ebook img

Testing Bell inequalities with circuit QEDs by joint spectral measurements PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Testing Bell inequalities with circuit QEDs by joint spectral measurements

Testing Bell inequalities with circuitQEDs by jointspectral measurements Hao Yuan,1,2 L. F. Wei,1,3,∗ J. S. Huang,1 X. H. Wang,1 and Vlatko Vedral2,4,5,† 1Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031, China 2Clarendon Laboratory, UniversityofOxford, ParksRoad, OxfordOX13PU,UnitedKingdom 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China 4CentreforQuantumTechnologies,NationalUniversityofSingapore, 3ScienceDrive2,Singapore117543,Singapore 5DepartmentofPhysics,NationalUniversityofSingapore, 2ScienceDrive3,Singapore117542, Singapore (Dated:January14,2011) WeproposeafeasibleapproachtotestBell’sinequalitywiththeexperimentally-demonstratedcircuitQED 1 system,consistingoftwowell-separatedsuperconductingchargequbits(SCQs)dispersivelycoupledtoacom- 1 monone-dimensionaltransmissionlineresonator(TLR).Ourproposalisbasedonthejointspectralmeasure- 0 mentsofthetwoSCQs,i.e.,theirquantumstatesinthecomputationalbasis{|kli, k,l=0,1}canbemeasured 2 bydetectingthetransmissionspectraofthedrivenTLR:eachpeakmarksoneofthecomputationalbasisandits n relativeheightcorrespondstotheprobabilitysuperposed.Withthesejointspectralmeasurements,thegenerated a BellstatesofthetwoSCQscanberobustlyconfirmedwithoutthestandardtomographictechnique. Further- J more,thestatisticalnonlocal-correlationsbetweenthesetwodistantqubitscanbedirectlyreadoutbythejoint 3 spectralmeasurements,andconsequentlytheBell’sinequalitycanbetestedbysequentiallymeasuringtherel- 1 evant correlations relatedtothesuitably-selected setsof theclassicallocal variables {θj,θj′,j = 1,2}. The experimentalchallengesofourproposalarealsoanalyzed. ] h PACSnumber(s):03.65.Ud,42.50.Dv,85.25.Cp p - t n I. INTRODUCTION Recently, a novel superconductingelectrical circuit archi- a tecture (called circuit QED) analogous to cavity QED has u beenfirstsuggestedbyBlaisetal.[9],andthenrealizedinthe q experimentbyWallraffetal.[10]. IncircuitQED,asupercon- [ Historically,thewell-knownEinstein,Podolsky,andRosen (EPR) paradox [1] concerningthe completeness of quantum ducting qubit is strongly coupled to one-dimensional trans- 1 mechanicswasproposedbasedonagedankenexperimentin missionlineresonator(TLR)whichactsasquantizedcavity. v 1935. EPR claimed that quantum mechanics is incomplete Now much attention has been focused on this field because 0 5 andso-calledlocalhiddenvariables(LHV)shouldexist. Sub- it opens the possibility of studying quantum optics phenom- ena in solid-state system and quantum information process- 5 sequently, it has provokedmuch debate on the completeness 2 ofquantummechanicsandtheexistenceofLHVtheories. In ing.Experimentally,remarkableadvanceshavebeenachieved . 1964,BellactuallyquantifiedtheEPRargumentandderived such as: observation of the vacuum Rabi splittings [10] and 1 0 astrictinequality[2]withrespecttothecorrelationstrengths ACStackshifts[11],observingBerry’sphase[12],measuring the Lamb shifts [13], generations of microwave single pho- 1 possibletoachievebyalltheLHVmodels. Ifthisinequality 1 isviolated,thentherearenoLHVandthequantummechan- tons[14]andFockstates[15],couplingtwoqubitsviacavity v: icalpredictionof the existenceof quantumnonlocalcorrela- asquantumbus[7,16], two-qubitGroverandDeutsch-Jozsa i tion (i.e., entanglement) is sustained. However, Bell’s sem- algorithms [17], etc. In this system the qubit-state readouts X were achieved by detecting the state-dependentshifts of the inal inequality did