ebook img

Tensor Analysis and Continuum Mechanics PDF

603 Pages·2002·13.191 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tensor Analysis and Continuum Mechanics

Tensor Analysis and Continuum Mechanics Tensor Analysis and Continuum Mechanics by Yves R. Talpaert Faculties of Science and Schools of Engineering at Algiers University, Algeria; Brussels University, Belgium; Bujumbura University, Burundi; Libreville University, Gabon; Lome University, Togo; Lubumbashi University, Zaire and Ouagadougou University, Burkina Faso Springer-Science+Business Media, B.Y. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-6190-4 ISBN 978-94-015-9988-7 (eBook) DOI 10.1007/978-94-015-9988-7 Printed on acid-free paper All Rights Reserved © 2002 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2002. Softcover reprint of the hardcover 1s t edition 2002 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. CONTENTS PREFACE ........................................................... xv Chapter 1. TENSORS 1 1. FIRST STEPS WITH TENSORS ......................... . 1.1 Multilinear forms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Linear mapping .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Multilinear form ........................................... 2 1.2 Dual space, vectors and covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 Expression of a covector .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Einstein summation convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Change of basis and cobasis '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Tensors and tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. to Tensor product of multilinear forms. . . . . . . . . . . . . . . . . . . . . . . . . . to (?) ......................................... Tensor of type II Tensor of type (~) ......................................... 12 (g) ......................................... Tensor of type 14 m. ........................................ Tensor of type 16 Tensor of type (:) ......................................... 18 (j,) ........................................ Tensor of type 20 Symmetric and antisymmetric tensors 22 2. OPERATIONS ON TENSORS ........ . . . . . . . . . . . .. .. . . . . . 25 2.1 Tensor algebra ........................................... 25 Addition of tensors ....................................... , 25 Multiplication of a tensor by a scalar ..... . . . . . . . . . . . . . . . . . . . .. 25 Tensor multiplication ...................................... 26 2.2 Contraction and tensor criteria ..... . . . . . . . . . . . . . . . . . . . . . . . .. 27 Contraction ............................................... 27 Tensor criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 vii viii Contents 3. EUCLIDEAN VECTOR SPACE ............................ 33 3.1 Pre-Euclidean vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33 Scalar multiplication and pre-Euclidean space ................... 33 Fundamental tensor .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 3.2 Canonical isomorphism and conjugate tensor . . . . . . . . . . . . . . . .. 35 Canonical isomorphism ..................................... 35 Conjugate tensor and reciprocal basis .... . . . . . . . . . . . . . . . . . . . . .. 37 Covariant and contravariant representations of vectors ............ 40 Representation of tensors of order 2 and contracted products ....... 42 3.3 Euclidean vector spaces ............................... . . . . . 45 4. EXTERIOR ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 4.1 p-forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 Definition of a p-form ...................................... 49 Exterior product of I-forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 Expression of a p-form ..................................... 52 Exterior product ofp -forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 Exterior algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 4.2 q-vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 5. POINT SPACES ......................................... 63 5.1 Point space and natural frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 Point space ............................................... 63 Coordinate system and frame of reference ...................... 64 Natural frame ............................................. 66 5.2 Tensor fields and metric element .. . . . . . . . . . . . . . . . . . . . . . . . . .. 69 Transformations of curvilinear coordinates ..................... 69 Tensor fields .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 Metric element .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 5.3 Christoffel symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 Definition of Christoffel symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 Ricci identities and Christoffel formulae ........................ 78 5.4 Absolute differential, Covariant derivative, Geodesic .. . . . . . . . . 80 Absolute differential of a vector, covariant derivatives ............ 80 Absolute differential of a tensor, covariant derivatives . . . . . . . . . . .. 83 Geodesic and Euler's equations ..................... . . . . . . . . 85 Absolute derivative of a vector (along a curve) .................. 86 5.5 Volume form and adjoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Volume form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Adjoint. .. .. . .. .... . .. .. . . ... . . .. .. . .. . ... . .. ..... .. .. . 91 5.6 Differential operators .................................... 92 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Divergence .............................................. 99 Curl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 101 Contents ix Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 103 EXERCISES .................................................. 106 Chapter 2 LAGRANGIAN AND EULERIAN DESCRIPTIONS 147 1. LAGRANGIAN DESCRIPTION .......................... 147 1.1 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 147 1.2 Deformation and Lagrangian Description ................... 148 1.3 Flow and hypotheses of continuity .... . . . . . . . . . . . . . . . . . . . . . 152 1.4 Trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 1.5 Streakline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 154 1.6 Velocity and acceleration of a particle . . . . . . . . . . . . . . . . . . . . . .. 155 1.7 Abstract configuration .................................... 156 2. EULERIAN DESCRIPTION ... . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 2.1 Definition; Comparison between L-and E-descriptions ..... . .. 157 2.2 Trajectory and velocity ................... . . . . . . . . . . . . . . .. 158 2.3 Streamline .............................................. 161 2.4 Steady motion ........................................... 163 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 Chapter 3 DEFORMATIONS 171 1. HOMOGENEOUS TRANSFORMATION .......... . . . . . . .. 172 1.1 Definition of homogeneous transformations ...... . . . . . . . . . .. 172 1.2 Convective transport .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Convective transport of a vector ............................ 174 Convective transport of a volume . . . . . . . . . . . . . . . . . . . . . . . . . . .. 174 Simple shear .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 176 1.3 Cauchy-Green deformation tensor and stretch ............... 177 (Right) Cauchy-Green deformation tensor. . . . . . . . . . . . . . . . . . . . 177 Stretch ................................................. 180 Shear angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 181 x Contents Principal stretches ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182 1.4 Finite strain tensor .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 184 1.5 Polar decomposition ..................................... 186 Pure stretch and rotation .................................. 186 Euler-Almansi strain tensor .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 190 1.6 Rigid body transformation ................................ 191 2. TANGENTIAL HOMOGENEOUS TRANSFORMATION. . . . 193 2.1 Deformation gradient .................................... 193 2.2 Homogeneous transformations of elements .................. 196 Transport of vectors, volume deformation, and area deformation ... 196 Stretches ........ ....................................... 19 9 Strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 201 2.3 Displacement and gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 203 Material displacement gradient .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 204 Spatial displacement gradient .... . . . . . . . . . . . . . . . . . . . . . . . . . .. 206 Curvilinear coordinate system .............................. 208 3. INFINITESIMAL TRANSFORMATION . . . . . . . . . . . . . . . . . .. 2 I 0 3.1 Tensor notions relating to infinitesimal transformations ........ 2 I I 3.2 Compatibility conditions .................................. 216 3.3 Rigid body transformation ....... ......................... 220 EXERCISES ................................................... 222 Chapter 4 KINEMATICS OF CONTINUA 263 1. LAGRANGIAN KINEMATICS 263 1.1 Homogeneous transformation motion ...................... 264 1.2 General motion and gradient 266 2. EULERIAN KINEMATICS ............................... 268 2.1 Homogeneous transformation motion ....................... 268 Velocity field ............................................. 268 Material derivative of a vector .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Material derivative of a volume .............................. 269 Eulerian rates ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 271 2.2 General motion and velocity gradient . . . . . . . . . . . . . . . . . . . . . .. 274 Velocity gradient tensor and Eulerian rates ......... . . . . . . . . . .. 274

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.