ebook img

Terrestrial Biosphere-Atmosphere Fluxes PDF

519 Pages·2014·13.848 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Terrestrial Biosphere-Atmosphere Fluxes

B M Fluxes of trace gases, water, and energy between the terrestrial Russell Monson a o biosphere and the atmosphere govern the state and fate of these l d n two coupled systems. This “breathing of the biosphere” is controlled o s Dennis Baldocchi by a large number of interacting physical, chemical, biological and c o c n ecological processes. In this integrated and interdisciplinary book, the h authors provide the tools to understand and quantitatively analyze i & fl uxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapor, and methane. T e The book fi rst introduces the fundamental principles that affect the r supply and demand for trace gas exchange at the leaf and soil scales: r e thermodynamics, diffusion, turbulence, and physiology. It then builds s on these principles to model the exchange of water, carbon dioxide, t terpenes, and stable isotopes at the ecosystem scale. Detailed r i mathematical derivations of commonly used relations in biosphere– a l atmosphere interactions, are provided for reference in Appendices. B i An accessible introduction to this essential component of Earth o system science for graduate students, this book is also a key resource s p for researchers in many related fi elds such as atmospheric science, h Terrestrial hydrology, meteorology, climate science, biogeochemistry, and e ecosystem ecology. r e - A Biosphere-Atmosphere t m o Fluxes s p h e r e monson F l Short online mathematical supplement guides u monson students through basic mathematical principles, x e from calculus rules of derivation and integration, s to statistical moments and coordinate rotation. Cover illustration: connectivity among the geosphere, biosphere, and atmosphere occurs through multiple fl uxes and associated resistances arranged in series and in parallel. Image designed by Thomas Zukowski, Lost Nomad Media. Cover designed by Zoe Naylor i E:/MOOD//9781107040656HTL.3D [1–2]27.9.20136:44AM Terrestrial Biosphere-Atmosphere Fluxes Fluxes of trace gases, water, and energy between the terrestrial biosphere and the atmospheregovernthestateandfateofthesetwocoupledsystems.This“breathingofthe biosphere”iscontrolledbyalargenumberofinteractingphysical,chemical,biological,and ecologicalprocesses.Inthisintegratedandinterdisciplinarybook,theauthorsprovidethe toolstounderstandandquantitativelyanalysefluxesofenergy,tracegasessuchascarbon dioxide,watervapour,methane,andorganiccompounds,suchasterpenes. Thebookfirstintroducesthefundamentalprinciplesthataffectthesupplyanddemandfor trace gasexchange attheleafandsoil scales: thermodynamics,diffusion,turbulence,and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes, and stable isotopes at the ecosystem scale. Detailed mathematical derivations,ofcommonlyusedrelationsinbiosphere-atmosphereinteractions,areprovided forreferenceinAppendices. An accessible introduction for graduate students to this essential component of earth systemscience,thisbookisalsoakeyresourceforresearchersinmanyrelatedfieldssuchas atmospheric science, hydrology, meteorology, climate science, biogeochemistry, and ecosystemecology. Onlineresourcesatwww.cambridge.org/monson * Short