not allow for the practically-existing im- r perfections and thus was not accessible to the experimental frequencyof the dispersively-coupledresonator[17, 19–22]. a Indeed, in the dispersive regime[18], the transition frequen- tests. Soonlater,Clauser,Horne,ShimonyandHolt(CHSH) addressedthisissueandderivedanexperimentallytestablein- cies of the superconducting qubits are far detuned from the frequencyofthecoupledresonator.Asaconsequence,asuffi- equality[3].Duringthepastdecades,anumberofexperimen- tal tests of CHSH-type Bell’s inequality have been reported cientlylargestate-dependentfrequencyshiftsoftheresonator can be induced [9, 10], which could be tested by measuring using, e.g., entangled photon pairs [4], trapped ions [5], an atomandaphoton[6],twosuperconductingphasequbits[7], thetransmissionspectraofthedrivenresonator. andeventwoentangleddegreesoffreedom(comprisingspa- Veryrecently,anefficientapproachtoimplementthejoint tial and spin components) of single neutrons [8], and so on. spectral measurements of the multi-qubits has been pro- These experimental evidences strongly convince that Bell’s posed by detecting the transmission spectra of the common inequality could be violated and thus agree well with quan- resonator [23]. By considering all the quantum correla- tummechanicalpredictions,rulingouttheLHVtheories. tion of qubits and resonator (i.e., beyond the usual coarse- grained/mean-fieldapproximation),itisshownthateachpeak in the measured transmission spectra of the drivenresonator marks one of the logic states and the relative height of such ∗Electronicaddress:[email protected] apeakisrelatedtoitscorrespondingsuperposedprobability. †Electronicaddress:[email protected] Withthesejointspectralmeasurements,Huangetal.,[24]pre- 2 sentedahighefficiencytomographicreconstructionsofmore thanone-qubitquantumstates. Asanotherapplication,inthis paper we discuss how the proposed joint spectral measure- mentscanbefurtherutilizedtotestBell’s inequalitywithan experimentally-demonstratedtwo-qubit circuit QED system. In Out ComparedwiththepreviousschemesfortestingBellinequal- ities, the advantageof the presentproposalis that, the desir- ablecoincidedmeasurementsonthetwoqubitscanbedirectly implementedbythesuitably-designedjointspectralmeasure- ments. This is because the states of the two qubits jointly FIG. 1: (Color online) Circuit QED architecture with two su- determinethe frequencyshiftsand consequentlythe spectral perconducting charge qubits (SCQs) dispersively coupling to one- distributionsof thedrivenresonator. Therefore,thenonlocal dimensional transmission line resonator (TLR). The joint spectral correlationsbetweenthewell-separatedqubitscanbedirectly measurementsofthetwoSCQscanberealizedbydetectingthestate- dependentfrequencyshiftsinthetransmissionspectraofthedriven read out by analyzing the measured transmission spectra of resonator. thedrivenresonator. We noteinpassingthatnoneofthecir- cuit QED proposals so far can be used to close the locality loophole. (RWA),thesystemoftwoSCQsplusresonatorisdescribedby Thepaperisorganizedasfollows:InsectionII,wepropose theusualDickeHamiltonian(~=1)[25] amethodtodeterministicallygenerateanidealBellstatewith ω the experimentally-demonstratedcircuitQED system, via an H =ω a†a+ [ jσ +g (a†σ +aσ )]. (2) r zj j −j +j 2 iSWAP gate assisted by severalsingle-qubitgates[25]. Fur- jX=1,2 ther, a simple quantum interference method, instead of the Here, ω is the single-modefrequencyof the TLR, a†(a) its usualquantum-statetomographicreconstruction,isproposed r creation (annihilation) operator; ω the transition frequency toconfirmsuchapreparationbycoherentquantumoperations