttowardsunderstandingthelinkagesbetweenscalingstatisticsandphysical featuresofAmazonianrainfallfields. 1.2. MultiplicativeRandomCascadesandtheBeta-LogNormalModel TheBeta-LognormalModel(hereafterBL-Model)isadiscrete2-Drandomcascadenon-Markovian model[13]basedontheobservedscalingpropertiesofrainfall,withonlytwoparameters: σdenoting thevariabilityofrainfallintensity,and βrepresentingtherainyareafraction. Thismodelprovides aframeworktocarryoutnumericalexperimentscontrollingfeaturesofrainfall(e.g.,σandβ),butalso to link diverse statistical and physical characteristics across spatial scales (e.g., Refs. [19,31] and Section1.5, respectively). Inaddition, themodelprovidesatooltoinvestigatetherobustnessand sensitivityofstatisticalmetricstopoorsampling,datasparsityandintermittencyofhigh-resolution 2-Drainfallfields. Theconstructionofaspatiallydistributeddiscreterandomcascademodelusuallybeginswith agivenmass(orvolume)ofrainfalloveratwo-dimensional(d =2)boundedregion[6]. Theregion issuccessivelydividedintobequalparts(b = 2a)ateachstep,andduringeachiterationthemass obtainedatthepreviousstepisdistributedintothebsubdivisionsthroughmultiplicationbyasetof “cascadegenerator”W,asshownschematicallyinFigure1(forthecaseofd = 2andb = 4). Ifthe initialarea(atlevel0)isassignedanaverageintensityR ,thisgivesaninitialvolumeR Ld,whereL 0 0 0 0 istheouterlengthscaleofthestudyarea. Thus,atthefirstlevelthevolumeissubdividedintob =4 subareasdenotedby∆i,i = 1,2,...,4. Atthesecondlevel,eachoftheprevioussubareasisfurther 1 subdividedintob =4subareas,whicharedenotedby∆i,i=1,2,...,16,foratotalofb2 =16subareas. 2 Thissubdivisioniscontinuedfurtherdownthespatialscale,leadingatthenthlevel,tobn subareas denotedby∆i,i=1,2,...,bn. n AsshowninFigure1,afterthefirstsubdivision,thefoursubareas(∆i,i =1,2,...,b)areassigned 1 volumes R Ld b−1 Wi,fori = 1,2,...,b. Uponsubdivision,thevolumesµ ∆i insubareasatthenth 0 0 1 n 1 subdivision,∆i,i=1,2,...,bn,aregivenby, n n µ ∆i = R Ldb−1∏Wi, (1) n 1 0 0 j j=1 where,foreachcascade’slevelj,irepresentsonesubareabelongingtothelevel. ThemultipliersW in Equation(1)arenon-negativerandomcascadegenerators,withE[W] =1toensurethatthemassis conservedonaverage,fromonediscretizationleveltothenextone. OverandGupta[13,32]proposed the so-called BL-Model for the cascade generators W. The BL-Model considers W as a composite generator,W = BY,whereBisageneratorfromthe“Betamodel”andYisdrawnfromaLognormal distribution [33]. Essentially, the Beta model partitions the region into sets with and without rain, while the Lognormal model then assigns a certain amount of rainfall to each rainy area fraction. TheBetamodelexhibitsadiscreteprobabilitymassfunctionwithjusttwopossibleoutcomes(B =0 andB = bβ),givenas P(B =0) =1−b−β P(B = bβ) = b−β, (2) wherebisthebranchingnumberandβisaparameter. SinceYbelongstotheLognormaldistribution, itcanbeexpressedasY = b−σ2l2n(b)+σX,whereXisastandardNormalr.v. andσ2(>0)isaparameter equaltothevarianceoflog Y,withtheconditionthatE[Y] =1. Insuchcase,itiseasytoshowthat b theconditionE[W] =1isalsosatisfied. TheprobabilitydistributionfunctionofW = BYcanthusbe expressedas P(W =0) =1−b−β, (3) P(W = bβY = b−σ2l2n(b)+σX) = b−β. (4) Entropy 2017,19,685 3of25 The parameters of the BL-Model (β and σ2) can be estimated [13,32] through the so-called Mandelbrot–Kahane–Peyriere (MKP) function [34,35]. The MKP function characterizes the fractal orscale-invariantbehaviorofthemultiplicativecascadeprocess. OverandGupta[32]theoretically derived an expression for χ(r) for the BL-Model, in terms of the cascade parameters β, σ2, b and exponentr,suchthat, σ2ln(b) χ (r) = (β−1)(r−1)+ (r2−r). (5) b 2 Thus,providedthatarainfallfieldbelongstoadiscreterandomcascadewithgeneratorssatisfying theBL-Model,theexpressiongiveninEquation(5)canbematchedwiththeempiricallydetermined estimators,τ(r)/d,toestimateβandσ2. Thefirstandsecondderivativesofτ(r) = dχ(r)withrespect tor,thelatterofwhichisgivenbyEquation(5),canbeusedtoobtain[20,32], (cid:20) σ2ln(b) (cid:21) τ(1)(r) = d β−1+ (2r−1) , (6) 2 (cid:104) (cid:105) τ(2)(r) = d σ2ln(b) (7) Both τ(1)(r) and τ(2)(r) can be computed by numerically estimating the derivatives of the empirical slopes of the scaling relation between τ(r) and r, using the log–log plotting of M(λ ,r) n versusλ as, n M(λ ,r) = [λ ]τ(r), (8) n n whereM(λ ,r)arethesamplemomentsM(λ ,r)andλ isthecorrespondingscaleratio.Equations(6) n n n and (7) are combined together to express the cascade parameters β and σ2 in terms of τ(1)(r) and τ(2)(r)asfollows: τ(1)(r) σ2ln(b) β =1+ − (2r−1), (9) d 2 σ2 = τ(2)(r)/dln(b) (10) Equations(9)and(10)areevaluatedforagivenvalueofr. Theusualpracticeistouser = 1, although[6]usedr =2fortestingaspace-timemodelofdailyrainfallinAustralia. λ=1 n=0 Wo λ=1/2 n=1 WoW1 λ=1/4 n=2 WoW1W2 Figure1.SchematicplotoftherandomcascadegeometrytakenfromGuptaandWaymire[33]. Entropy 2017,19,685 4of25 1.3. q-Entropy Thereisawidefamilyofgeneralizedentropicfunctionswithvariousdegreesofsophistication intheliterature[36–40]. Inparticular, Tsallis[40]proposedtheconceptofnonadditiveentropy S q (hereafterq-entropy),whichhasshowntobeusefulinthestudyofabroadrangeofphenomenaacross diversedisciplines[41,42],relatedtothewellknownRényientropy[43]. The q-entropyisdefinedas, S = 1−∑in=1pq(xi) (cid:18)∑n p(x ) =1; q ∈ (cid:60)(cid:19). (11) q q−1 i i=1 which, inthelimit q → 1, recoverstheusualBoltzmann–Gibbs–Shannonentropy, S [44], whichis additive;inotherwords,forasystemcomposedofanytwo(probabilistically)independentsubsystems, theentropySofthesumisthesumoftheirentropies[45],suchthat,if AandBareindependent, Sq=1(A+B) = S(A+B) = S(A)+S(B). (12) ItturnsoutthatTsallisentropy,S (q (cid:54)=1),violatesthisproperty,andisthereforenonadditive.Thus, q theadditivitydependsonthefunctionalformoftheentropyintermsofprobabilities[45]. Therefore, if AandBareindependent,then S (A+B) = S (A)+S (B)+(1−q)S (A)S (B). (13) q q q q q Moregenerally,if AandBarenotprobabilisticallyindependentthen, S (A+B) = S (B)+S (A|B)+(1−q)S (B)S (A|B). (14) q q q q q Taking the words of Tsallis [45], the value of q is useful to characterize the universal classes of nonadditivity. He argues that it is determined a priori by the microscopic dynamics of the system, whichmeansthatthethermostatisticalentropyisnotuniversalbutdependsonthesystemor,more precisely,onthenon-additiveuniversalityclasstowhichthesystembelongs. Itisworthmentioning thedifferencebetweenadditivityandextensivity,whichisclearlyexplainedin[45],asfollows: “Anentropyofasystemorofasubsystemissaidextensiveif,foralargenumberNofitselements (probabilisticallyindependentornot),theentropyis(asymptotically)proportionaltoN. Otherwise, itisnonextensive.Thismeansthatextensivitydependsonboththemathematicalformoftheentropic functionalandthepossiblecorrelationsexistingbetweentheelementsofthesystem. Consequently, fora(sub)systemwhoseelementsareeitherindependentorweaklycorrelated,theadditiveentropy Sisextensive,whereasthenonadditiveentropyS (q (cid:54)=1)isnonextensive. Incontrast,however, q fora(sub)systemwhoseelementsaregenericallystronglycorrelated,theadditiveentropyScanbe nonextensive,whereasthenonadditiveentropyS (q (cid:54)=1)canbeextensiveforaspecialvalueofq.” q Additionally,recentstudies [28,30,31]haveinvestigatedtherelationshipbetweentheq-entropy andtheGeneralizedParetodistribution(whichisrelevantinhydrologicalanalysis). Inparticular, themaximizationoftheq-entropyunderaprescribedmeanleadstoaParetoprobabilitydistribution withpower-lawtail[28,46–48],whichbelongstothefamilyofLévystabledistributions[49],specifically toTypeIIGeneralizedParetodistributions. For1< q <2,theoriginaldistributiontakestheformof theZipf–Mandelbrottype[50–52],whichdecaysasapowerlawforlargevaluesofx,andallmoments aredivergentwhen3/2< q <2[53]. As such, the q-entropy constitutes a useful tool for the characterization of rainfall, and at the sametimemotivatesinterestingdiscussionsaboutthephysicalinterpretationofentropicnon-linear metrics,theirconnectionwithstochasticprocesses(MultiplicativeCascades),andallowsrevisitingits applicabilityingeosciences(seeSection5). Entropy 2017,19,685 5of25 1.4. GeneralizedSpace-Timeq-EntropyinRainfallData Previousstudies[28,30,31]introducedtheGeneralizedSpace-Timeq-Entropyasanewmethod tostudytheorganizationdegreeandthescalingpropertiesofrainfall,byconsideringthespace-time structure of rainfall as a system conformed by correlated subsystems, which is evident in the hierarchicalstructureofconvectiverainfall. Thetimegeneralizedq-entropyisdefinedasafunctionof order,q,andaggregationinterval,T,as[28]: S (T) = 1−∑in=1pq(xi,T) (cid:18)∑n p(x ) =1; q ∈ (cid:60)(cid:19), (15) q q−1 i i=1 whereqisthestatisticalorderandP(x,T)istheprobabilityofoccurrenceofx ataggregationinterval, i i T. Ever since the original work [28], different characteristics of the Space and Time Generalized q-entropyofrainfallwerereportedlateron[30,31],suchas: • S (T)decreasesmonotonicallywithqforallvaluesofT. q • Foragivenvalueofq,estimatesareinverselyrelatedtoTforq <0,butdirectlyrelatedforq ≥0. • EstimatesofSq(T) |q=1recoverthestandardentropyfordifferentvaluesofT. • EstimatesofS (T)increasewithTforvaluesofq ≥0,uptoacertainsaturationvalue(maximum q q-entropy). • ThefunctionS(T)vs. T inlog–logspace,fordifferentvaluesofq,canbeconsideredan(time) entropyanalogousofthe(space)structurefunctioninturbulence[54]. • Thescalingexponents,Ω(q),ortheslopeoftherelationS(T)vs. Tinlog–logspace,fordifferent valuesofq,exhibitanon-lineargrowthwithq,suchthatΩ ≈0.5forq ≥1. Thisresultallowed sat extendingtheconclusionsfromthestandardShannonentropytothegeneralizedq-entropy. • Thescalingexponentsofsaturation,Ω ,aredifferentintimeandspaceforhydrologicaldata, sat such as time series of rainfall, for which Ω (q > 1.0) = 0.5, for time series of streamflows, sat forwhichΩ (q > 1.0) = 0.0,andforthespatialanalysisofradarrainfallfieldsinAmazonia, sat forwhichΩ (q >1.0) =1.0. sat AnalogoustoEquation(15),theSpaceGeneralizedq-Entropywasintroducedby[31],tostudy2-D rainfallfields,usingλasthespatialscale,andP(x,λ)theprobabilityofoccurrenceofx associated i i withλ,suchthat S (λ) = 1−∑in=1pq(xi,λ) (cid:18)∑n p(x ) =1; q ∈ (cid:60)(cid:19). (16) q q−1 i i=1 Withtheaimoflinkingthepresentstudywiththepreviousones, someimportantresultsare worthmentioning: • Poveda[28]studiedthetimescalingpropertiesoftropicalrainfallintheAndesofColombiaupon temporalaggregationandintroducedtheGeneralizedTimeq-EntropyFunction(GTEF),asatime analogousforq-entropyofthestructurefunctioninturbulence[54]. Heshowedthatthescaling exponents, Ω(q) of the relation S (T) vs. T in log–log space, for different values of q, exhibit q anon-lineargrowthwithquptoΩ =0.5forq ≥1,puttingforwardtheconjecturethatthetime dependentq-entropy,S (T) ∼ TΩ(q) withΩ(q) (cid:39)0.5,forq ≥1. q • SalasandPoveda[30]revisitedresultsreportedin[28],andanalyzedthetimescalingproperties