ebook img

Tensor Spaces and Numerical Tensor Calculus PDF

2019·3.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tensor Spaces and Numerical Tensor Calculus

Preface Page: vii Contents Page: ix About the Author Page: xix List of Symbols and Abbreviations Page: xxi Symbols Page: xxi Greek Letters Page: xxiii Latin Letters Page: xxiv Abbreviations and Algorithms Page: xxviii Part I: Algebraic Tensors Page: 1 Chapter 1: Introduction Page: 3 1.1 What are Tensors? Page: 3 1.1.1 Tensor Product of Vectors Page: 3 1.1.2 Tensor Product of Matrices, Kronecker Product Page: 5 1.1.3 Tensor Product of Functions Page: 7 1.2 Where do Tensors Appear? Page: 8 1.2.1 Tensors as Coefficients Page: 8 1.2.2 Tensor Decomposition for Inverse Problems Page: 9 1.2.3 Tensor Spaces in Functional Analysis Page: 10 1.2.4 Large-Sized Tensors in Analysis Applications Page: 10 1.2.5 Tensors in Quantum Chemistry Page: 13 1.3 Tensor Calculus Page: 13 1.4 Preview Page: 14 1.4.1 Part I: Algebraic Properties Page: 14 1.4.2 Part II: Functional Analysis of Tensors Page: 15 1.4.3 Part III: Numerical Treatment Page: 16 1.4.4 Topics Outside the Scope of the Monograph Page: 17 1.5 Software Page: 18 1.6 Comments about the Early History of Tensors Page: 18 1.7 Notations Page: 19 Chapter 2: Matrix Tools Page: 23 2.1 Matrix Notations Page: 23 2.2 Matrix Rank Page: 25 2.3 Matrix Norms Page: 27 2.4 Semidefinite Matrices Page: 29 2.5 Matrix Decompositions Page: 30 2.5.1 Cholesky Decomposition Page: 30 2.5.2 QR Decomposition Page: 31 2.5.3 Singular-Value Decomposition Page: 33 2.6 Low-Rank Approximation Page: 39 2.7 Linear Algebra Procedures Page: 41 2.8 Dominant Columns Page: 44 Chapter 3: Algebraic Foundations of Tensor Spaces Page: 49 3.1 Vector Spaces Page: 49 3.1.1 Basic Facts Page: 49 3.1.2 Free Vector Space over a Set Page: 50 3.1.3 Quotient Vector Space Page: 52 3.1.4 (Multi-)Linear Maps, Algebraic Dual, Basis Transformation Page: 53 3.2 Tensor Product Page: 54 3.2.1 Constructive Definition Page: 54 3.2.2 Characteristic Properties Page: 56 3.2.3 Isomorphism to Matrices for d = 2 Page: 58 3.2.4 Tensors of Order d > 3 Page: 60 3.2.5 Different Types of Isomorphisms Page: 63 3.2.6 Rr and Tensor Rank Page: 65 3.3 Linear and Multilinear Mappings Page: 76 3.3.1 Definition on the Set of Elementary Tensors Page: 76 3.3.2 Embeddings Page: 77 3.4 Tensor Spaces with Algebra Structure Page: 85 3.5 Symmetric and Antisymmetric Tensor Spaces Page: 88 3.5.1 Basic Definitions Page: 88 3.5.2 Quantics Page: 91 3.5.3 Determinants Page: 92 3.5.4 Application of Functionals Page: 93 Part II: Functional Analysis of Tensor Spaces Page: 95 Chapter 4: Banach Tensor Spaces Page: 97 4.1 Banach Spaces Page: 97 4.1.1 Norms Page: 97 4.1.2 Basic Facts about Banach Spaces Page: 98 4.1.3 Examples Page: 100 4.1.4 Operators Page: 101 4.1.5 Dual Spaces Page: 104 4.1.6 Examples Page: 106 4.1.7 Weak Convergence Page: 106 4.1.8 Continuous Multilinear Mappings Page: 108 4.2 Topological Tensor Spaces Page: 108 4.2.1 Notations Page: 108 4.2.2 Continuity of the Tensor Product, Crossnorms Page: 110 4.2.3 Projective Norm ||.||^(V;W) Page: 116 4.2.4 Duals and Injective Norm ||.