ebook img

Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin PDF

15 Pages·2010·1.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin

OrganicGeochemistryxxx(2010)xxx–xxx ContentslistsavailableatScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects César Menor-Salvána,*, Maria Najarrob, Francisco Velascoc, Idoia Rosalesb, Fernando Tornosb, Bernd R.T. Simoneitd,e aCentrodeAstrobiología(CSIC-INTA),28850TorrejóndeArdoz,Spain bInstitutoGeológicoyMinerodeEspaña(IGME),RiosRosas23,28003Madrid,Spain cUniversidaddelPaísVasco,DepartamentoMineralogíayPetrología,Apdo.644,48080Bilbao,Spain dCOGER,KingSaudUniversity,Riyadh11451,SaudiArabia eDepartmentofChemistry,OregonStateUniversity,Corvallis,OR97331,USA a r t i c l e i n f o a b s t r a c t Articlehistory: ThecompositionofterpenoidsfromwellpreservedCretaceousfossilresinsandplanttissuesfromthe Received22June2010 amberbearingdepositsofElSoplaoandReocíninCantabria(northernSpain)havebeenanalyzedusing Accepted30June2010 gaschromatography–massspectrometryandtheresultsarediscussedusingtheterpenoidcomposition Availableonlinexxxx ofextantconifersasareference.Amberispresentatmanyhorizonswithintwounitsofcoastaltoshallow marinesiliciclasticsofAlbianandCenomanianage.Thefossilresinsareassociatedwithblackamber(jet) andabundant,wellpreservedplantcuticlecompressions,especiallythoseoftheextinctconifergenus Frenelopsis(Cheirolepidiaceae). Wereportthemolecularcharacterizationoftwotypesofamberwithdifferentbotanicalorigins.Oneof themischaracterizedbythesignificantpresenceofphenolicterpenoids(ferruginol,totarolandhinokiol) andpimaric/isopimaricacids,aswellastheirdiageneticproducts.Thepresenceofphenolicditerpenoids togetherwiththelackofabieticanddehydroabieticacidsexcludesbothPinaceaeandAraucariaceaeas sourcesfor thistype ofamber. The biological diterpenoid composition issimilar to that observed for extantCupressaceae.Thesecondtypeofamberischaracterizedbytheabsenceofphenolicterpenoids andotherspecificbiomarkers.Someterpenoidswithuncertainstructureweredetected,aswellasthe azulenederivativeguaiazulene.OurresultssuggestthattheamberfromCantabriacouldbefossilized resinfromFrenelopsisandotherundeterminedbotanicalsources.Thebiologicalterpenoidassemblage confirmsachemosystematicrelationshipbetweenFrenelopsisandmodernCupressaceae. (cid:2)2010ElsevierLtd.Allrightsreserved. 1.Introduction Analysis of the chemical composition of fossil resins is not straightforward, because the original biochemical fingerprints of Amberisfossilizedresinproducedfromtheexudatesofconifers theresinsareusuallymodifiedduringdiagenesis,withthebioterp- andcertainangiospermsandisconsideredtobeoneofthefewfos- enoids (unmodified biosynthetic natural products) being trans- sil deposits of exceptional preservation (Konservat Lagerstätten), formed into geoterpenoids (diagenetic products of degraded because it permits the conservation of fossil organisms with all bioterpenoidsthatarefoundinamberandfossilplanttissues;Otto their delicate anatomical details. Fossil resins not only preserve etal.,2007).Despitethesediageneticalterations,geoterpenoidsre- the anatomy of fossil life forms that were trapped as biological tainthebasicskeletalstructuresoftheirbiologicalprecursorsand inclusions, but also constitute a valuable source of information canbeusedasmolecularmarkers(biomarkers;Petersetal.,2005; about their own botanical origin, ancient terrigenous ecosystems Marynowskietal.,2007).Coniferssynthesizemainlyditerpenoids, and climatic change by means of their chemical composition whichare,alongwithsesquiterpenoids,thecompoundsthatpro- (AndersonandCrelling,1995). videthebestresultsasdiagnosticbiomarkersofconifersandtheir resins(OttoandWilde,2001).Amongthediterpenoidspreserved in amber, labdane derivatives and non-phenolic abietane diage- * Correspondingauthor.Tel.:+349152064026458;fax:+34915201621. netic derivatives have the most limited chemotaxonomic value, E-mailaddresses:[email protected],[email protected](C.Menor-Salván),m.na as they occur in all conifer families. On the other hand, phenolic [email protected](M.Najarro),[email protected](F.Velasco),[email protected] (I.Rosales),[email protected](F.Tornos). terpenoids, such as ferruginol and totarol, are produced only by 0146-6380/$-seefrontmatter(cid:2)2010ElsevierLtd.Allrightsreserved. doi:10.1016/j.orggeochem.2010.06.013 Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 2 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx themembersofthefamiliesCupressaceaeandPodocarpaceae(Cox omybasedonmodernresincompositionsandrelatedterpenoids etal.,2007).Therefore,thechemotaxonomicvalueofthesecom- foundinamberassociatedfossils. poundsisveryhighandtheirpresenceinamberprovidesveryuse- ful palaeobotanical information. Although the preservation potentialofpolarbiomarkersisconsideredtobelow(Ottoetal., 2.Samplesandmethods 2007), the oldest polar diterpenoids have been identified in ex- tracts of Middle Jurassic fossil conifer wood from Poland (Mary- 2.1.Geologicalbackground nowski et al., 2007), and diterpenoid derivatives could also be liberated from a Carboniferous amber by pyrolysis (Bray and TheanalyzedsamplesbelongtotheCretaceoussuccessionatthe Anderson,2009). northwestern margin of the Basque-Cantabria Basin in northern Recently,anewCretaceousamberdepositwithexquisite,well Spain.DuringtheCretaceous,theevolutionofthisbasinwascon- preserved fossil organisms, mostly insects, has been discovered trolledbyextensional,andperhapsstrike-slip,deformationassoci- innorthernSpain(RábagovillageinElSoplaoterritory,Cantabria; atedwiththeopeningoftheNorthAtlanticOceanandtheBayof Menor-Salvánetal.,2009;Najarroetal.,2009).Basedonprelimin- Biscay(e.g.LePichonandSibuet,1971;Rat,1988;García-Mondéjar ary infrared spectroscopy of the El Soplao amber (Najarro et al., etal.,1996;Sotoetal.,2007).RiftingduringtheLateJurassic–Early 2009) and previous gas chromatography–mass spectrometry Cretaceousledtotheformationofseveralnarrowsub-basinscon- (GC–MS)studiesonamberfromaneighboringsiteinÁlava(Alonso trolledbyE–W,NW–SEandSW–NWtrendingfaults;thesebasins etal.,2000;ChalerandGrimalt,2005),ithasbeensuggestedthat hostbothcontinentalandmarinesedimentsofvariablethickness exudate from Agathis (a conifer of the family Araucariaceae) was (García-Mondéjaretal.,1996;Sotoetal.,2007). the most likely source of this amber, as has also been proposed ThestudyarealiesintheCantabriaregionimmediatelytothe for other Cretaceous ambers (e.g. Lambert et al., 1996; Alonso north of the Cabuérniga Ridge (Fig. S1; supplementary material), etal.,2000;Poinaretal.,2004;ChalerandGrimalt,2005;Delclòs anE–WfaultzonethatrepresentsaLate-Variscanstructurereacti- et al., 2007). This speculation was largely based on the presence vatedfirstasapaleo-highboundedbynormalfaultsduringtheEarly of some geoterpenoids that may have been derived from agathic Cretaceous,andlaterasreversalfaultsduringthewidespreadCeno- andpimaricacids.However,althoughthosecompoundsandtheir zoic(Pyrenean)compression.TheLower–MiddleCretaceous(Barre- diageneticderivativesarecharacteristicofAraucariaceae,theyare mian–Early Cenomanian) deposits in the study area are weakly notdiagnostic,becausetheycanalsobefoundinotherextantconi- deformedandaffectedonlybygentlefolding.Theyarecomposed ferfamilies(Ottoetal.,2007).Moreover,Alonsoetal.(2000)have ofarelativelythin((cid:2)200–800m)syn-riftsequencethatliesuncon- reported the presence of the phenolic abietane ferruginol in the formablyonCarboniferoustoLowerJurassicbasement(Fig.S1). Álavaambersamples,indicatingthatmoreextensivestudyofthe Asimplifiedsynthesisofthestratigraphy intheElSoplaoand chemotaxonomicinformationcontainedintheamberisnecessary Reocín areas is shown in Fig. 1, with formation names according toestablishitsdefinitebotanicalorigin. to Hines (1985) and revised by Najarro et al. (2009). The amber Inaddition,meso-andmacrofossilplantremainsofAraucaria- bearingdepositatElSoplaoisincludedwithintheLasPeñosasFor- ceae are absent in these amber bearing deposits, although there mation(Fig.1),aLowerAlbianunit((cid:2)112–110Ma)ofcontinental areplentyofcuticlesandremainsofothervascularplants,especially to transitional marine siliciclastics. Detailed descriptions of field thegeneraFrenelopsissp.andMiroviasp.,oftheextinctconiferfam- sections,depositionalenvironmentsandfossilcontentofthisunit iliesCheirolepidiaceaeandMiroviaceae,respectively(Gomezetal., aregiveninNajarroetal.