ofShannon’sentropyforthesamedatasetintermsofthesensitivitytotherecordlength,andthe effectofzerosinrainfalldata,andproposedtheGTEFtostudythescalingpropertiesofriver flows. Theyhighlightedtwoimportantresults:(i)ThescalingcharacteristicsofShannon’sentropy differbetweenrainfallandstreamflowsowingtothepresenceofzerosinrainfallseries;and(ii)the GTEFexhibitsmulti-scalingforrainfallandstreamflows. Forrainfall,therelationS (T)vs. T q inlog–logspacefordifferentvaluesofq,exhibitsanon-lineargrowthwithq,uptoΩ =0.5for Entropy 2017,19,685 6of25 q ≥1,incontrasttothescalingpropertiesofriverflowswhichexhibitanon-lineargrowthwithq, uptoΩ =0.0forq ≥1. • Poveda and Salas [31] studied diverse topics such as statistical scaling, Shannon entropy and Space-TimeGeneralizedq-EntropyofMesoscaleConvectiveSystems(MCS)asseenbytheTropical Rainfall Measuring Mission (TRMM) over continental and oceanic regions of tropical South America, and in Amazonian radar rainfall fields. The main result of their study is that both the GTEF and GSEF exhibit linear growth in the range −1.0 < q < −0.5, and saturation of the exponent Ω for q ≥ 1.0, but for the spatial analysis (GSEF) the exponent tappers off at sat (cid:104)Ω (cid:105) ∼1.0,whereasforthetemporalanalysis(GTEF)theexponentsaturatesat (cid:104)Ω (cid:105) = 0.5. sat sat Inaddition,resultsaresimilarfortimeseriesextractedfromradarrainfallfieldsinAmazonia (radarS-POL)andin-siturainfallseriesinthetropicalAndes. 1.5. EasterlyandWesterlyRegimesofAmazonianRainfall TheWETAMC/LBAcampaign(January–February1999)foundthatwet-seasonconvectionin Amazoniaexhibitstwogeneralmodes,hereinafter,theWesterlyandEasterlyregimes[55],whichare highlycorrelatedtochangesinthe850–700hPazonalwinddirection[56]. Accordingtodatafrom theNCEP-NCARReanalysis,aswellasfromtheFazendaNossaSenhoraradiosonde,theEasterly (negativevalues)andWesterly(positive)regimesareclearlydifferentiatedinbothdatasets[19,31]. Furthermore, radar observations from southwestern Amazonia during TRMM-LBA suggest that therewasrelativelylittledifferenceinthedailymeanrainfalltotalsbetweenEasterlyandWesterly regimes [57]. In addition, the TRMM-LBA and TRMM satellite observations suggested marked differencesinrainfallratedistributions,withtheEasterlyregime(Altiplano/southernBrazil)associated withabroaderrain-ratedistributionandgreaterinstantaneousrainfallrates[56]. Precipitationfeatures duringbothregimescanbesummarizedconsideringthatduringtheEasterlyregimeatmospheric conditionsarerelativelydry,withincreasedlightningactivityandmoreintenseanddeeperconvective systems. Incontrast,theWesterlyregimeischaracterizedbyadiminishedlightningactivity,lessdeep convectionandlessintenseprecipitationrates[56,58,59]. Theregimeassociatedwithstrongervertical development,morelightningactivity,andlargerinstantaneousrainfallratesmustbeassociatedwith amore“concentrated”dailylatentheatrelease. Inaddition,twomechanismshavebeenproposedto explaintheobservedchangesintheoverallconvectivestructureandlightningfrequencybetweenthe tworegimes,thesemechanismsaretiedtoeitherthermodynamics(changesinCAPEandCINthat modifytheenergeticsofthecloudensemble),oraerosolloading(e.g.,changesincloudcondensation nuclei(CCN)concentrationthatmodifymicrophysicalstructureofthecloudensemble)[56]. Theaforementionedresultshaveimportantpracticalimplicationsinthespatialandtemporal scaling features of rainfallfields [28,30,31] although theconnections between entropic and scaling statistics with physical characteristics remain elusive. Furthermore, the effect of the space-time structureofrainfallinthescalingoftheq-Entropyaswellasitssensitivitytothenumberofbinsandto thevariabilityofrainfallintensityandthesample-sizemustbeinvestigatedindepth. Therefore,inthe presentstudy,weaimtoinvestigatehowthespatialscalingandcomplexityofrainfallisreflectedin differententropicscalingmeasureswithintheframeworksofinformationtheoryandnon-extensive statisticalmechanics. Therationaleandobjectivesofthisworkarepresentednext. 