|| (V;W) Page: 120 4.2.5 Embedding of V* into L(V W;W) Page: 127 4.2.6 Reasonable Crossnorms Page: 128 4.2.7 Reflexivity Page: 132 4.2.8 Uniform Crossnorms Page: 133 4.2.9 Nuclear and Compact Operators Page: 136 4.3 Tensor Spaces of Order d Page: 137 4.3.1 Continuity, Crossnorms Page: 137 4.3.2 Recursive Definition of the Topological Tensor Space Page: 140 4.3.3 Proofs Page: 143 4.3.4 Embedding into Embedding into L(V; Vj) and L(V;V�) Page: 147 4.3.5 Intersections of Banach Tensor Spaces Page: 151 4.3.6 Tensor Space of Operators Page: 154 4.4 Hilbert Spaces Page: 155 4.4.1 Scalar Product Page: 155 4.4.2 Basic Facts about Hilbert Spaces Page: 155 4.4.3 Operators on Hilbert Spaces Page: 157 4.4.4 Orthogonal Projections Page: 159 4.5 Tensor Products of Hilbert Spaces Page: 161 4.5.1 Induced Scalar Product Page: 161 4.5.2 Crossnorms Page: 163 4.5.3 Tensor Products of L(Vj ; Vj) Page: 164 4.5.4 Gagliardo–Nirenberg Inequality Page: 165 4.5.5 Partial Scalar Products Page: 170 4.6 Tensor Operations Page: 171 4.6.1 Vector Operations Page: 171 4.6.2 Matrix-Vector Multiplication Page: 172 4.6.3 Matrix-Matrix Operations Page: 172 4.6.4 Hadamard Multiplication Page: 174 4.6.5 Convolution Page: 174 4.6.6 Function of a Matrix Page: 176 4.7 Symmetric and Antisymmetric Tensor Spaces Page: 179 4.7.1 Hilbert Structure Page: 179 4.7.2 Banach Spaces and Dual Spaces Page: 180 Chapter 5: General Techniques Page: 183 5.1 Vectorisation Page: 183 5.1.1 Tensors as Vectors Page: 183 5.1.2 Kronecker Tensors Page: 185 5.2 Matricisation Page: 187 5.2.1 General Case Page: 187 5.2.2 Finite-Dimensional Case Page: 189 5.2.3 Hilbert Structure Page: 194 5.2.4 Matricisation of a Family of Tensors Page: 198 5.3 Tensorisation Page: 198 Chapter 6: Minimal Subspaces Page: 201 6.1 Statement of the Problem, Notations Page: 201 6.2 Tensors of Order Two Page: 202 6.2.1 Existence of Minimal Subspaces Page: 202 6.2.2 Use of the Singular-Value Decomposition Page: 205 6.2.3 Minimal Subspaces for a Family of Tensors Page: 206 6.3 Minimal Subspaces of Tensors of Higher Order Page: 207 6.4 Hierarchies of Minimal Subspaces and Page: 210 6.5 Sequences of Minimal Subspaces Page: 213 6.6 Minimal Subspaces of Topological Tensors Page: 218 6.6.1 Setting of the Problem Page: 218 6.6.2 First Approach Page: 218 6.6.3 Second Approach Page: 221 6.7 Minimal Subspaces for Intersection Spaces Page: 224 6.7.1 Algebraic Tensor Space Page: 224 6.7.2 Topological Tensor Space Page: 225 6.8 Linear Constraints and Regularity Properties Page: 226 6.9 Minimal Subspaces for (Anti-)Symmetric Tensors Page: 229 Part III: Numerical Treatment Page: 231 Chapter 7: r-Term Representation Page: 233 7.1 Representations in General Page: 234 7.1.1 Concept Page: 234 7.1.2 Computational and Memory Cost Page: 235 7.1.3 Tensor Representation versus Tensor Decomposition Page: 236 7.2 Full and Sparse Representation Page: 237 7.3 r-Term Representation Page: 238 7.4 Tangent Space and Sensitivity Page: 241 7.4.1 Tangent Space Page: 241 7.4.2 Sensitivity Page: 242 7.5 Representation of Vj Page: 244 7.6 Conversions between Formats Page: 247 7.6.1 From Full Representation into r-Term Format Page: 247 7.6.2 From r-Term Format into Full Representation Page: 248 7.6.3 From r-Term into N-Term Format for r>N Page: 248 7.6.4 Sparse-Grid Approach Page: 