(2009).Withintheoutcrop,theElSoplao 2002a;Najarroetal.,2009).Thisisalsothecaseinmanyotheramber amberdepositischaracterizedbyabout1.5–2mofdark,carbona- depositsfromtheCretaceousofSpainandFrance(e.g.Delclòsetal., ceouslutites,siltstonesandsandstoneswithinterbedded,centime- 2007;Néraudeauetal.,2008).Thus,therecurrentassociationofam- ter to decimeter layers with remarkable accumulations of plant berwithcuticlesofCheirolepidiaceaeandMiroviaceae,alongwith remains and amber pieces of different sizes and forms (Fig. 2A thelackofAraucariaceaeremains(exceptforasmallamountofpol- andB).Mostamberpiecesshowablue-purplecolorundernormal lengrainsinthesediments)(Barrónetal.,2001),challengesthepro- sunlightandbrightmilkybluefluorescenceunderultravioletlight. posedoriginoftheamber.Sincechemicalevidencehasnotyetgiven Plantcuticlesareveryabundantinthelevelsassociatedwitham- adefinitiveanswer,moreconvincingproofisnecessarytoaccept ber(Fig.2C).TheyaremainlyassignedtotheconifergeneraFrenel- Araucariaceaeasthesourceoftheresin. opsisandMirovia,alongwithothermoreoccasionalleavesofthe Inthisstudy,amberpiecesandassociatedfossilleavesfromthe ginkgoalean genera Nehvizdya and Pseudotorellia (Najarro et al., Cretaceousamberbearing depositofEl Soplao (Cantabria;Fig.1) 2009). Inmostoftheamberbeds,leavesofthegenusFrenelopsis were systematically analyzed using complementary techniques of the extinct conifer family Cheirolepidiaceae are the dominant suchasinfraredspectroscopy(FTIR)andGC–MS.Theoverallaim macro-botanical remains. Frenelopsis were xeromorphic plants was to identify the terpenoids preserved and their diagenetic adaptedtocoastalhabitatsandprobablygrewmainlyinbrackish transformationproductsinthefossilresinandtodeterminetheir coastalmarshesandmangroves,butwereadaptedtoawiderrange possible botanical sources. Due to exceptional preservation, the ofhabitats(Gomezetal.,2002a,2003). amberbearingdepositatElSoplaooffersauniqueopportunityto TheamberdepositatReocín(Fig.S1;supplementarymaterial)is compare the molecular composition of the amber with that of slightly younger than the El Soplao amber deposit. It is included plantremainsfromthefamilyCheirolepidiaceaeandMiroviaceae, withintheBielvaFormation(Fig.1),aLatestAlbian–EarlyCenoma- whichappearinthesamedeposit.Amorphologicalsimilaritybe- nian((cid:2)102–99Ma)unitcomposedofabout250moftidaldomi- tweenextinctCheirolepidiaceaeandextantCupressaceaehasbeen nated, estuarine siliciclastic deposits in the study area (Hines, described,buttheirrelationshipremainsspeculativeduemainlyto 1985). Within this unit, the amber accumulations are associated thelackofmolecularevidence(BroutinandPons,1975;Alvinand withcarbonaceousclaystonesandtidalchannelsandstonesdevel- Hluštík,1979;Seoane,1998;Miller,1999;Farjon,2008).AsChei- oped in estuarine mouth subtidal areas (López-Horgue et al., rolepidiaceae is an extinct family, the connection between the 2001).Despitethedifferencesinage,theReocínambershowsthe two families could aid in the chemotaxonomical study of amber samecompositionastheElSoplaoamber.Thermalmaturityindica- and in the confirmation of the botanical origin. We present data tors(vitrinitereflectance)ofmaceralsintheElSoplaodepositreveal of two separate types of amber found in the El Soplao deposit minorchangesintheorganicmatteroftheresinsduringtheirdiage- anddiscusstheirbotanicaloriginusingcomparativechemotaxon- netic history and maximum thermal conditions during burial of Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx 3 SW NE STRATIGRAPHYOFELSOPLAO STRATIGRAPHYOFREOCÍN 93ma LITHOLOGY SECTOR SECTOR LITHOLOGY N AT ALTAMIRAFm. ALTAMIRAFm. E L 99ma C EAR BIELBAFm. BIELBAFm. N ATE BARCENACIONESFm. BARCENACIONESFm. A L 112ma EOUSALBI EARLY LASPEÑOSASFm. LASPEÑOSASFm. C CRETAAPTIAN AAELRTLY PRAETROSOACCNÍINNEISOFTmEFmB.A.NFm. SPRAAENRTOROEDOSCECTZÍIEANNSBIOFAFmNmF.mF.m.. 125ma E RÁBAGOFm. UMBRERAFm. UMBRERAFm. BAR PASGROUP(WEALD) PASGROUP.(WEALD) HAU VAL 145ma BER HIATUS HIATUS AC 200ma JURSSI LIAS AC KEUPER RISI 250ma TS BUNTSANDSTEIN BUNTSANDSTEIN N RA PEMI HIATUS HIATUS 300ma 360ma ACRBONIFEROUS PALEOZOICBASEMENT PALEOZOICBASEMENT Marls Mudstonesandgypsum Conglomerates Limestones Mudstonesandsandstones Sandstones Dolostones Mudstones Silts Amber-bearingdeposit Lignite Fig.1. Chrono-andlithostratigraphyoftheElSoplaoandReocínareas(modifiedfromHines,1985).ChronostratigraphyafterGradsteinetal.