1.6. RationaleandObjectives Theobjectivesofourstudyarebaseduponthefollowingconsiderations: • Thepresenceofzerosinhighresolutionrainfallrecordsconstitutehighlyimportantinformation tounderstand,diagnoseandforecastthedynamicsofrainfall[28,60,61]. SalasandPoveda[30] arguedthatzeros(inter-stormperiods)intimeseriesoftropicalconvectiverainfallareassociated withthetimescalerequiredbynaturetobuildupthedynamicandthermodynamicconditionsof thenextstorm,asanatmosphericanalogousofthetimeofenergybuild-upbetweenearthquakes, Entropy 2017,19,685 7of25 avalanches and many other relaxational processes in nature [62]. Therefore, the role of zeros andtheireffectonscalingstatisticsmustbeinvestigatedtofurtherunderstandandmodelhigh resolutionrainfall. • Theaforementionedpreviousworks[28,30,31]arebasedonavailablerainfalldata(S-POLradar, TRMMsatelliteandraingauges),anditisdifficulttounderstanddifferencesoftheq-statistics intemporalandspatialscalesduetofactorssuchastheintermittencyofrainfall,recordlength, space-timeresolutionofdatasets,andgeographicsetting. • Thenumberofbinsintheprobabilitymassfunctionconstitutesacentralissuetoquantifyentropic measures. Previous studies have shown that the scaling exponent of Shannon entropy under aggregationintimeitisnotsensitivetoeitherthenumberofbins [28]orrecordlength [30]. Then, itisnecessarytostudythesensitivityoftheq-entropicmeasuresinordertochecktheirrobustness tocharacterizing2-Dtropicalrainfallfields. The objectives of this study are manifold. They involve questions based on the previous studies [28,30,31],andnewonesregardingtheentropicscalingmeasuresofrainfall. Theobjectivesof ourstudyarethus: • TotesttheBL-Model[13]for2-DAmazonianrainfallfieldsconsideringtheEasterlyandWesterly climaticregimes[55,56],andusingtheGeneralizedSpaceq-Entropy[31]. • Toexaminehowthespatialstructureofrainfallisreflectedintheq-entropicscalingmeasures using the BL-Model and considering the influence of zeros in the GSEF through Montecarlo experiments,aimedatunderstandingthesaturationoftheexponentΩ reportedby[28,30,31]. sat • ToinvestigatetheconnectionbetweenparametersoftheBL-Model[13]andAmazonianrainfall fieldsconsideringtheidentifiedclimaticregimes[55,56]. • Toquantifythesensitivityoftheq-entropicscalingstatisticstothenumberofbins andtothe variabilityofrainfallintensity,inanattempttochecktherobustnessofsuchstatisticaltoolsinthe multi-scalecharacterizationofrainfall. • Tolinktwoimportanttheoreticalframeworks,namelystochasticprocesses(MultiplicativeCascades) andInformationTheory(non-extensivestatisticalmechanics),toadvanceourunderstandingabout thescalingpropertiesoftropicalrainfall. Thepaperisorganizedasfollows. Section2describesthestudyregionanddataset. Section3 discusses the methods employed. Section 4 provides an in-depth discussion of results. Section 5 providesabriefdiscussionaboutthecriteriaandconditionstoestimateentropyingeophysicaldata. Finally,Section6containstheconclusions. 