249 7.6.5 From Sparse Format into Page: 251 7.7 Representation of (Anti-)Symmetric Tensors Page: 253 7.7.1 Sums of Symmetric Rank-1 Tensors Page: 254 7.7.2 Indirect Representation Page: 254 7.8 Modifications Page: 256 Chapter 8: Tensor Subspace Representation Page: 257 8.1 The Set Tr Page: 257 8.2 Tensor Subspace Formats Page: 261 8.2.1 General Frame or Basis Page: 261 8.2.2 Transformations Page: 264 8.2.3 Tensors in KI Page: 265 8.2.4 Orthonormal Basis Page: 266 8.2.5 Summary of the Formats Page: 270 8.2.6 Hybrid Format Page: 271 8.3 Higher-Order Singular-Value Decomposition (HOSVD) Page: 273 8.3.1 Definitions Page: 273 8.3.2 Examples Page: 275 8.3.3 Computation and Computational Cost Page: 277 8.4 Tangent Space and Sensitivity Page: 283 8.4.1 Uniqueness Page: 283 8.4.2 Tangent Space Page: 284 8.4.3 Sensitivity Page: 285 8.5 Conversions between Different Formats Page: 287 8.5.1 Conversion from Full Representation into Tensor Subspace Format Page: 287 8.5.2 Conversion from Rr to Tr Page: 287 8.5.3 Conversion from Tr to Rr Page: 291 8.5.4 A Comparison of Both Representations Page: 292 8.5.5 r-Term Format for Large r > N Page: 293 8.6 Joining two Tensor Subspace Representation Systems Page: 293 8.6.1 Trivial Joining of Frames Page: 293 8.6.2 Common Bases Page: 294 Chapter 9: r-Term Approximation Page: 297 9.1 Approximation of a Tensor Page: 297 9.2 Discussion for r = 1 Page: 299 9.3 Discussion in the Matrix Case d = 2 Page: 301 9.4 Discussion in the Tensor Case d > 3 Page: 303 9.4.1 Nonclosedness of Rr Page: 303 9.4.2 Border Rank Page: 304 9.4.3 Stable and Unstable Sequences Page: 306 9.4.4 A Greedy Algorithm Page: 308 9.5 General Statements on Nonclosed Formats Page: 309 9.5.1 Definitions Page: 309 9.5.2 Nonclosed Formats Page: 311 9.5.3 Discussion of F = Rr Page: 312 9.5.4 General Case Page: 312 9.5.5 On the Strength of Divergence Page: 313 9.5.6 Uniform Strength of Divergence Page: 314 9.5.7 Extension to Vector Spaces of Larger Dimension Page: 317 9.6 Numerical Approaches for the r-Term Approximation Page: 318 9.6.1 Use of the Hybrid Format Page: 318 9.6.2 Alternating Least-Squares Method Page: 320 9.6.3 Stabilised Approximation Problem Page: 329 9.6.4 Newton’s Approach Page: 330 9.7 Generalisations Page: 332 9.8 Analytical Approaches for the r-Term Approximation Page: 333 9.8.1 Quadrature Page: 334 9.8.2 Approximation by Exponential Sums Page: 335 9.8.3 Sparse Grids Page: 346 Chapter 10: Tensor Subspace Approximation Page: 347 10.1 Truncation to Tr Page: 347 10.1.1 HOSVD Projection Page: 348 10.1.2 Successive HOSVD Projection Page: 350 10.1.3 Examples Page: 352 10.1.4 Other Truncations Page: 354 10.1.5 L Estimate of the Truncation Error Page: 355 10.2 Best Approximation in the Tensor Subspace Format Page: 358 10.2.1 General Setting Page: 358 10.2.2 Approximation with Fixed Format Page: 359 10.2.3 Properties Page: 361 10.3 Alternating Least-Squares Method (ALS) Page: 362 10.3.1 Algorithm Page: 362 10.3.2 ALS for Different Formats Page: 364 10.3.3 Approximation with Fixed Accuracy Page: 367 10.4 Analytical Approaches for the Tensor Subspace Approximation Page: 369 10.4.1 Linear Interpolation Techniques Page: 369 10.4.2 Polynomial Approximation Page: 372 10.4.3 Polynomial