(2004). (cid:2)60–70(cid:3)C(Supplementarymaterial).Consequentlyandduetoits 2.3.2.Extractionandfractionation highertransparencyandlackofinclusionsandinterferences,theEl For the analytical characterization, two representative single Soplao amber was used preferentially for the chemosystematic pieces(AandB;Table1)ofamberofabout50g,withthehighest study. transparency available and free of major inclusions, crusts and debris,werecollectedfromtheElSoplaodeposit.Eachpiecewas crushed and extracted for 4h with dichloromethane:methanol 2.2.Sampling (2:1v:v) using a Büchi model B-811 automatic extractor. The extractablematerialconstitutes16%ofthetotalamberweighton Amberpieces,jet(blackamber),fossilwoodandsedimentsrich average.Onealiquotofextractwasinjecteddirectlyintotheport inplantcuticleswerecollectedfromtheElSoplaodepositduringa ofthegaschromatograph. recent excavation in October 2008. Two types of amber pieces Thebulkextractwasthenprocessedinordertopurifythepheno- werefoundatthedepositinthesamesedimentologicalandtapho- licterpenoidfractionandtheacidicfractionandtoidentifyunam- nomicalcontext:Atype,characterizedbyastrongblue-purplecol- biguously the minor components with higher chemosystematic orundernaturallight,purple-reddishunderartificiallightandless value.Theaimwastoestablishacompletedescriptivecomposition abundant B type, yellow-honey under artificial light and honey oftheambersample.Theextractwasconcentratedtoavolumeof withabluishtingeundernaturallight.Wecollectedthetwotypes 20mlandfractionatedbyflashchromatographyonsilicagel.The of amber present and the black amber associated with amber of elutionwasperformedusingn-hexane,dichloromethane,dichloro- type A and fossil plant tissue. Plant cuticles were obtained from methane:methanol (1:1v:v), and methanol as eluents and 25 claystonesbyrinsingtheplantrichsedimentinanultrasonicbath fractions of 1.5ml were collected using an automatic fraction ofdistilledwatertoremovealltheclayandsiltsediment.Theor- collector. Each fraction was concentrated by evaporation of the ganic residue (Fig. 2C) was air dried. Plant fragments and leaves solventunderN andanalyzedbyGC–MS.Thefractionswithsimilar fromdifferentfamiliesweredistinguishedandseparatedundera 2 compositions were combined. The polar fraction (eluted with stereomicroscope. methanol)andthefractionscontainingferruginolwererecombined, further separated using a glass column (20cm) filled with 2.3.Analyticalmethods chromatographic grade silica gel, and eluted sequentially with n-hexane:dichloromethane (1:1v:v), pure dichloromethane, 2.3.1.Infraredspectroscopy(FTIR) dichloromethane:methanol(1:1v:v)andmethanol.Fourfractions IR spectra of pulverized solid amber were obtained using a of20mlwerecollected,designatedAtoD.Allfractionsweredried NexusNicoletFTIRspectrometerinthe4000–400cm(cid:3)1range. andthealcoholsandacidsconvertedtotrimethylsilylderivatives Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 4 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx Fig.2. Photographsofamberandpalaeobotanicalcomponentsusedinthisstudy.(A)InsituamberpieceoftypeA(6cm)fromtheElSoplaodeposit,showingblue-purple colorundersunlight.(B)AmberpieceoftypeB(3cm)onfossilwoodundersunlight.(C)Insitusedimentsshowingtheirpalaeobotanicalcomponents:fossilleavesofMirovia andFrenelopsisandoneleafofGinkgoaceae.(D)SelectedleavesofFrenelopsissp.wereusedforbiomarkeranalysis.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.) byreactionwithN,O-bis-(trimethylsilyl)trifluoroacetamide(BSTFA) identifiedbycomparingtheirmassspectrawiththoseofauthentic containing1%trimethylchlorosilane(TMCS)at65(cid:3)Cforaperiodof standardsandwithpublisheddata(seeSection3.2). 3h. Finally, the derivatized fractions werediluted withn-hexane andinjectedintotheportofthegaschromatograph. 3.Resultsanddiscussion TostudythemolecularcontentoffossilFrenelopsisandMirovia leaves(Fig.2),5gofleaveswereextractedfor4hwithdichloro- 3.1.Infraredspectroscopy methane:methanol(2:1v:v)usingaBüchimodelB-811automated extractor. The bulk extract was filtered and analyzed directly by TheapplicationofIRtothestudyofamberiswelldocumented GC–MS.Theextractwasthenfractionatedusingsilicagelchroma- andconstitutesabasictechniqueforthecharacterizationoffossil tographyintwofractionsbyelutionwithn-hexane:dichlorometh- resins(Langenheim,1969;Grimaltetal.,1988;Alonsoetal.,2000). ane (3:1v:v) and dichloromethane:methanol (4:1v:v). The polar Becauseoftheinclinationofallambersandresins(evennon-fossil fraction was dried and derivatized using the method described resins)toshowsimilarbulkinfraredspectra(duetotheircommon