2. StudyRegionandDataSets GeneralInformation Weuseasetof2-DradarrainfallfieldsgatheredinAmazoniaduringtheJanuary–February1999 WetSeasonAtmosphericMeso-scaleCampaign/LBA(WETAMC/LBA),whichwasdesignedtostudy thedynamical,microphysical,electrical,anddiabaticheatingcharacteristicsoftropicalconvection oversouthwesternAmazonia[19,59,63,64]. TheWETAMCcampaignwasdevelopedinthestateof Rondônia(Brazil). Thedatasetusedinthepresentstudyconsistsonradarscansofstormintensities recordedbytheS-POLradar(S-band,dualpolarimetric)locatedat61.9982◦W,11.2213◦S.Dataconsist of2kmresolutionmicrowavebandreflectivitywhichisdirectlyrelatedtorainfallintensity,overacircle of∼31,000km2. ScansproducedbytheColoradoStateUniversityRadarMeteorologyGroupwere availableevery7–10minattheURLhttp://radarmet.atmos.colostate.edu/trmm-lba/rainlba.html. Additionally, information about zonal wind velocity at 700 hPa during the study period was obtainedfromtheNCEP/NCARReanalysis[65],overtheregioninside61◦ Wto62.8◦ Wand10.4◦ S to12.1◦ S,correspondingtotheareacoveredbytheS-POLradar. Datawereobtained4timesperday Entropy 2017,19,685 8of25 at0000,0600,1200and1800LST.Inaddition,radiosondedata(62.37◦ W,10.75◦ S)wereusedfrom the WETAMC campaign in Ouro Preto d’Oeste at the Fazenda Nossa Senhora site, located inside theS-POLradarcoverageregion. RadiosondedatawereobtainedintheURLhttp://www.master.iag. usp.br/lba/. 3. Methods A set of experiments were developed to study the sensitivity of the GSEF of 2-D Amazonian rainfallfieldsattemptingtolinkthespatialstructureofrainfallandtheemergingscalingexponents oftheq-entropicanalysis[28,30]. TothataimweusetheBL-Modelproposedby[13]togenerate2-D rainfallfieldsasamultiplicativerandomcascade,byvaryingthemodelparametersβandσ.Adetailed descriptionofeachexperimentispresentedbelow. 3.1. ParametersoftheBL-ModelandAmazonianPrecipitationFeatures Thefirstexperimentiscarriedoutbycontrollingthepercentageofwet(rainy)anddray(non-rainy) areas,andthesecondonebycontrollingtheaverageintensityoftherainfallfield.Asetof1000simulations foreachparameterwerecarriedout.Themassofrainfalloveratwo-dimensional(d =2)regionwas consideredtheunit,thebranchingnumberb =4for2-Dcascades,andthelevelofsubdivisionn =6 (seeFigure1)duringallexperiments,consistentlywiththeobservedscansfromS-POLradarwhich are64rows×64columnsmatrices(bn =46 =4096values). Ontheotherhand,withtheaimtolink the numerical results from the BL-Model with the S-POL observations, we compared the samples oftheestimatedcascade’sparameters(Equations(9)and(10))consideringβ vs. β and, Easterly Westerly σ vs. σ usingthek-sampletestsbasedonthelikelihoodratio[66],whicharemorerobust Easterly Westerly thantraditionalmethods(e.g.,Kolmogorov–Smirnov,Cramer–vonMises,andAnderson–Darling), butalsobecausetheclimaticregimesprevailinginthestudyregionarestatisticallydifferentinterms ofthecontinental-scaleflowandlightningactivity,aswellasintheverticalstructureofconvection andotherprecipitationfeatures[56]. 3.2. Bin-CountingMethodsandEntropicEstimators The correct estimation of diverse informational entropy statistical parameters require to take intoaccountdiversepracticalconsiderations. Gongandothers[67]arguethattherearefourpractical problemsintheestimationofentropyusinghydrologicdata: (i)thezeroeffect;(ii)thewidelyused bin-counting method for estimation of PDFs; (iii) the measure effect; and (iv) the skewness effect. Wefocusourattentiononthesecondpracticalissuewithintheframeworkofscalingtheoryusing Shannontheoreticalentropyinequality[68], (cid:113) S(T) ≤ln 2πeV(T), (17) whereV(T) isthevarianceoftheprocessataggregationinterval T, withtheequalityholdingjust forthefortheGaussiandistribution. Weuseasetofparametricandnon-parametricbin-counting methods,suchasthoseintroducedbySturges[69],DixonandKronmal[70],Scott[71],Freedmanand Diaconis[72],Knuth[73,74],ShimazakiandShinomoto[75,76],andarecentmethodforestimating entropyinhydrologicdataproposedbyGongetal. [67]. Inwork,weusecommontechniquesreported intheliterature,althoughthereareothermethods[77]. Finally,wediscusstheeffectofthenumberof bins onthescalingofq-entropyinrainfallfields[28,30,31]. 