j of jth SCQ thatcan beadjusted byexternalbiasflux and g and projective measurements on two qubits in the computa- j thecouplingstrengthofthejthSCQtotheresonator.Finally, tionalbasis. InsectionIII,wediscusshowtoutilizethejoint σ = 1 0, σ = 0 1 and σ = 0 0 1 1. spectral measurements to implement this confirmation. Im- +j j −j j zj j j | i h | | i h | | i h |−| i h | Two SCQs in thiscircuitcan be controlledandmeasuredby portantly, by applying two individual Hadamard-like opera- driving the resonator. The Hamiltonian to describe such a tions to encode the local variables θ ,θ into the gener- 1 2 { } driveisgivenby ated Bell state, we show that the statistical correlations be- tween the distant qubits can be read out by these spectral H =ǫ(a†e−iωdt+aeiωdt), (3) d measurementsfor varioustypical sets of classical local vari- CabHleSsH{-θtyj,pθej′,Bjel=l’s1i,n2e}q.uWaliitthytchaensebmeeteasstuerde.dcDoirsrceulsastiioonnsatnhde qwuheenrceyǫoifsthtiemeex-tienrdneaplleynadpepnltieredadlraivmep.litude and ωd the fre- conclusionarepresentedinsectionIV. From the easily-preparedinitial state 00 12, an ideal Bell | i statecanbegenerateddeterministicallybythefollowingthree steps,thecorrespondinggatesequenceisshowninFig.2. II. GENERATIONANDCONFIRMATIONOFBELL STATES 3 0 R ( ) R ( ) 1 x 4 y 4 Inthissection,wewillshowhowtodeterministicallypre- iSWAP ! pareoneoftheidealBellstates 12 0 R ( ) 2 x 4 1 1 Φ = (00 11 ), Ψ = (01 10 ), (1) ± ± | i √2 | i±| i | i √2 | i±| i FIG. 2: Gate sequence to generate the Bell state |Φ−i12 from the withtheexperimentally-demonstratedcircuitQEDsystem.In initialstate|00i12. fact,theBellstateinthissystemhavebeenpreparedbyseveral methods, includingmeasuring-basedsynthesis [26] and gate Step 1: Perform the unitary operation R (π/4) = x sequence (see, eg. Refs. [7, 16, 19, 20, 25]). Here, we will exp(iσ π/4)oneachSCQtopreparethesuperpositionoftwo x presentanalternativegatesequencemethodtoimplementthe basisstatesofeachSCQ.Thatis, desirable preparation based on an iSWAP gate (the previous methodsusethecontrolledphasegate). 00 Rx1(π4)Rx2(π4) ψ = 1(0 +i1 ) (0 +i1 ) .(4) 12 12 1 2 | i → | i 2 | i | i | i | i WeconsiderthecircuitQEDarchitecturesketchedinFig.1, inwhichtwosuperconductingchargequbits(SCQs)arecou- The unitary operations R (π/4) and R (π/4) can be x1 x2 pled to one-dimensional TLR. To obtain the maximal cou- achievedbyexternallyappliedmicrowavedriveswiththedu- pling,twoSCQsareplacedclosetotheendsoftheresonator ration of t = π∆ /4ǫg and t = π∆ /4ǫg , respec- 1 r 1 2 r 2 − − (voltageantimodesoftheresonator).WhentwoSCQsworkat tively[25]. Here,∆ = ω ω isthedetuningbetweenthe r d r − theiroptimalpointandundertherotating-waveapproximation drivefrequencyandtheresonatorone. 3 Step 2: In the dispersive regime, i.e.,g /∆ 1 and thesameprobability(i.e.,P = P = 1/2). Notethatthis 1 1 00 11 | | ≪ g /∆ 1 (with ∆ = ω ω being the detuning be- isnotthesufficientconditionfortheconfirmationoftheBell 2 2 j j r | | ≪ − tween the jth SCQ and the TLR), and ∆ = ∆ = ∆ and state Φ ,sinceastatisticalmixtureofthelogicstates 00 1 2 − 12 | i | i g = g = g (achieved by adjusting the external bias flux), and 11 withthesameprobability1/2mayalsoresultinthe 1 2 | i theefficientHamiltonianofthissystemreads same outputs. Therefore, besides the above projective mea- surementperformeddirectly,anotherprojectivemeasurement H = g2 [4(a†a+ 1)(σ +σ ) in the computational basis is also required after the unitary eff −2∆ 2 z1 z2 operationR (π/4) = R (π/4)R (3π/4)R (3π/4) on each y z x z (σ σ +σ σ )]. (5) SCQ. These operationsevolve the prepared Bell state to an- x1 x2 y1 y2 − otherBellstate,i.e., ThisHamiltoniangeneratesatwo-qubitgate(withtheevolu- tiondurationts =3π∆/2g2) Φ Ry1(π4)Ry2(π4) Ψ = 1 (01 + 10 ) . (10) − 12 + 12 12 | i → | i √2 | i | i eiδ 0 0 0  0 0 i 0  Thismeasurementimpliesthat,ifthepreparedstateisthede- U(t )=exp( iH t )= , (6) s − eff s 0 i 0 0 sirable Bell state Φ− 12, then the measured state should be  0 0 0 e−iδ  Ψ+ 12 and thus |the ioutput is either 01 or 10 (with the   s|amei probability 1/2). This is becau|seithe m|ixiture of the where δ = 6π(n + 1/2) with n = a†a being the mean states 00 and 11 would not vanish by the quantum inter- photonnumberintheresonator.Ifnishknowininadvance,the ference| afiterthe|deisignedquantumoperations. globalphasefactorδcanbeeliminatedbyperformingsingle- qubit phase rotations: 0 e−iδ/2 0 and 1 eiδ/2 1 , oneachqubit. Then,th|eiab→ovetwo-q|uibitgat|eire→ducesto|thie III. JOINTSPECTRALMEASUREMENTSOFTWO QUBITSFORTESTINGBELL’SINEQUALITY desirableiSWAPgate 1 0 0 0 A. Jointspectralmeasurementsofthequbitsforconfirming 0 0 i 0 thepreparationofBellstates U = . (7) iSWAP 0 i 0 0  0 0 0 1 Customarily,completelycharacterizinganunknownquan-   tum state requires to tomographicallyreconstruct its density Notethatnoexternalmicrowavedriveisappliedinthisstep. matrix, by a series of quantum measurements performed on With such an iSWAP gate, the entanglement between two itsmanycopies(see, e.g.,[7,17,19,20,22]). Here,wewill SCQsisgenerated,i.e., show that the Bell state generated above, e.g., Φ , can − 12 | i beconfirmedbyusingthejointspectralmeasurementsofthe 1 ψ 12 UiSWAP ψ′ 12 = (00 01 10 11 )12. (8) two qubits in a significantly simpler fashion. In the disper- | i → | i 2 | i−| i−| i−| i sive regime of two-qubit circuit QED system, the transition Step 3: Apply the unitary operation R (3π/4) to the first frequencyof each SCQ is far detuned from the coupled res- y SCQ for generating a desirable Bell state Φ from the onator.Andinaframeworkrotatingatthedrivefrequencyω , − 12 d state ψ′ preparedabove,i.e., | i theefficientHamiltonianofthewholesystemis 12 | i |ψ′i12 Ry1→(34π)|Φ−i12 = √12(|00i−|11i)12. (9) H = (−∆r +Γ1σz1+Γ2σz2)a†a+ ω˜21σz1+ ω˜22σz2 +ǫ(a†+a), (11) Here, the unitary operation R (3π/4) is implemented by y Ry(3π/4) = Rx(π/4)Rz(3π/4)Rx(3π/4). Rz(3π/4) and whereΓj = gj2/∆j and ω˜j = ωj +Γj, j = 1,2. From the Rx(3π/4)canberealizedbyapplyingmicrowavedriveswith firstterminEq.(11),itcanbedirectlyseenthattheresonator thedurationt3 =3π∆a/[2(∆a+g12/∆1)∆a+(2ǫg1/∆r)2] ispulledbydifferentlogicstatesoftwoqubits.Thefrequency (∆Saim=ilωar1ly−,oωtdh)eranBdetll4s=tat−es3iπn∆Erq/.(41ǫ)g1c,arnesbpeeacltsivoeglye.nerated sΓhif+tsΓofcthoerrreesspoonnadtotorbthye−loΓg1ic−stΓat2e,s−oΓf1tw+oΓqu2,bΓits1−11Γ2,,1a0nd, 1 2 withtheabovemethod. 01 ,and 00 ,respectively. Thus,thefrequencysh|iftsio|fthie Customarily, the quantum-state preparation is experimen- r|esoinator|canibeusedtomarkthelogicstatesoftwoqubits. tally confirmed by quantum-state tomography (see, e.g., [7, Further, by considering all the statistical quantum corre- 17, 19, 20, 22]), i.e., reconstructing its density matrix via a lations between SCQs and resonator (i.e., beyond the usual seriesofmeasurementsonmanycopiesofthepreparedstate. coarse-grained/mean-field approximation), the steady-state However, based on the same logic proposedin Ref. [27] the transmissionspectraofthedrivenresonatorS = a†a /2ǫ ss ss Bell state generated above can be simply confirmed by the canbeanalyticallyderivedas[23,24] h i followingtwosteps. First,weperformaprojectivemeasure- ment on the prepared state in the computational basis. The 2(AC+BD) S = , (12) outputswillbeeitherthelogicstate 