above.Thesamplesofjet(blackamber)wereextractedusingthe chemicalfunctionalgroups),IRspectroscopyhasstronglimitations sameprotocol.Duetothelesseravailabilityofleavesandjetand for the determination of their botanical origin (Yamamoto et al., the lower percentage of extractable organic matter, we used the 2006).TheIRspectrumoftheCantabrianamberisconsistentwith simplifiedfractionationdescribedaboveinordertocomparetheir those observed for other amber samples (Fig. S2; supplementary biomarkercompositionwiththatofamber. material)andcouldindicatethatitiscomposedofamixtureofter- penoidsandlabdatrienecopolymers.Thebandpatternissimilarto 2.3.3.GC–MS theIRspectrumexpectedforthelabdatrienescommunicacidand TheanalyseswereperformedonanAgilent6850GCcoupledto biformene and their polymers, consistent with the stated macro- an Agilent5975C quadrupolemass spectrometer. Separation was molecularstructureofamber(Villanueva-Garcíaetal.,2005)and achieved on a HP-5MS column coated with (5%-phenyl)-meth- withtheterpenoidcompositionfound(seeSection3.2).Theweak ylpolysiloxane (30m(cid:4)0.25mm, 0.25lm film thickness). The bandat882cm(cid:3)1(Fig.S2,supplementarymaterial)ischaracteris- operatingconditionswereasfollows:8psicarrierpressure,initial tic of the exocyclicmethylene moiety supporting the labdatriene temperature held at 40(cid:3)C for 1.5min, increased from 40(cid:3)C to input.Thetwotypesofambersamplesfoundinthedepositshow 150(cid:3)C at a rate of 15(cid:3)C/min, held for 2min, increased from similarIRspectra. 150(cid:3)C to 255(cid:3)C at a rate of 5(cid:3)C/min, held constant for 20min and finally increased to 300(cid:3)C at a rate of 5(cid:3)C/min. The sample 3.2.TerpenoidcompositionofCantabrianamber was injected in the splitless mode with the injector temperature at290(cid:3)C.Themassspectrometerwasoperatedintheelectronim- Thetotalextractsoftheambercontainmethylatednaphthalenes pact mode at 70eV ionization energy and scanned from 40 to (di-,tri-andtetramethylnaphthalenes)anddi-andtrimethyltetra- 700Da. The temperature of the ion source was 230(cid:3)C and the lins,sesquiterpenoidsandbi-andtricyclicditerpenoids(Table1). quadrupoletemperaturewas150(cid:3)C.Datawereacquiredandpro- GCanalysisofthebulkextractshowsthreedifferentzonesinthe cessed using Chemstation software. Individual compounds were gaschromatogram(Fig.3).Thedominantcompoundsintheearly Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx 5 Table1 Terpenoidsandtheirdiageneticderivativesidentifiedinbulkandchromatographicfractionsofextractsfromtheambers(typesAandB)oftheElSoplaodeposit. Noa Compound Composition MW Relativeabundanceb A B AbietanesandPodocarpanes 1(XVI) 16,17-Bisnorsimonellite C17H20 224 38.2 – 2(XXII) 16,17,18-Trisnorabieta-8,11,13-triene C17H24 228 100 100 3 16,17,19-Trisnorabieta-8,11,13-triene C17H24 228 23.4 20.9 4(XVII) Retene C18H18 234 1.0 – 5 16,17-Bisnordehydroabietane C18H26 242 4.6 42.5 6 Simonellite C19H24 252 9.3 1.5 7(XXVII) 14-Methyl-16,17-bisnordehydroabietane C19H28 256 2.5 6.9 8 1-Methyl-10,18-bisnorabieta-8,11,13-triene C19H28 256 – 6.6 9(I) 18-Norabietatriene(Dehydroabietin) C19H28 256 45.8 14.0 10(I) 19-Norabietatriene C19H28 256 3.6 4.1 11(IV) 18-Norabieta-7,13-diene C19H30 258 9.7 – 12(V) Norabiet-13-ene C19H32 260 57.0 23.0 13(III) Fichtelite C19H34 262 5.8 d 14(X) 12-Hydroxysimonellite C19H24O 268 11.8 – 15(II) Dehydroabietane C20H30 270 40.3 – 16(XXV) 16,17-Bisnordehydroabieticacidc C18H24O2 272 d d 17(VIII) Ferruginol C20H30O 286 24.3 – 18(XIII) Callitrisicacidc C20H28O2 300 d – 19(XII) Hinokiolc C20H30O2 302 d – PimaranesandIsopimaranes 20(XXI) Pimaricacidc C20H30O2 302 d d 21(XXII) Isopimaricacidc C20H30O2 302 d d 22(XXVI) Pimar-8-en-18-oicacidc C20H32O2 304 d d 23 Pimaradiene C20H32 272 – 4.5 Labdanes 24 14,15-Bisnorlabda-8,12-dien-18-oicacidc C18H28O2 276 d d 25(XXXIV) E-19-Noragathicacid C19H30O2 290 10.6 3.1 26(XXXIII) Z-19-Noragathicacid C19H30O2 290 3.7 1.5 27(XXIX) 13-Dihydro-19-noragathicacidc C19H32O2 290 d – 28(XXVIII) 13-Dihydroagatholicacid C20H34O3 322 11.8 – Othercompounds 29 Ionene C13H18 174 37.2 48.4 30 Methylionene C14H20 188 13.0 34.2 31 Tetrahydroeudalene C14H20 188 16.0 8.3 32(XXXVII) Guaiazulene C15H18 198 7.6 1.5 33(XXXVIII) Cadalene C15H18 198 8.2 7.5 34 Drimane C15H28 208 3.6 14.8 35 Homodrimane C16H30 222 3.3 3.9 36(XXXI) 2,5,8-Trimethyl-1-butyltetralin C17H26 230 