online mathematical supplement guides students through basic mathematical principles, from calculus rules ofderivation and integration, tostatistical moments and coordinaterotation. Russell Monson is Louise Foucar Marshall Professor at the University of Arizona, Tucson and Professor Emeritus at the University of Colorado, Boulder. His research focuses on photosynthetic metabolism, the production of biogenic volatile organic compounds and plantwaterrelationsfromthescaleofchloroplaststotheglobe.Hehasreceivednumerous awards,includingtheAlexandervonHumboldtFellowship,theJohnSimonGuggenheim Fellowship and the Fulbright Senior Fellowship, and was also appointed Professor of Distinction in the Department of Ecology and Evolutionary Biology at the University of Colorado.ProfessorMonsonisafellowoftheAmericanGeophysicalUnionandhasserved onadvisoryboardsfornumerousnationalandinternationalorganizationsandprojects.Heis Editor-in-ChiefofthejournalOecologiaandhasover200peer-reviewedpublications. DennisBaldocchiisaprofessorofBiometeorologyattheUniversityofCalifornia,Berkeley. Hisresearchfocusesonphysical,biological,andchemicalprocessesthatcontroltracegas and energy exchange between vegetation and the atmosphere and the micrometeorology ii E:/MOOD//9781107040656HTL.3D [1–2]27.9.20136:44AM of plant canopies. Awards received include the Award for Outstanding Achievement in BiometeorologyfromtheAmericanMeteorologicalSociety(2009),andtheFacultyAward for Excellence in Postdoctoral Mentoring (2011) amongst others from the University of California. Professor Baldocchi is a Fellow of the American Geophysical Union and is a memberofadvisoryboardsfornationalandinternationalorganizationsandprojects.Heis Editor-in-ChiefoftheJournalofGeophysicalResearch:Biogeosciencesandhasover200 peer-reviewedpublications. iii E:/MOOD//9781107040656TTL.3D [3–3]27.9.20136:34AM Terrestrial Biosphere-Atmosphere Fluxes RUSSELL MONSON UniversityofArizona DENNIS BALDOCCHI UniversityofCalifornia,Berkeley iv E:/MOOD//9781107040656IMP.3D [4–4]27.9.20136:43AM UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107040656 ©RussellMonsonandDennisBaldocchi2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata ISBN978-1-107-04065-6Hardback Additionalresourcesforthispublicationatwww.cambridge.org/monson CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. v E:/MOOD//9781107040656TOC.3D [5–10]27.9.20136:35AM Contents Preface pagexi Listofsymbols xiv 1 Thegeneralnatureofbiosphere-atmospherefluxes 1 1.1 Biosphere-atmosphereexchangeasabiogeochemicalprocess 2 1.2 Flux–aunifyingconceptinbiosphere-atmosphereinteractions 3 1.3 Non-lineartendenciesinbiosphere-atmosphereexchange 5 1.4 Modeling–atoolforprognosisinecosystem-atmosphereinteractions 10 1.5 Ahierarchyofprocessesinsurface-atmosphereexchange 12 2 Thermodynamics,work,andenergy 15 2.1 Thermodynamicsystemsandfluxesasthermodynamicprocesses 16 2.2 Energyandwork 17 2.3 Freeenergyandchemicalpotential 20 2.4 Heatandtemperature 23 2.5 Pressure,volume,andtheidealgaslaw 26 2.6 Adiabaticanddiabaticprocesses 28 2.7 TheNavier–Stokesequations 30 2.8 Electromagneticradiation 31 2.9 Beer’sLawandphotontransferthroughamedium 35 3 Chemicalreactions,enzymecatalysts,andstableisotopes 38 3.1 Reactionkinetics,equilibrium,andsteadystate 39 3.2 Theenergeticsofchemicalreactions 41 3.3 