00 orthe 11 statewith ss − κ(A2+B2) | i | i 4 with A = (Γ2 Γ2) + 2(κ2/4 ∆2)(Γ2 + Γ2) + Bell’sinequalitywithcircuitQEDviajointspectralmeasure- (κ2/4 ∆2)2 1κ−2∆2,2B = 2κ∆−(Γ2r+ Γ21 + κ22/4 mentsofthedistantSCQs. − r − r − r 1 2 − ∆2), C = κ σ (0)σ (0) Γ Γ κ∆ ( σ (0) Γ + First,withthesingle-qubitgates[25],aHadamard-likeop- σr (0) Γ ) +h zκ1/2(3∆z22 i2κ21/42 −Γ2 rΓh2)z,1andi2D1 = eration[29]canbeconstructedas h z2 i2 2 r − − 1 − 2 2 σ (0)σ (0) ∆ Γ Γ 2 σ (0) Γ (Γ2 Γ2 + − h z1 z2 i2 r 1 2− j=1h zj ij j j− j′ R (θ ) = R (θ /2)R (π/4)R ( θ /2) κΓ2/4=−g∆2/2r∆)+. ∆Hre(rΓe21, κ+dΓe22n+otPe3sκp2h/o4to−n∆le2ra)k,ajge6=rajt′e=of1t,h2e, j j 1z j 1 x ieiθj z − j j j j = , (13) resonator. Experimentally, the qubit decay rate (e.g., γ = √2(cid:18)ie−iθj 1 (cid:19) 2π 0.25MHz [28]) is negligible, since it is significantly × whichplaysanimportantrolefortestingBell’sinequality. smaller than the photon leakage rate of the resonator (e.g., Then, the classical variables θ ,θ can be encodedinto κ = 2π 1.69MHz [22]). It has been numerically proven { 1 2} × the generated Bell state Φ with Hadamard-like opera- that, each peak in the above steady-state spectra marks one | −i12 tionsR (θ ). Thus,thestate Φ ischangedinto ofthelogicstatesandtherelativeheightofsuchapeakcorre- j j | −i12 spondstothesuperposedprobabilityinthedetectedtwo-qubit Φ′ = R (θ )R (θ )Φ state. | −i12 1 1 2 2 | −i12 1 = [(1+e−i(θ1+θ2))00 +i(eiθ2 e−iθ1)01 |11〉 |00〉 2√2 | i − | i 0.6 (a) 0.5 + i(eiθ1 e−iθ2)10 (1+ei(θ1+θ2))11 ] .(14) 12 − | i− | i 0.4 Thirdly, the correlation between two classical variables 0.2 θ ,θ is measuredby thedifferencein the probabilitiesof 1 2 { } twoqubitsfoundin thesameanddifferentlogicstates. This mission −01 50 −100 −50 0 50 100 150 meansthatthecorrelationfunctionE(θ1,θ2)canbeobtained Trans0.6 (b) |10〉 |01〉 as 0.5 E(θ ,θ ) = P (θ ,θ ) P (θ ,θ ) 0.4 1 2 same 1 2 − diff 1 2 = P (θ ,θ )+P (θ ,θ ) P (θ ,θ ) 00 1 2 11 1 2 01 1 2 0.2 − P (θ ,θ ), (15) 10 1 2 − 0 −150 −100 −50 ω−ω0(MHZ) 50 100 150 whereP00(θ1,θ2) (P01(θ1,θ2), P10(θ1,θ2), P11(θ1,θ2))de- d r notes the probability of two qubits found in the logic state FIG.3: Transmissionspectraofthedrivenresonatorversusthede- 00 12(01 12, 10 12, 11 12). | i | i | i | i tuning∆r =ωd−ωrforBellstates|Φ−i12(a)and|Ψ+i12(b).The Theoretically, the correlation of two classical variables parametersarechosenas(Γ1,Γ2,κ)=2π×(13,4,1)MHz[20]. θ1,θ2 can be described by the operator T = 11 11 + { } | ih | 00 00 10 01 01 01 =σ σ andthusthecor- z1 z2 | ih |−| ih |−| ih | ⊗ relationfunctioniscalculatedas Therefore,ifthetwoSCQsarepreparedatthestate Φ , − 12 | i then two peaks marking respectively 00 and 11 with the E(θ ,θ )= Φ′ T Φ′ =cos(θ +θ ). (16) sameheightwouldbedetectedinthem| eaisured|speictra. Fur- 1 2 12 h −| | −i12 1 2 thermore, if the joint spectral measurements are performed Thus, for the set of classical local variables θ ,θ ,θ′,θ′ , { 1 2 1 2} after the evolution (10), then other two peaks marking re- theso-calledCHSHfunction[3]reads spectively 10 and 01 should be detected in the spectra. This is the|diriect evi|denice showing that the state generated f(|Φ′−i12) = |E(θ1,θ2)+E(θ1′,θ2)+E(θ1,θ2′) above is just the desirable Bell state, i.e., the coherent su- E(θ′,θ′) − 1 2 | perpositionofthestates 00 and 11 , ratherthantheir mix- = cos(θ +θ )+cos(θ′ +θ ) ture. This argument cou|ldibe ver|ifieid by the numerical re- | 1 2 1 2 +cos(θ +θ′) cos(θ′ +θ′). (17) sults shown in Fig. 3. For the typical experimental param- 1 2 − 1 2 | eters (Γ ,Γ ,κ) = 2π (13,4,1)MHz [20], the Fig. 3(a) 1 2 Typically, for one set of classical local variables × shows the steady-state spectral distributions (versus the de- θ ,θ ,θ′,θ′ = π/4,3π/4,π/2,π , the CHSH func- tuning∆ =ω ω )fortheBellstate Φ ,andFig.3(b) { 1 2 1 2} { } r d r − 12 tion[3]iscalculatedas − | i foranotherBellstate Ψ . + 12 | i f(Φ′ )=√2+1>2. (18) | −i12 Obviously, the CHSH-type Bell’s inequality [3] f 2 is B. TestingBell’sinequalityviajointspectralmeasurements ≤ violated. While, for another set of classical local variables θ ,θ ,θ′,θ′ = π/4,0,7π/4,3π/2 , the CHSH func- BeingabletomeasureBellstatesconstitutesagoodentan- {tio1n[32]is1 2} { } glementwitness,butwecaninfactdobetterthanthat. With the generated Bell state Φ , we now show how to test f(Φ′ )=2√2>2. (19) | −i12 | −i12 5 Therefore, in this case the CHSH-type Bell’s inequality [3] 0.5 |11〉 |10〉 |01〉 |00〉 0.5 |11〉 |10〉 |01〉 |00〉 (a) (b) f 2isviolatedmaximally. 0.4 0.426 0.4 0.426 ≤ Theabovetheoreticalpredictionscanbenumericallytested 0.3 0.3 bytheexperimentaljointspectralmeasurements. Indeed,the 0.2 0.2 correlation function in Eq. (15) can be directly calculated 0.1 0.074 0.1 0.074 from the measured transmission spectra of the driven res- on 0 0 onator. For example, for the set of classical local variables missi −150−100 −50 0 50 100 150 −150−100 −50 0 50 100 150 ans0.5 0.5 |11〉 |10〉 |01〉 |00〉 |11〉 |10〉 |01〉 |00〉 Tr (c) 0.426 (d) 0.426 0.5(a) 0.5(b) 0.4 0.4 0.4 0.4 0.426 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.074 0.1 0.074 0.1 0.1 0.074 −1050−100 −50 0 50 100 150 −1050−100 −50 0 50 100 150 mission −1050−100 −50 0 50 100 150 −1050−100 −50 0 50 100 150 ωd−ωr(MHZ) ans0.5 0.5 FIG. 5: Plot of the transmission spectra of the driven resonator Tr0.4(c) 0.426 0.4(d) versus the detuning ∆r = ωd − ωr for the state |Φ′−i12 0.3 0.3 with another set of classical local variables {θ1,θ2,θ1′,θ2′} = 0.25 {π/4,0,7π/4,3π/2}. (a)-(d): thecorrelationfunctionscanbedi- 0.2 0.2 rectlycalculatedas(E(θ1,θ2),E(θ1′,θ2),E(θ1,θ2′),E(θ1′,θ2′)) = 0.1 0.074 0.1 (0.704,0.704,0.704,−0.704). Theparametersarethesameasthat 0 0 inFig.3. −150−100 −50 0 50 100 150 −150−100 −50 0 50 100 150 ω−ω(MHZ) d r FIG.4: Transmissionspectraofthedrivenresonatorversusthede- simplerandeasiertobeexperimentallyrealized. We discuss tuning ∆r = ωd −ωr for the state |Φ′−i12 with one set of clas- itsadvantagesnext. sical local variables {θ1,θ2,θ1′,θ2′} = {π/4,3π/4,π/2,π}. (a)- (d): thecorrelationfunctionscanbedirectlycalculated,(E(θ1,θ2), E(θ1′,θ2), E(θ1,θ2′), E(θ1′,θ2′)) = (−1,−0.704,−0.704,0), ac- cordingtoEq.(15).TheparametersarearethesameasthatinFig.3. IV. DISCUSSIONANDCONCLUSION θ ,θ ,θ′,θ′ = π/4,3π/4,π/2,π ,Fig.4showstherele- v{an1ttr2ans1mis2s}ions{pectra(correspond}ingtothestate Φ′ ) | −i12 We now briefly address the experimental feasibility of versus the detuning of ∆ = ω ω . Here, the parame- r d r our scheme. With the typical experimental parameters − ters are chosen as (Γ ,Γ ,κ) = 2π (13,4,1)MHz [20]. 1 2 (ω ,ω ,ω ,g )=2π (6.442,4.5,4.85,0.133)GHz[19]and × r 1 2 1(2) WiththeFig.4(a)-(d),thecorrelationfunctionsbetweentwo × the amplitude of the drive chosen as ǫ=2π 1.2GHz, we can classicallocalvariablescanbedirectlycalculated(E(θ ,θ ), × 1 2 approximatelyestimate the time neededin our scheme. The E(θ′,θ ),E(θ ,θ′),E(θ′,θ′))=( 1, 0.704, 0.704,0). 1 2 1 2 1 2 − − − required times for realizing the unitary operatons Rx(π/4), ThustheCHSHfunction[3]iscalculatedas R (3π/4)(settingω =2π 4.491GHztosatisfy∆ +Γ = x d a j × 0),R (3π/4)(settingω =2π 4GHz),aniSWAPgate(set- f(|Φ′−i12)=2.408≈√2+1>2. (20) ting∆z =2π 1.18GHzd)aret1×(2)=1.5ns,t4=4.5ns,t3=1.5ns, × and t =50ns, respectively. Experimentally, the time interval This indicates thatthe CHSH-type Bell’s inequality[3] f s ≤ forperformingajointspectralmeasurementintroducedabove 2 is violated. Similarly, for another set of classical lo- isabout40ns[22]. Thus,thetimesforgeneratingaBellstate cal variables θ ,θ ,θ′,θ′ = π/4,0,7π/4,3π/2 , with { 1 2 1 2} { } and confirming its existence are about 60.5ns and 93ns, re- the same experimental parameters, we plot the transmission spectively.Also,thetimeintervalfortestingBell’sinequality spectra of the driven resonator versus the detuning ∆ = r ωd − ωr for the state |Φ′−i12 in Fig. 5. Again, from cscahnebmeeetsotipmearfteodrmasa∼tes1t6e0xnpse.rimFiennatlliys,atbhoeutto3ta1l3.t5imnse,iwnhoicuhr the Fig. 5(a)-(d) the correlation functions are directly cal- culated as (E(θ ,θ ), E(θ′,θ ), E(θ ,θ′), E(θ′,θ′)) = isstillshorterthanthequbit’srelaxationanddephasingtimes, 1 2 1 2 1 2 1 2 e.g., T =7.3µs and T =500ns[28]. It is clear, however, that (0.704,0.704,0.704, 0.704). As a consequence, we easily 1 2 − this is not enough to close the locality loophole. Therefore, obtaintheCHSHfunction[3]: ourproposalshouldbe experimentallyrealized with the cur- f(Φ′ )=2.816 2√2>2. (21) renttechniques. | −i12 ≈ In conclusion, we have proposed a simple and feasible Obviously,theCHSH-typeBell’sinequality[3]f 2issig- method to test Bell’s inequality with experimentally- ≤ nificantlyviolated. demonstrated circuit QED system by joint spectral mea- Finally, we emphasize that compared with the previous surements. At first, an alternative method to generate an schemes for testing Bell’s inequality (see, e.g., [7, 20]) with ideal Bell state is proposedwith an iSWAP gate and several superconducting qubits, the present proposal seems much single-qubitgates[25]. Thenwe presentasimple methodto 6 confirmthegenerationoftheBellstatewithtwosingle-qubit out from the measured transmission spectra of the driven unitary operations and two projective measurements on two resonator. As a result, the present proposal seems much qubits. With the experimental joint spectral measurements, simpler and easier to be experimentally realized by joint the confirmation can be easily achieved. Further, with two spectralmeasurements. Webelievethatourmethodcouldbe Hadamard-like operations constructed with single-qubit generalizedtotestBell-likeinequalitiesformulti-qubitstates gates [25], two classical variables θ ,θ can be encoded inastraightforwardway. 1 2 { } intothegeneratedBellstate. Forthetypicalsetsofclassical local variables θ ,θ′,j = 1,2 , the correlation functions { j j } in Bell’s inequalitycan be directly read outby jointspectral Acknowledgements: This work was supportedin part by measurements because each detected peak marks one of the Natural Science Foundation of China under Grant Nos. the logics states and its relative height corresponds to the 10874142and90921010,theFundamentalResearchProgram superposed probability in the detected two-qubit states. In of China under Grant No. 2010CB923104, and the Fun- this way, the Bell’s inequality could be efficiently tested. damental Research Funds for the Central Universities under Compared with the previous schemes for testing Bell’s GrantNos. SWJTU09CX078and2010XS47. V.V.acknowl- inequality,theadvantageofourproposalisthatthedesirable edges financial support from the Engineering and Physical coincided measurements on the two qubits can be directly SciencesResearchCouncilinUnitedKingdomaswellasthe realized by joint spectral measurements and the nonlocal NationalResearchFoundationandtheMinistryofEducation correlations between the distant qubits can be directly read inSingapore. [1] A. Eistein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 [16] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. John- (1935). son, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, [2] J.S.Bell,Physics1,195(1964). A. Wallraff, A.Blais, M. H. Devoret, S. M. Girvin, and R.J. [3] J.F.Clauser, M.A.Horne, A.Simony, andR.A.Holt, Phys. Schoelkopf,Nature(London)449,443(2007);M.A.Sillanpa¨a¨, Rev.Lett.23,880(1969). J.I.Park,andR.W.Simmonds,ibid.449,438(2007). [4] See,eg.,G.Wilhs,T.Jennewein,C.Simon,H.Weinfurter,and [17] L. DiCarlo, J. M. Chow, J.M. Gambetta, L. S.Bishop, B. R. A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998); A. Aspect, J. Johnson, D. I.Schuster, J. Majer, A.Blais, L. Frunzio, S.M. Dalibard,andG.Roger,ibid49,1804(1982);W.Title,J.Bren- Girvin,andR.J.Schoelkopf,Nature(London)460,240(2009). del,H.Zbinden,andN.Gisin,ibid81,3563(1998). [18] D.I.Schuster,A.A.Houck, J.A.Schreier,A.Wallraff,J.M. [5] M. A. Rowe, D. Kiepinski, V. Meyer, C. A. Sackett, W. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Itano, C. Monroe, and D. J. Wineland, Nature (London) 409, Devoret,S.M.Girvin,andR.J.Schoelkopf,Nature(London) 791(2001). 445,515(2007). [6] D.L.Moehring, M.J.Madsen, B.B.Blinov, andC.Monroe, [19] S.Filipp, P.Maurer, P.J.Leek, M.Baur, R.Bianchetti, J.M. Phys.Rev.Lett.93,090410(2004). Fink, M.Go¨ppl, L.Steffen, J.M. Gambetta, A.Blais, andA. [7] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Wallraff,Phys.Rev.Lett.102,200402(2009). Lucero, M. Neeley, A.D.O’Connell, D.Sank, M. Weides, J. [20] J.M.Chow, L.DiCarlo,J.M.Gambetta, A.Nunnenkamp. L. Wenner, A. N. Cleland, and J. M. Martinis, Nature (London) S.Bishop,L.Frunzio,M.H.Devoret,S.M.Girvin,andR.J. 461,504(2009). Schoelkopf,Phys.Rev.A81,062325(2010). [8] Y.Hasegawa,R.Loidl,G.Badurek, M.Baron,andH.Rauch, [21] M.D.Reed,L.DiCarlo,B.R.Johnson,L.Sun,D.I.Schuster, Nature(London)425,45(2003). L.Frunzio,andR.J.Schoelkopf,Phys.Rev.Lett.105,173601 [9] A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. (2010). Schoelkopf,Phys.Rev.A69,062320(2004). [22] R. Bianchetti, S. Filipp, M. Go¨ppl, P. J. Leek, L. Steffen, A. [10] A.Wallraff, D.I.Schuster, A.Blais, L.Frunzlo, R.S.Huang, Blais,andA.Wallraff,Phys.Rev.A80,043840(2009). J.Majer,S.Kumar,S.M.Girvin,andR.J.Schoelkopf,Nature [23] L.F.Wei,J.S.Huang,X.L.Feng,Z.D.Wang,andC.H.Oh, (London)431,162(2004). arXiv:1005.2470 [11] D.I.Schuster,A.Wallraff,A.Blais,L.Frunzio,R.-S.Huang, [24] J.S.Huang,L.F.Wei,andC.H.Oh,arXiv:1009.4252 J.Majer, S.M.Girvin,andR.J.Schoelkopf, Phys.Rev.Lett. [25] A.Blais,J.Gambetta,A.Wallraff,D.I.Schuster,S.M.Girvin, 94,123602(2005). M.H.Devoret,andR.J.Schoelkopf,Phys.Rev.A75,032329 [12] P.J.Leek,J.M.Fink,A.Blais,R.Bianchetti,M.Goppl,J.M. (2007). Gambetta,D.I.Schuster,L.Frunzio,R.J.Schoelkopf,andA. [26] C.L.Hutchison,J.M.Gambetta,A.Blais,andF.K.Wilhelm, Wallraff,Science318,1889(2007). Can.J.Phys.87,225(2009). [13] A.Fragner,M.Goppl,J.M.Fink,M.Baur,R.Bianchetti,P.J. [27] L.F.Wei,Y.X.Liu,andF.Nori,Phys.Rev.Lett.96,246803 Leek,A.Blais,andA.Wallraff,Science322,1357(2008). (2006). [14] A.A.Houck,D.I.Schuster,J.M.Gambetta,J.A.Schreier,B. [28] A.Wallraff,D.I.Schuster,A.Blais,L.Frunzio,J.Majer,M.H. R.Johnson, J.M.Chow, L.Frunzio,J.Majer,M.H.Devoret, Devoret, S.M. Girvin, andR. J.Schoelkopf, Phys.Rev. Lett. S.M.Girvin,andR.J.Schoelkopf,Nature(London)449,328 95,060501(2005). (2007). [29] L. F. Wei, Y. X. Liu, and F. Nori, Phys. Rev. B 72, 104516 [15] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. (2005); L.F.Wei, Y. X.Liu, M. J.Storcz, andF.Nori, Phys. Lucero,M.Neeley,A.D.O’Connell,H.Wang,J.M.Martinis, Rev.A73,052307(2006). A.N.Cleland,Nature(London)454,310(2008).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.