79.1 57.3 37(XXXII) 2,5,8-Trimethyl-1-isopentyltetralin C18H28 244 d 10.8 38(XX) Diaromatictotarane C19H24 252 1.0 – 39(XI) Totarolc C20H30O 286 d – a RomannumeralsinparenthesesrefertostructuresshowninAppendixA. b Abundancerelativetothemajorpeak(100%)inthebulkextracts(GC–MSTIC).Occurrenceistabulatedoncompoundsdetectedonlyafterfractionationandderivatization (d:detected;–:notdetected). c AlsoanalyzedastheTMSderivative. elution range are a-ionene, methylionene, trimethylnaphthalene Theabietaneclassterpenoidswereidentifiedbycomparisonoftheir isomers, tetrahydroeudalene, calamenene isomers, drimane and massspectrawiththoseofstandardsorpublishedintheliterature homodrimane(identifiedafterDzouetal.,1999andSonibareand (Czechowski et al., 1996; Otto and Simoneit, 2002; Otto et al., Ekweozor,2004).Thea-ionene,methylioneneanddrimanesmay 2002; Hautevelle et al., 2006; Cox et al., 2007), and comprised bederivedfromlabdanesintheresinthroughdegradationprocesses 18- and 19-norabieta-8,11,13-triene (I; chemical structures cited (Yamamoto et al., 2006; Pereira et al., 2009). Overall, these are shown in Appendix A), dehydroabietane (II), fichtelite (III), componentsarehighlydegradeddiageneticproductsthathaveno 18-norabieta-7,13-diene (IV) and norabiet-13-ene (V). The latter chemotaxonomic value due to their unrecognizable parent struc- compoundwastentativelyidentifiedbymatchwithamassspec- tures. The second section of the gas chromatogram is dominated trumintheliterature(Hautevelleetal.,2006),characterizedbya by non-oxygenated bi- and tricyclic diterpenoids and the third molecularionatm/z260andlossofanisopropylgroup(m/z217). sectioncontainspolarbi-andtricyclicditerpenoids.Wedidnotfind 18-Norabieta-7,13-diene(IV)wasidentifiedonlyinsampleAbya aliphaticlipids,hopanoids,fungalterpenoidsorplanttriterpenoids match with the published mass spectrum (Otto and Simoneit, intheambersamples,discardinganangiospermcontributionand 2002). This compound has been described as a decarboxylation majorcontamination. product of abietic acid during diagenesis (Otto and Simoneit, 2002).Inthiscase,theprecursormoleculehasnotbeenfound.The 3.2.1.Abietanediterpenoids lackofaclearbiologicalprecursorfornorabieta-7,13-diene(IV)sug- Thediterpenoidsidentifiedintheextractsbelongtotheabietane, gestsanalternativeorigin,possiblybydoublebondisomerizationof pimarane/isopimaraneandlabdanestructuralclasses(Fig.3).These unsaturatedabietanes.Thiscompositionisconsistentwiththedom- diterpenoidsaretypicalofconifers(OttoandWilde,2001;Yamam- inanceofdehydroabietaneandabietanegeoterpenoidsinthetypeA otoetal.,2006),confirmingsuchanoriginfortheCantabrianambers. amber.Thenorabietatrienes(dehydroabietins)foundinbothamber Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 6 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx A 16,17,18-Trisnorabieta- 18-Norabieta-7,13- Norabiet-13-ene Dehydroabietin 8,11,13-triene diene OH O 16,17- 16,17- Bisnordehydroabietane Bisnorsimonellite 2,5,6-trimethyl- 1-butyl tetralin 19-Noragathic acid Tetrahydroeudalene OH Dehydroabietane O e c Guaiazulene OH n a d n α-Ionene u HO b a 13-Dihydroagatholic e Methylionene Ferruginol acid v ati OH el Homodrimane R Simonellite 12- Drimane hydroxysimonellite B 2,5,6-Trimethyl-1- 16,17,18-Trisnorabieta- isopentyl tetralin Methylionene 8,11,13-triene Norabiet-13-ene Pimaradiene α-Ionene Dehydroabietin 2,5,6-Trimethyl- 1-butyl tetralin HO OH e 16,17- O O c Bisnordehydroabietane n Guaiazulene a d n u b Drimane a 19-Norlabda- e 8(20),12-dien-15-oic ativ bis1n4o-rdMeehtyhdyrlo-1a6b,i1e7ta-ne acids el R 10 20 30 Retention time (min) Fig.3. GC–MStotalioncurrent(TIC)tracesoftheunderivatizedtotalextractsof:(A)ElSoplaoblueamber,typeA,(B)ElSoplaoyellow-blueamber,typeB,withthemain terpenoidcompoundsidentified.Peaksnotannotatedareunidentified,tentativelyidentifiedorknowncompoundswithlittlechemotaxonomicvalue.