Reduction-oxidationcoupling 46 3.4 Enzymecatalysis 50 3.5 Stableisotopesandisotopeeffects 55 Appendix3.1 FormalderivationsoftheArrheniusequationandtheQ model 60 10 Appendix3.2 DerivationoftheMichaelis–Mentenmodelofenzymekinetics 62 4 Controlovermetabolicfluxes 64 4.1 Theprincipleofsharedmetaboliccontrol 65 4.2 Controloverphotosyntheticmetabolism 68 4.3 Photorespiratorymetabolism 80 4.4 Tricarboxylicacidcyclerespiration(“darkrespiration”)inplants 82 4.5 C photosynthesis 85 4 v vi E:/MOOD//9781107040656TOC.3D [5–10]27.9.20136:35AM vi Contents 5 ModelingthemetabolicCO flux 89 2 5.1 ModelingthegrossrateofCO assimilationandphotorespiration 90 2 5.2 Modelingdarkrespiration(R ) 96 d 5.3 NetversusgrossCO assimilationrate 100 2 5.4 Thescaledconnectionsamongphotosyntheticprocesses 109 6 Diffusionandcontinuity 111 6.1 Moleculardiffusion 112 6.2 Diffusionthroughporesandinmulti-constituentgasmixtures 121 6.3 Fluxdivergence,continuity,andmassbalance 131 Appendix6.1 AthermodynamicderivationofFick’sFirstLaw 133 7 Boundarylayerandstomatalcontroloverleaffluxes 136 7.1 Diffusivedrivingforcesandresistancesinleaves 137 7.2 Fluid-surfaceinteractionsandboundarylayerresistance 139 7.3 Stomatalconductance 144 7.4 TheleafinternalconductancetoCO flux 166 2 7.5 Evolutionaryconstraintonleafdiffusivepotential 168 Appendix7.1 Athermodynamicderivationofdiffusiveconductances 169 Appendix7.2 DerivationoftheternarystomatalconductancetoCO ,H O, 2 2 anddryair 169 Appendix7.3 DerivationoftheLeuningandMonteithformsoftheBWBmodel 171 8 Leafstructureandfunction 173 8.1 Leafstructure 174 8.2 Convergentevolutionasasourceofcommonpatternsin leafstructureandfunction 177 8.3 Photontransportinleaves 181 8.4 CO transportinleaves 189 2 8.5 Watertransportinleaves 191 8.6 Theerrorcausedbyaveragingnon-linearitesinthefluxrelationsofleaves 193 8.7 Modelswithexplicitdescriptionsofleafgradients 198 Appendix8.1 Derivationofamodeldescribingleafstructureandits relationtonetCO assimilationrate 200 2 9 Watertransportwithinthesoil-plant-atmospherecontinuum 203 9.1 Watertransportthroughsoil 204 9.2 Waterflowthroughroots 209 9.3 Watertransportthroughstems 211 9.4 Thehydraulicconductanceofleavesandaquaporins 217 9.5 Modelingthehydraulicconductanceandassociatedeffectsofembolism 218 9.6 Hydraulicredistribution 220 vii E:/MOOD//9781107040656TOC.3D [5–10]27.9.20136:35AM vii Contents 10 Leafandcanopyenergybudgets 222 10.1 Netradiation 223 10.2 Sensibleheatexchangebetweenleavesandtheirenvironment 227 10.3 Latentheatexchange,atmospherichumidity,andtemperature 229 10.4 Surfacelatentheatexchangeandthecombinationequation 232 Appendix10.1 DerivationoftheClausius–Clapeyronrelation 237 Appendix10.2 Athermodynamicapproachtoderivationofthe Penman–Monteithequation 239 Appendix10.3 DerivationoftheisothermalformofthePenman–Monteith equation 242 11 Canopystructureandradiativetransfer 244 11.1 Thestructureofcanopies 245 11.2 Thesolarradiationregimeofcanopies 250 11.3 Remotesensingofvegetationstructureandfunction 272 Appendix11.1 Reconcilingtheconceptsofstatisticalprobabilityand canopyphotoninterception 277 Appendix11.2 Thetheoreticallinkagebetweentheprobabilityofphotonflux penetration(P0)andtheprobabilityofasunfleck(P )ataspecific sf canopylayer 278 12 Verticalstructureandmixingoftheatmosphere 280 12.1 Structureoftheatmosphere 281 12.2 Atmosphericbuoyancy,potentialtemperature,andtheequationofstate 287 12.3 Atmosphericstability 290 Appendix12.1 Derivationofpotentialtemperatureandconversionfrom volumetopressureintheconservationofenergyequation 294 13 Windandturbulence 296 13.1 Thegeneralnatureofwind 297 13.2 Turbulentwindeddies 298 13.3 Shear,momentumflux,andthewindprofilenearthesurface 301 13.4 Turbulencekineticenergy(TKE) 307 13.5 Turbulencespectraandspectralanalysis 310 13.6 Dimensionlessrelationships:theReynoldsnumberanddragcoefficient 314 13.7 Theaerodynamiccanopyresistance 315 13.8 EulerianandLagrangianperspectivesofturbulentmotions 316 13.9 Waves,nocturnaljets,andkatabaticflows 319 Appendix13.1 RulesofaveragingwithextendedreferencetoReynolds averaging 323 Appendix13.2 DerivationoftheReynoldsshearstress 324 Appendix13.3 Derivationofthelogarithmicwindprofile 325 viii E:/MOOD//9781107040656TOC.3D [5–10]27.9.20136:35AM viii Contents 14 Observationsofturbulentfluxes 327 14.1 Turbulentfluxesintheatmosphericsurfacelayer 328 14.2 Theeffectofaplantcanopyonatmosphericturbulence 330 14.3 Turbulentfluxesabovecanopies 337 14.4 Mesoscalefluxes 343 Appendix14.1 DerivationofMonin–Obukhovsimilarityrelationships 347 Appendix14.2 Derivationoftheconservationequationforcanopyflux 349 15 Modelingoffluxesatthecanopyandlandscapescales 352 15.1 Modelingcanopyfluxes 353 15.2 Massbalance,dynamicboxmodels,andsurfacefluxes 362 15.3 Eulerianperspectivesincanopyfluxmodels 365 15.4 Lagrangianperspectivesincanopyfluxmodels 368 Appendix15.1 Derivationofthemodelforplanetaryboundarylayer (PBL)scalarbudgetsinthefaceofentrainment 371 16 SoilfluxesofCO ,CH ,andNO 373 2 4 x 16.1 Thedecompositionofsoilorganicmatter 373 16.2 Controlbysubstrateoversoilrespirationrate 379 16.3 Controlbyclimateoversoilrespirationrate 381 16.4 Couplingofsoilrespirationtonetprimaryproductionandimplications forcarboncyclinginthefaceofglobalchange 384 16.5 Methaneemissionsfromsoils 385 16.6 Thefluxesofnitrogenoxidesfromsoils 390 17 Fluxesofbiogenicvolatilecompoundsbetweenplantsandtheatmosphere 395 17.1 ThechemicaldiversityofBVOCs 396 17.2 ThebiochemicalproductionofBVOCs 399 17.3 EmissionofmetabolicNH andNO fromplants 403 3 2 17.4 StomatalcontrolovertheemissionofBVOCsfromleaves 404 17.5 ThefateofemittedBVOCsintheatmosphere 406 17.6 Formationofsecondaryaerosolparticlesintheatmosphere 408 Appendix17.1 ReactionsleadingtotheoxidationofBVOCstoform troposphericO 412 3 18 Stableisotopevariantsastracersforstudyingbiosphere-atmosphereexchange 415 18.1 StableisotopediscriminationbyRubiscoandatotherpointsinplantcarbon metabolism 416 18.2 Fractionationofstableisotopesinleavesduringphotosynthesis 418 18.3 FractionationoftheisotopicformsofH2Oduringleaftranspiration 420 18.4 Isotopicexchangeof18Oand16ObetweenCO andH Oinleaves 421 2 2 18.5 AssessingtheisotopicsignatureofecosystemrespiredCO –the“Keeling 2 Plot” 423 ix E:/MOOD//9781107040656TOC.3D [5–10]27.9.20136:35AM ix Contents 18.6 TheinfluenceofecosystemCO exchangeontheisotopiccompositionof 2 atmosphericCO2 424 Appendix18.1 DerivationoftheFarquharetal.(1982)modeland augmentationsforleafcarbonisotopediscrimination 429 Appendix18.2 DerivationoftheleafformoftheCraig–Gordonmodel 432 References 434 Index 473 Supplementavailableatwww.cambridge.org/monson Supplement1:Mathematicalconcepts

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.