Interpolation Page: 374 10.4.4 Sinc Approximations Page: 376 10.5 Simultaneous Approximation Page: 383 10.6 Resume Page: 385 Chapter 11: Hierarchical Tensor Representation Page: 387 11.1 Introduction Page: 387 11.1.1 Hierarchical Structure Page: 387 11.1.2 Properties Page: 390 11.1.3 Historical Comments Page: 391 11.2 Basic Definitions Page: 392 11.2.1 Dimension Partition Tree Page: 392 11.2.2 Algebraic Characterisation, Hierarchical Subspace Family Page: 394 11.2.3 Minimal Subspaces Page: 395 11.2.4 Conversions Page: 398 11.3 Construction of Bases Page: 400 11.3.1 Hierarchical Basis Representation Page: 400 11.3.2 Orthonormal Bases Page: 410 11.3.3 HOSVD Bases Page: 415 11.3.4 Tangent Space and Sensitivity Page: 422 11.3.5 Sensitivity Page: 422 11.3.6 Conversion from Rr to Hr Revisited Page: 429 11.4 Approximations in Hr Page: 431 11.4.1 Best Approximation in Hr Page: 431 11.4.2 HOSVD Truncation to Hr Page: 433 11.5 Joining two Hierarchical Tensor Representation Systems Page: 446 11.5.1 Setting of the Problem Page: 446 11.5.2 Trivial Joining of Frames Page: 447 11.5.3 Common Bases Page: 447 Chapter 12: Matrix Product Systems Page: 453 12.1 Basic TT Representation Page: 453 12.2 Function Case Page: 456 12.3 TT Format as Hierarchical Format Page: 456 12.3.1 Related Subspaces Page: 456 12.3.2 From Subspaces to TT Coefficients Page: 457 12.3.3 From Hierarchical Format to TT Format Page: 458 12.3.4 Construction with Minimal pj Page: 460 12.3.5 Extended TT Representation Page: 460 12.3.6 Properties Page: 461 12.3.7 HOSVD Bases and Truncation Page: 462 12.4 Conversions Rr to Tp Page: 463 12.4.1 Conversion from Rr to Tp Page: 463 12.4.2 Conversion from Tp to Hr with a General Tree Page: 463 12.4.3 Conversion from Hr to Tp Page: 465 12.5 Cyclic Matrix Products and Tensor Network States Page: 467 12.5.1 Cyclic Matrix Product Representation Page: 467 12.5.2 Site-Independent Representation Page: 470 12.5.3 Tensor Network Page: 471 12.6 Representation of Symmetric and Antisymmetric Tensors Page: 472 Chapter 13: Tensor Operations Page: 473 13.1 Addition Page: 474 13.1.1 Full Representation Page: 474 13.1.2 r-Term Representation Page: 475 13.1.3 Tensor Subspace Representation Page: 475 13.1.4 Hierarchical Representation Page: 477 13.2 Entry-wise Evaluation Page: 477 13.2.1 r-Term Representation Page: 478 13.2.2 Tensor Subspace Representation Page: 478 13.2.3 Hierarchical Representation Page: 479 13.2.4 Matrix Product Representation Page: 480 13.3 Scalar Product Page: 480 13.3.1 Full Representation Page: 481 13.3.2 r-Term Representation Page: 481 13.3.3 Tensor Subspace Representation Page: 482 13.3.4 Hybrid Format Page: 484 13.3.5 Hierarchical Representation Page: 485 13.3.6 Orthonormalisation Page: 489 13.4 Change of Bases Page: 490 13.4.1 Full Representation Page: 490 13.4.2 Hybrid r-Term Representation Page: 490 13.4.3 Tensor Subspace Representation Page: 491 13.4.4 Hierarchical Representation Page: 491 13.5 General Binary Operation Page: 492 13.5.1 r-Term Representation Page: 493 13.5.2 Tensor Subspace Representation Page: 493 13.5.3 Hierarchical Representation Page: 494 13.6 Hadamard Product of Tensors Page: 495 13.7 Convolution of Tensors Page: 496 13.8 Matrix-Matrix