3.3. Sample-SizeandEntropyEstimators Information-theory statistics require an adequate sample size for a proper estimation and interpretation. In spite of the existence of a large body of literature dealing with the problem of estimation of distributions for data sparsity and poor sampling [78,79], the problem constitutes a challenge in geosciences. A recent study on the estimation of Shannon entropy in hydrological Entropy 2017,19,685 9of25 recordsundersmall-samples[80],employedthreedifferentestimators: (i)maximumlikelihood(ML); (ii)Chao–Shen(CS);and(iii)James–Stein-typeshrinkage(JSS).TheirresultsexhibitedthattheML estimator had the worst performance of the three methods, with the largest Mean Squared Errors (MSE) for all sample sizes. In particular, when sample sizes are small (less than 200 data points), theentropyestimatorwasdramaticallyunderestimated,althougherrorsturnedouttodecreasequickly whensamplesizesincreased. Furthermore,whenthesamplesizewaslargerthan100datapoints, theaccuracyoftheCSandJSSestimatorswerebasicallythesame,withMSEnearlyequaltozero. Itis worthmentioningthatthesaidstudy[80]didnotdealeitherwiththeeffectofthenumberofbins or theroleofzerosintheestimationofentropy. Attherootoftheproblemofthenumericalestimationofentropy,isthesample-sizenecessaryfor adequatelyestimatingtheunderlyingprobabilitymassfunction(pmf)oftheprocess. Forexample, it is well known that, for the ML estimators, the larger the sample size, the better the estimates will be. In addition, high temporal resolution precipitation data sets (e.g., minutes or hours) are mostly(approximately90%)constitutedbyzeros[30],whichitisnotthecaseforlow-resolutiondata (e.g., months or years), so an adequate characterization of the tails of the Probability Distribution Function(PDF)requireslongerdatasetsforhigh-resolutionrainfalldatathanforlow-resolution. Withtheaimofstudyingtheinfluenceofsample-sizeintheGSEF,wewillcomparetheq-entropy of the S-POL radar fields (matrices with 64 rows and 64 columns) and synthetic 2-D fields of the BL-Modelatdifferentcascadelevels,n,toobtainfieldswithdifferentsizes,ξ,e.g.,thecascadelevel n =1meansa2×2field,(2rowsand2columns)and,consequently,acascadeleveln =7meansa 128×128field. Inotherwords,afieldoftheBL-Modelwithn =1hasasample-sizeξ =4andafield i oftheBL-Modelwithn = 7hasasample-sizeξ = 16,384. Usingthesyntheticfields,wequantify i theq-entropy: (i)estimatingthepmfforallthevaluesinthesyntheticrainfallfield(includingzeros); (ii) separing values in two subsets P(x) = {P(x =0),P(x >0)}; and (iii) the minimal quantity of non-zerovaluesinthefields,toensurerobustnessintheestimationofS . Ourresultsarediscussed q inSection4.5. 3.4. Intermittencyandq-Order Highspace-timeresolutiontropicalrainfallisahighlycomplexandintermittentprocess.Toanalyze its intermittent behavior, several techniques have been proposed in the literature such as: spectral scaleinvarianceanalysis[31,81–84];moment-scalinganalysis[1,3,18,19,31,32,84],andintermittency exponents [84,85]. In this sense, the Generalized Space q-Entropy Function (GSEF) (Section1.4) can be thought as a measure of (multi-) fractal behavior of a process [30,31]. In addition, theBL-Model(Section1.2)isdirectlyrelatedtotheMandelbrot-Kahane-Peyriere(MKP)function[34,35] characterizingthefractal(orscale-invariant)behaviorofamultiplicativecascadeprocess. Therefore, aninterestingquestionarises:isthereanyrelationshipbetweentheGSEFandintermittencyestimators? Inordertoshedlightaboutsuchquestion,theBL-Modelisusedtoestimatetheq-order,Θ ,andthe q multifractalitymeasure, M(q ,q ),definedbyBickel[86],Equation(22). 1 2 First, we carry out an experiment for high-resolution-spatial rainfall based on Bickel [86], who showed the relationship between intermittency (multifractality) and the non-extensive order (hereafterq-order)forpointprocessesofdimensionDrangingfrom0.1to0.9. Theorderinasystemis definedintermsofitsdistancefromequilibrium,sothehigherdisordered,theclosertotheequilibrium state. Theq-ordercanbedefinedas, S Θ(q) ≡1− q (18) Smax q where S is the q-entropy (Equation (11)) and Smax is the maximum possible value of S for the q q q equilibriumcondition,whichprobabilisticallycanbedenotedas p =1/Nforallj =1,2,...,N,whose j Smax canbewrittenas, q 1−N(1−q) Smax = (19) q q−1 Entropy 2017,19,685 10of25 Atthispoint,itisnecessarytoemphasizethatEquation(19)isageneralizationfortheextensive orderdefinedasameasureofcomplexityusingtheBoltzman-Gibbs-Shannonentropy[87]. Inaddition, the non-extensive order satisfies 0 ≤ Θ(q) ≤ 1 with Θ(q) = 0 if P = 1/N ∀j and Θ(q) = 1 if j P = δ ∀j,givenanyintegerlbetween1andN[86,88]. j jl Second,ageneralizationforΘ(q) ≡ Θ ,atmultiplespatialortemporalscales,ispossibleusing q asimilarproceduretoEquation(15). Therefore,ifthespatialscaleisdenotedasλ,andthemaximum possiblevalueofq-entropyateachscaleλasSmax(λ),theq-ordercanberewrittenas, q S (λ) Θ (λ) ≡1− q . (20) q Smax(λ) q From previous studies [30,31], it is easy to note that Θ (λ) (cid:54)= S (λ) but for the scaling laws q q Θ (λ) ∼ λΩ(q) andS (λ) ∼ λΩ(q),thescalingexponentsΩ(q)areexactlythesame,whichmeansthat q q GSEF,Ω(q),doesnotchangeundersuchtransformation. Third, considering that a process x(t) exhibiting a multifractal spectrum whose spectrum of generalizedHurstexponents,H(q),isdefinedas[86], ψ(q,T) = (cid:10)|x(t+T)−x(t)|q(cid:11)1/q ∝ TH(q), (21) which holds for some range T with non-extensive parameter q. For ψ(q = 1,T) is the mean (first moment) of the absolute displacement and for ψ(q = 2,T) is the standard deviation of this displacement. Therefore,theintermittencyofanonstationaryprocess x(t)canbequantifiedbyits multifractality, M(q ,q ),asthedifferencebetweentwogeneralizedHurstexponents, 1 2 (cid:40)−q q H(q2)−H(q1) q (cid:54)= q M(q ,q ) = 1 2 q2−q1 1 2 (22) 1 2 limq1→q2 M(q1,q2) = −q22[∂H(q2)/∂q2] q1 = q2 normalized such that 0 ≤ M(q ,q ) ≤ 1 for nondegenerate processes, with M(q ,q ) = 0 for 1 2 1 2 monofractals[89]. From previously mentioned considerations, the generalized Hurst exponents for 2-D rainfall fieldscanbecomputedassuggestedbyCarbone[90]incombinationwiththeEquation(21)asfollows, 1/q ψˆk(q) = (n −k)1(n −k) n∑x−kn∑y−k|x(i+k,j+k)−x(i,j)|q , (23) x y i=1 j=1 wherex ∈ (cid:60)2,n andn arethenumberofrowsandcolumns,respectively. Theestimatesψˆ (q )and x y k 1 ψˆ (q ) for k = k ,2k ,4k ,··· ,k , with k and k such that logψˆ (q ) and logψˆ (q ) k 2 min min min max min max k 1 k 2 exhibit linear relationship with logk. Then, Hˆ(q ) and Hˆ(q ) are the slopes of the least-square 1 2 regressions of logψˆ (q ) vs. logk and logψˆ (q ) vs. logk, respectively. Finally, the multifractality k 1 k 2 isestimatedas, −q q Hˆ(q2)−Hˆ(q1) q (cid:54)= q Mˆ(q1,q2) = 1 2 q2−q1 1 2 (24) limq1→q2 Mˆ(q1,q2) q1 = q2 In this work, we explore the relationship between intermittency (multifractality), Mˆ(q ,q ), 1 2 and q-order, Θ , for synthetic rainfall fields from the BL-Model. The results will be discussed q inSection4.6.
Description: