Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 8-2016 Test cell set-up to enable drive-cycle testing of a variable valve actuation enabled camless diesel engine Alexander Harrison Taylor Purdue University Follow this and additional works at:https://docs.lib.purdue.edu/open_access_theses Part of theAutomotive Engineering Commons, and theMechanical Engineering Commons Recommended Citation Taylor, Alexander Harrison, "Test cell set-up to enable drive-cycle testing of a variable valve actuation enabled camless diesel engine" (2016).Open Access Theses. 1013. https://docs.lib.purdue.edu/open_access_theses/1013 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30Updated(cid:20)(cid:21)(cid:18)(cid:21)(cid:25)(cid:18)(cid:21)(cid:19)(cid:20)(cid:24) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By AlexanderHarrisonTaylor Entitled TestCellSet-UptoEnableDrive-CycleTestingofaVariableValveActuationEnabledCamlessDieselEngine For the degree of MasterofScienceinMechanicalEngineering Is approved by the final examining committee: Dr.GregoryM.Shaver Chair Dr.StevenF.Son Co-chair Dr.PeterH.Meckl Co-chair To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s“Policy of Integrity in Research” and the use of copyright material. Dr.GregoryM.Shaver Approved by Major Professor(s): Dr.JayP.Gore 7/18/2016 Approved by: Head of the Departmental Graduate Program Date TEST CELL SET-UP TO ENABLE DRIVE-CYCLE TESTING OF A VARIABLE VALVE ACTUATION ENABLED CAMLESS DIESEL ENGINE A Thesis Submitted to the Faculty of Purdue University by Alexander Harrison Taylor In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2016 Purdue University West Lafayette, Indiana ii In memory of my brother, Sgt. Ronald Evans Taylor. iii ACKNOWLEDGMENTS Thank you to Dr. Gregory M. Shaver for the opportunity to do such exciting work on what is surely a good fit for both my career interests and personality. He has done an excellent job of building an outstanding team of bright, engineering graduate students who are a pleasure to work with. I am grateful to my fellow students: Aswin Ramesh, Cody Allen, Dheeraj Gos- ala, Kalen Vos, Lucius Wang, Matt Van Voorhis, Mrunal Joshi, Soumya Nayyar and Sylvia Lu for collectively having answers to seemingly all of my research and course related questions. Lastly, I’d like to acknowledge and thank the shop staff at Her- rick Laboratories, Bob Brown, David Meyer and Ron Evans, who assisted with the experimental setup. iv TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Test Cell Setup . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Drive-cycle Analysis . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Cylinder Deactivation over a Drive-cycle . . . . . . . . . . . 7 1.3 Experimental Hardware . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Air Handling & Combustion Air . . . . . . . . . . . . . . . . 8 1.3.2 Heat Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 Dynamometer . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.4 Engine Hardware . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.5 Variable Valve Actuation System . . . . . . . . . . . . . . . 16 1.3.6 Data Acquisition System . . . . . . . . . . . . . . . . . . . . 17 1.3.7 Emergency Shutdown Interlocks . . . . . . . . . . . . . . . . 18 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.1 Test Cell Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.2 Charge Air Cooler Water Loop . . . . . . . . . . . . . . . . 20 1.4.3 Conditioned Combustion Air . . . . . . . . . . . . . . . . . . 20 1.4.4 Emergency Shutdown Interlocks . . . . . . . . . . . . . . . . 20 1.4.5 Fuel Metering Unit . . . . . . . . . . . . . . . . . . . . . . . 21 1.4.6 Cylinder Deactivation over Drive-Cycle . . . . . . . . . . . . 21 2. TEST CELL SET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1 Test Cell Validation with a Stock Engine . . . . . . . . . . . . . . . 22 2.1.1 Data Acquisition & Noise . . . . . . . . . . . . . . . . . . . 23 2.1.2 Heat Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.3 Air Handling & Combustion Air . . . . . . . . . . . . . . . . 28 2.1.4 Fuel Metering . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.5 Drive-Cycle Testing . . . . . . . . . . . . . . . . . . . . . . . 32 v Page 2.2 Drive-Cycle Statistical Analysis . . . . . . . . . . . . . . . . . . . . 33 2.2.1 Matlab Code for Drive-Cycle Statistical Analysis . . . . . . 33 2.2.2 Analysis Results for the Cammed Engine . . . . . . . . . . . 36 2.3 Safety & Interlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4 Test Cell Improvements Since Installation of the VVA Enabled Engine 40 2.4.1 Heat Exchange, Air Handling & Other Utilities . . . . . . . 