(Forinterpretationof thereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx 7 samplescouldbederivedfromallabietaneprecursorsbydiagenetic presenceoftotarol(seebelow)andthefossilrecordofthedeposit, alteration(Simoneit,1986;Hautevelleetal.,2006). suggestthatAraucariaceaedidnotcontributetothemaintypeof Dehydroabietane(II)isanaturalproductofmanyPinaceaeres- amber found at the studied deposit (type A). On the other hand, ins(Ottoetal.,2007)aswellassomeCupressaceaeresins.Inthese wedidnotfindphenolicabietanesinthetypeBambersample.This samples, dehydroabietane is a significant component in amber fact,takentogetherwiththepresenceofdehydroabietaneinsam- typeA,whereasitisnotdetectableinambertypeB,suggestinga pleAanditsabsenceinsampleB,constitutesthemainchemotaxo- different paleobotanical origin for both types of amber samples. nomicdifferencebetweenthetwotypesofsamples.Asignificant Theabsenceofabietic(VI)ordehydroabieticacids(VII)eliminates relationship between amber type A and modern Cupressaceae is aPinaceaecontributiontotheamber,becauseabieticacidisama- thepresenceofalowquantityofcallitrisicacid(XIII)whichisan jor component of such resins and dehydroabietic acid, its major epimerofdehydroabieticacid(VII,Fig.5).Thedifferenceinreten- diageneticderivative,ispresentinambersderivedfromPinaceae tiontimewithdehydroabieticacidandthehigherrelativeintensity (Yamamotoetal.,2006). oftheionatm/z357(M-CH )versusthemolecularionincallitrisic 3 PhenolicditerpenoidsoccurinpolarfractionBofthetypeAam- acidaredistinctivefeaturesbetweenthetwoepimersusedherefor ber(Fig.4),withadominanceofferruginol(VIII)anditsoxidation theidentificationoftheacid(VandenBergetal.,2000;Coxetal., products 6,7-dehydroferruginol (IX) and 12-hydroxysimonellite 2007). Callitrisic acid has a higher chemotaxonomical value than (X)andtotarol(XI)(OttoandSimoneit,2001;Ottoetal.,2002).Fer- dehydroabietic acid due to its scarcity. In modern conifer resins, ruginol and 12-hydroxysimonellite are also identifiable (underiv- thesynthesisofcallitrisicacidseemstoberestrictedtocertaingen- atized)inthebulkextractaspartofthemaincomponentsofthe eraoftheCupressaceaefamilyanditwasalsofoundinCenomanian amber(Fig.3).Thepresenceofthesephenolicditerpenoidsisofsig- amberfromtheRaritanFormation(NewJersey,USA),suggestinga nificantchemosystematicvalue,asferruginolisanabundantnatu- relationshipwithCupressaceae(Anderson,2006). ral product in extant conifers of the families Cupressaceae and Degradationofphenolicditerpenoidscouldleadtotheabietane Podocarpaceae and can be used as a characteristic biomarker of geoterpenoidsfoundinthetypeAamber(Ottoetal.,1997;Ottoand thesefamilies(OttoandSimoneit,2001;Marynowskietal.,2007). Simoneit,2001;Stefanovaetal.,2002).Hautevelleetal.(2006)and A minor amount of hinokiol (3-hydroxyferruginol, XII; Fig. 5A) Yamamotoetal.(2006)discussedthediageneticpathwaysofabie- wasalsofoundinthetypeAamber.Hinokiolhasbeendescribed tane class bioterpenoids, suggesting that 18-norferruginol (XIV) fromCupressaceae(Ottoetal.,2002;Coxetal.,2007).Thereisno couldbetheprecursorofdehydroabietin,andferruginol(VIII)could reported presence of phenolic diterpenoids in modernAraucaria- leadto12-hydroxysimonellite(X),simonellite(XV),16,17-bisnorsi- ceae(Coxetal.,2007),butOttoandWilde(2001)citedtheoccur- monellite(XVI)andretene(XVII),allfoundinthetypeAamber.Un- rence of ferruginol in Araucaria. To avoid this ambiguity and to der the anaerobic depositional conditions of the amber (Najarro testthisfindingunderourexperimentalconditions,resinsofAga- et al., 2009), we could not disregard redox reactions that lead to thissp.andAraucariasp.wereanalyzedandferruginolwasnotde- theactual composition found(Pereira etal., 2009). If, as in some tected in any Araucariaceae resins. Hence, these results, coupled modernCupressaceaegenera(i.e.Cupressus;Fig.S3,supplementary with the absence of kaurane or phyllocladane diterpenoids, the material),theoriginalproportionofferruginol(VIII)washigh,its OH OH 12- Ferruginol Hydroxysimonellite OH e c n a d OH n u b a 6,7-Dehydroferruginol e v ati el R Totarol Retention time Fig.4. GC–MSTICtraceoffractionBresultingfromthecolumnseparationofthepolarfractionofamberA.Thisfractioncontainsthepartiallypurifiedphenolicterpenoids. CompoundsareanalyzedastheTMSderivatives. Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 8 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx A B Fig.5. GC–MSTICtracesofthepolarfractionsCof:(A)amberAand(B)amberB.Thisfractioncontainsmainlypimaricandlabdenoicacids.Thefigureshowstheidentified compoundsinthefraction.Unlabelledpeaksareconsideredasunidentifiedduetothelackofstandardsandpublishedreferencesordatabaseswithdetailsoftheirmass spectra.CompoundsareanalyzedastheTMSderivatives. diagenesis could ultimately have generated dehydroabietane (II) nolic fraction of the bulk extract and analysis as trimethylsilyl andsimonellite(XV),bothsignificantinthetypeAamber. derivatives(Fig.4).Duetothesimilaritiesbetweenthemassspectra ofphenolicditerpenoids,theretentiontimeandmassspectrumof 3.2.2.Totarol totarol (XI) were determined using a standard (Sigma–Aldrich). Totarol(XI),atricyclicditerpenoidphenol,isconsideredasacon- Thepresenceoftotarolsuggestsarelationshipbetweenthepalae- firmatorychemotaxonomicmarkerforCupressaceaeandPodocarp- obotanicoriginoftheamberandextantCupressaceaeorPodocarp- aceae,evenatlowconcentrations(LeMétayeretal.,2008;Stefanova aceae.Totestthispossibility,thephenolicditerpenoidsoftheamber andSimoneit,2008).Totarolisdetectableinthebulkextractusing werecomparedwiththosefromamodernCupressaceae(Cupressus thecharacteristicmassfragmentsofm/z271and286.Theidentifica- arizonica;Fig.S3,supplementarymaterial). Bothextractscontain tionisunambiguousinambersampleAafterpurificationofthephe- ferruginol(VIII),totarol(XI)andhinokiol(XII)asthemainphenolic Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx 9 diterpenoids,butsempervirol(XVIII)hasnotbeenobserved.Adif- tanecomposition,totarolisnotdetectableinthetypeBamber,con- ferencebetweentheassemblageofpolarterpenoidsfromC.arizo- firmingthatbothambertypesfoundintheCantabriadepositsdiffer nicaandtheamberisthepresenceofsugiol(XIX)andthelackof intheirbiologicalorigins. callitrisicacid(XIII)intheformer.Weidentifiedadiaromatictotara- ne(XX)asapossiblediageneticproductoftotarol(XI),whichmaybe 3.2.3.Pimarane/isopimaranediterpenoids derivedbyaparalleldiageneticpathwayassimonellite(XV)from PolarfractionCofambercontainslowamountsofpimaric(XXI) ferruginol(VIII)(Ottoetal.,1997).Inaccordwiththephenolicabie- and isopimaric (XXII) acids (Fig. 6). Diagenesis of pimarane OH OH OH 6,7-Dehydroferruginol 12-Hydroxysimonellite Ferruginol Dehydroabietane Dehydroabietin Tetrahydroretene Simonellite 16,17-Bisnorsimonellite ? Pimaradiene Isopimaradiene 14-Methyl-16,17- 16,17- bisnordehydroabietane Bisnordehydroabietane OH O OH O OH OH Pimaric acid O O Isopimaric acid 16,17- 16,17,18-trisnorabieta- Pimar-8-en-18-oic Bisnordehydroabietic 8,11,13-triene acid acid OH OH HO O O O OH HO O O E-and Z-19-norlabda-8(20),12-dien-15-oic acids HO Agathic acid 13-Dihydroagatholic acid 2,5,8-Trimethyl-1-alkyltetralins Fig.6. ProposeddiageneticpathwaysforthediterpenoidprecursorsfromtheCantabrianambers(basedonOttoandSimoneit(2002),Stefanovaetal.(2002),Hautevelleetal. (2006),andPereiraetal.(2009)).Dottedbox:biologicalprecursors;solidbox:majorterpenoidfoundinthesamples. Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013 10 C.Menor-Salvánetal./OrganicGeochemistryxxx(2010)xxx–xxx A 16,17- Bisnorsimonellite Tetrahydro- Dehydroabietane retene Dehydroabietin 16,17,18-Trisnorabieta- 8,11,13-triene S Simonellite 8 2,5,8-Trimethyl- 14-methyl-16,17- 1-butyl tetralin bisnordehydroabietane P OH r e is nc ta OH a n d e n Cadalene bu Retene Ferruginol a e Naphthaleneand ativ tetralinderivatives 1s2i-mHoynderollixtey- el R B 16,17,18-Trisnorabieta- Dehydroabietane 8,11,13-triene Simonellite 16,17- Cadalene Bisnorsimonellite 2-Methylretene Guaiazulene OH e c Naphthalene and Retene n a tetralin derivatives d n u b a e Ferruginol 12- v Hydroxy- ati simonellite el R 10 20 30 Retention time (min) Fig.7. GC–MSTICtracesofthetotalextractsfrom:(A)Frenelopsisleavesand(B)jet(blackamber),showingtheidentifiedbiomarkers. diterpenoidscouldbeoneofthepossibleoriginsof16,17,19-tris- noids (Fig. 6; Otto et al., 2002; Pereira et al., 2009). Due to the norabieta-8,11,13-triene (XXIII), a major compound identified in widespread distribution of the pimaric/isopimaric acids, the the amber samples. Anotherpossible originfor thiscompound is chemotaxonomical interpretation of their presence in the Canta- bydiagenesisofdehydroabietaneandotherabietanerelatedterpe- brian ambers must be taken with caution and comparisons with Pleasecitethisarticleinpressas:Menor-Salván,C.,etal.TerpenoidsinextractsofLowerCretaceousambersfromtheBasque-CantabrianBasin(ElSoplao, Cantabria,Spain):Paleochemotaxonomicaspects.Org.Geochem.(2010),doi:10.1016/j.orggeochem.2010.06.013

Description:
Terpenoids in extracts of Lower Cretaceous ambers from the Basque-Cantabrian. Basin (El Soplao, Cantabria, Spain): Paleochemotaxonomic aspects.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.