Multiplication Page: 496 13.9 Matrix-Vector Multiplication Page: 497 13.9.1 Identical Formats Page: 498 13.9.2 Separable Form (13.25a) Page: 498 13.9.3 Elementary Kronecker Tensor (13.25b) Page: 499 13.9.4 Matrix in p-Term Format (13.25c) Page: 500 13.10 Functions of Tensors, Fixed-Point Iterations Page: 501 13.11 Example: Operations in Quantum Chemistry Applications Page: 503 Chapter 14: Tensorisation Page: 507 14.1 Basics Page: 507 14.1.1 Notations, Choice for TD Page: 507 14.1.2 Format Htens Page: 509 14.1.3 Operations with Tensorised Vectors Page: 510 14.1.4 Application to Representations by Other Formats Page: 512 14.1.5 Matricisation Page: 513 14.1.6 Generalisation to Matrices Page: 514 14.2 Approximation of Grid Functions Page: 515 14.2.1 Grid Functions Page: 515 14.2.2 Exponential Sums Page: 516 14.2.3 Polynomials Page: 516 14.2.4 Multiscale Feature and Conclusion Page: 520 14.2.5 Local Grid Refinement Page: 520 14.3 Convolution Page: 521 14.3.1 Notation Page: 521 14.3.2 Separable Operations Page: 523 14.3.3 Tensor Algebra A(l0) Page: 524 14.3.4 Algorithm Page: 531 14.4 Fast Fourier Transform Page: 534 14.4.1 FFT for Cn Vectors Page: 534 14.4.2 FFT for Tensorised Vectors Page: 535 14.5 Tensorisation of Functions Page: 537 14.5.1 Isomorphism Fn Page: 537 14.5.2 Scalar Products Page: 538 14.5.3 Convolution Page: 539 14.5.4 Continuous Functions Page: 539 Chapter 15: Multivariate Cross Approximation Page: 541 15.1 Approximation of General Tensors Page: 541 15.1.1 Approximation of Multivariate Functions Page: 542 15.1.2 Multiparametric Boundary-Value Problem and PDE with Stochastic Coefficients Page: 543 15.1.3 Function of a Tensor Page: 545 15.2 Notations Page: 546 15.3 Properties in the Matrix Case Page: 548 15.4 Case Page: 551 15.4.1 Matricisation Page: 551 15.4.2 Nestedness Page: 553 15.4.3 Algorithm Page: 555 Chapter 16: Applications to Elliptic Partial Differential Equations Page: 559 16.1 General Discretisation Strategy Page: 559 16.2 Solution of Elliptic Boundary-Value Problems Page: 560 16.2.1 Separable Differential Operator Page: 561 16.2.2 Discretisation Page: 561 16.2.3 Solution of the Linear System Page: 563 16.2.4 Accuracy Controlled Solution Page: 565 16.3 Solution of Elliptic Eigenvalue Problems Page: 566 16.3.1 Regularity of Eigensolutions Page: 566 16.3.2 Iterative Computation Page: 568 16.3.3 Alternative Approaches Page: 569 16.4 On Other Types of PDEs Page: 569 Chapter 17: Miscellaneous Topics Page: 571 17.1 Minimisation Problems on Page: 571 17.1.1 Algorithm Page: 571 17.1.2 Convergence Page: 572 17.2 Solution of Optimisation Problems Involving Tensor Formats Page: 573 17.2.1 Formulation of the Problem Page: 574 17.2.2 Reformulation, Derivatives, and Iterative Treatment Page: 575 17.3 Ordinary Differential Equations Page: 576 17.3.1 Tangent Space Page: 576 17.3.2 Dirac–Frenkel Discretisation Page: 576 17.3.3 Tensor Subspace Format Tr Page: 577 17.3.4 Hierarchical Format Hr Page: 579 17.4 ANOVA Page: 581 17.4.1 Definitions Page: 581 17.4.2 Properties Page: 582 17.4.3 Combination with Tensor Representations Page: 584 17.4.4 Symmetric Tensors Page: 584 References Page: 585 Index Page: 599

Description:
Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.