40 2.4.2 Rubberized Driveshaft to Allow for Cylinder Deactivation Har- monics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.3 Exhaust Aftertreatment Design & Part Selection . . . . . . 48 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3. VARIABLE VALVE ACTUATED SIX AND THREE-CYLINDER OPER- ATION OVER A DRIVE-CYCLE . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Six-Cylinder Operation with Variable Valve Actuation . . . . . . . 53 3.2 Enabling Cylinder Deactivation . . . . . . . . . . . . . . . . . . . . 54 3.3 Effects on Turbine Outlet Temperature . . . . . . . . . . . . . . . . 56 3.4 Effects on Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Comparison of 6 and 3 Cylinder Emissions . . . . . . . . . . . . . . 60 3.6 VariableValveActuatedSixandThreeCylinderDrive-cycleStatistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 67 4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 A. EXPANDED FTP-72 & HD-FTP REGRESSION RESULTS FOR THE CAMMED ENGINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 B. EXPANDED HD-FTP REGRESSION RESULTS FOR THE VVA ENGINE 76 vi LIST OF TABLES Table Page 1.1 PermissibleCriteriaforOmittingPointsfromDuty-CycleRegressionStatis- tics from EPA Title 40 CFR 1065.514. . . . . . . . . . . . . . . . . . . 6 1.2 Default Statistical Criteria for Validating Duty Cycles from EPA Title 40 CFR 1065.514. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Summary of Signal Comparisons to the Old Test Cell. . . . . . . . . . . 27 2.2 FTP-72 Speed Regression Analysis Results for the Cammed Engine. . . 36 2.3 FTP-72 Torque Regression Analysis Results for the Cammed Engine. . 36 2.4 FTP-72 Power Regression Analysis Results for the Cammed Engine. . . 37 2.5 HD-FTP Speed Regression Analysis Results for the Cammed Engine. . 37 2.6 HD-FTP Torque Regression Analysis Results for the Cammed Engine. 38 2.7 HD-FTP Power Regression Analysis Results for the Cammed Engine. . 38 2.8 Engine Resonance at Numbers of Active Various Cylinders, Provided by the Driveshaft Manufacturer. . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Fuel Consumption over the HD-FTP for both Six and Three-Cylinder- Operation at Idle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Cumulative Engine-Out NOx Production over the HD-FTP for both Six and Three-Cylinder-Operation at Idle. . . . . . . . . . . . . . . . . . . 62 3.3 HD-FTP Speed Regression Analysis Results for Six and Three-Cylinder- Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4 HD-FTP Torque Regression Analysis Results for Six and Three-Cylinder- Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 HD-FTP Power Regression Analysis Results for Six and Three-Cylinder- Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 vii LIST OF FIGURES Figure Page 1.1 The HD-FTP reaches 850 ft-lbs of torque a maximum speed of 2600 RPM over a 1200 second test period. . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The FTP-72 Drive-Cycle has a Maximum Torque of 569 ft-lbs and Speed of 2106 RPM Over a 1,371 Second Test Period. . . . . . . . . . . . . . 3 1.3 The Test Cell Ventilation Interface has Inputs of On/Off and Tempera- ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 The Combustion Air Interface has Inputs of On/Off, Temperature and Percent Relative Humidity. . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 The CAC Cooling (Chilled Water) Interface has Inputs of On/Off, Tem- perature and Differential Pressure. . . . . . . . . . . . . . . . . . . . . 11 1.6 The 30% Glycol Loop has Set Points of Temperature and Differential Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 The Dynamometer is Air-Cooled and Ingests Air via a Filter on the Top Left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8 The Bottom Part of the Engine (Shown in Red) is an Stock 6.7L Cummins ISB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.9 The Turbocharged Cummins ISB Engine Allows for Variable EGR Flow and Turbocharger Geometry. . . . . . . . . . . . . . . . . . . . . . . . 15 1.10 Valve Actuation is Commanded based on Crankshaft Position, Which is an Input to the Controller (dSPACE). . . . . . . . . . . . . . . . . . . 17 1.11 A Hydraulic Pump in the Basement Provides 3,000 PSIG Hydraulic Fluid to the VVA System in the Test Cell. . . . . . . . . . . . . . . . . . . . 18 1.12 A Single Emergency Stop Button Shuts Down the Hydraulic Pump, Fuel Pump, FMU, Engine and Dynamometer. . . . . . . . . . . . . . . . . 19 2.1 AnUnmodified6.7LCumminsISBusedforProvingOutoftheTestCell. 23 2.2 The New Test Cell’s LFE and TOP Readings had Noisier Signals. . . 24 2.3 Isolating the Pressure Transducers with Rubber Clips Removed the Signal Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Description: