ebook img

Temporal variations in the flow of a large Antarctic ice-stream controlled by tidally induced changes PDF

34 Pages·2015·1.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Temporal variations in the flow of a large Antarctic ice-stream controlled by tidally induced changes

ManuscriptpreparedforTheCryosphereDiscuss. D is withversion2014/07/297.12CopernicuspapersoftheLATEXclasscopernicus.cls. cu s Date:4June2015 s io n Temporal variations in the flow of a large P a p e r Antarctic ice-stream controlled by tidally | induced changes in the subglacial water D is c system u s s io n P SebastianH.R.Rosier1,2,G.HilmarGudmundsson2,andJ.A.MattiasGreen1 a p e r 1SchoolofOceanSciences,BangorUniversity,MenaiBridge,LL595AB,UK 2BritishAntarcticSurvey,HighCross,MadingleyRd.,Cambridge,CB30ET,UK | D Correspondenceto:S.H.R.Rosier([email protected]) is c u s s io n P a p e r | D is c u s s io n P a p e r | 1 Abstract D is c u Observations show that the flow of Rutford Ice Stream (RIS) is strongly modulated by the s s ocean tides, with the strongest tidal response at the 14.77 day tidal period (Msf ). This is ion striking because this period is absent in the tidal forcing. A number of mechanisms have P a p been proposed to account for this effect, yet previous modeling studies have struggled to e r match the observed large amplitude and decay length scale. We use a nonlinear 3-D vis- | coelasticfull-Stokesmodelofice-streamflowtoinvestigatethisopenissue.Wefindthatthe long period M modulation of ice-stream velocity observed in data cannot be reproduced D sf is quantitatively without including a coupling between basal sliding and tidal tidally-induced c (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) us subglacial water pressure variations. Furthermore, the subglacial water system must be sio highly conductive and , transmitted through a highly conductive drainage system at low ef- n (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) P fectivepressure,andtherelationshipbetweenslidingvelocityandeffectivepressurehighly a p e nonlinear in order for the model results to match GPS measurements. Hydrological and r basal sliding model parameters that produced a best fit to observations were a mean | effective pressure N of 105 , subglacial drainage system conductivity K of 7×109 , with D sliding law exponents m=3 and q=10. (cid:58).(cid:58)F(cid:58)u(cid:58)r(cid:58)t(cid:58)h(cid:58)e(cid:58)r(cid:58)m(cid:58)(cid:58)o(cid:58)re(cid:58)(cid:58),(cid:58)t(cid:58)h(cid:58)e(cid:58)(cid:58)b(cid:58)a(cid:58)s(cid:58)a(cid:58)l(cid:58)s(cid:58)(cid:58)lid(cid:58)(cid:58)in(cid:58)g(cid:58)(cid:58)l(cid:58)a(cid:58)w(cid:58)(cid:58)r(cid:58)e(cid:58)q(cid:58)u(cid:58)i(cid:58)re(cid:58)(cid:58)s(cid:58)a(cid:58) isc water pressure exponent that is strongly nonlinear with q=10 and a nonlinear basal shear u (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) ss exponentofm=3.Coupledmodelresultsshowthepresenceofthatsub-iceshelftidesresult io (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) n ina∼12%increaseinmeansurfacevelocityhorizontalvelocityoftheadjoiningice-stream. P (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) a Observationsoftidally-inducedvariationsinflowofice-streamsprovidestrongerconstraints p e r onbasalslidingprocessesthanprovidedbyanyothersetofmeasurements. | D 1 Introduction is c u s The majority of ice-streams in Antarctica are forced at their boundary by ocean tides, ei- sio ther directly or through the motion of an adjoining ice-shelf. Measurements have shown n P theflowofice-streamstobegreatlyaffectedbyoceantidesoverlargedistancesupstream a p e from the grounding line (Anandakrishnan et al., 2003; Bindschadler et al., 2003a, b; Gud- r | 2 mundsson, 2006; Murray et al., 2007; Marsh et al., 2013). On Rutford Ice Stream (RIS), D is WestAntarctica,forexample,flowvelocitieschangebymorethan10%inresponsetotides c u s overdistancesof50kmupstreamfromthegroundingline.Severaldifferenttypesoftidally- s io induced perturbations in ice flow have been observed on Antarctic ice-streams. These in- n P cludestick-slipmotionobservedatWilliamsIceStream(Bindschadleretal.,2003a,b;Win- a p berryetal.,2009,2011),smoothdiurnalvariationsobservedonKambandBindschadlerIce er Streams(AnandakrishnanandAlley,1997;Anandakrishnanetal.,2003),andlong-periodic | response found on RIS and on several other ice-streams flowing into the Ronne Ice Shelf D (Gudmundsson, 2006; Murray et al., 2007; Aðalgeirsdóttir et al., 2008; King et al., 2010; is c Marshetal.,2013). u s s AninterestingaspectofthetidalobservationsonRISisthelongperiod(>1day)modu- io n lation in ice-stream flow that clearly demonstrates a nonlinear response to the tidal forcing P a (Fig. 1). In the response of the ice-stream, the dominant tidal amplitude is found at the p e M tidal frequency (14.77 days), despite this tidal component being statistically insignifi- r sf cantinthetidalforcing.Hence,thestrongestresponseisfoundatafrequencyabsentinthe | forcing. The same pattern is seen in observations of the tidal respone of other ice-streams D flowing into Ronne ice-shelf (unpublised), as well as on the Larsen C ice-shelf (King et al., is c u 2011).NotethatflowmodulationatM frequencyisnotsimplyaharmonicbeatofthetwo s semidi(cid:58)u(cid:58)rn(cid:58)(cid:58)a(cid:58)l(cid:58)fr(cid:58)e(cid:58)q(cid:58)u(cid:58)e(cid:58)(cid:58)n(cid:58)c(cid:58)ie(cid:58)s(cid:58),(cid:58)(cid:58)in(cid:58)(cid:58)fa(cid:58)c(cid:58)t(cid:58)(cid:58)it(cid:58)i(cid:58)s(cid:58)apsrfo(cid:58)p(cid:58)e(cid:58)r(cid:58)t(cid:58)y(cid:58)o(cid:58)f(cid:58)s(cid:58)p(cid:58)(cid:58)e(cid:58)c(cid:58)tr(cid:58)a(cid:58)l(cid:58)a(cid:58)n(cid:58)(cid:58)a(cid:58)ly(cid:58)s(cid:58)i(cid:58)s(cid:58)t(cid:58)h(cid:58)a(cid:58)t(cid:58)t(cid:58)id(cid:58)a(cid:58)(cid:58)l(cid:58)a(cid:58)m(cid:58)(cid:58)p(cid:58)li(cid:58)tu(cid:58)d(cid:58)e(cid:58)(cid:58)s(cid:58)c(cid:58)a(cid:58)n(cid:58) sion (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) neverarisethroughlinearsuperpositionofotherfrequencies. P (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) a p One of the key motivations for studying the impact of tides on ice-stream flow is that e r modelingworkhasshowntheresponsetoreflectmechanicalconditionsattheglacierbed. | Hence, observing and modeling tidally-induced modulations in ice-stream motion provides awindowintothemechanismsthatmustbecausingtheseeffectsinfluencebasalsliding. D (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) is As initially suggested by Gudmundsson (2006), a nonlinear sliding law offers a potential c u s explanation for the RIS observations, and various flow-line and full 3-D full-Stokes models s io havenowsuccessfullyreproducedthegeneralaspectsofthelong-periodmodulationinice- n P streamflowasarisingfromanonlinearresponsetotidalforcingGudmundsson(2007);Kingetaal.(2010);Gudmundsson(2011);Walkeretal.(2012);Rosieretal.(2014b)(Gudmundsson,2007;Kingetal.,2010;Gudmundsson,2011;Walkeretal.,2012;Rosieretal.,2014b). p (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) e These previous studies, however, have primarily focused on identifing a potential mecha- r | 3 nismgivingrisetotheobservednonlineartidalresponeonRISbyreproducingtheobserva- D is tions qualitatively. So far, with the notable exception of the recent work by Thompson et al. c u s (2014), no modeling work has attempted to replicate the RIS observations in any quanti- s io tative detail. The models presented so far have shown that the qualitative aspects of the n P long-period RIS response can arise through transmission of tidal tidally-induced stresses a (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) p acrossthegroundingline,providedtheslidinglawissufficientlynonlinear.Inthesemodels er thephysicalconditionsupstreamofthegroundingline,asdefinedinthesemodelsthrough | theirsliding-lawparameters,donotchangewithtimeinresponsetotides. D The motivation for this work are recent modeling studies that suggest that any models is c usingtime-invariantsliding-lawparameters,whileignoringtheeffectsoftidally-inducedsub- u s s glacial pressure variations on sliding, will fail to reproduce the RIS observations in quanti- io n tative terms. Recent work by Thompson et al. (2014), which does not explicitly investigate P a long-periodmodulationbutincludestheeffectsofice-streammargins,foundthatforrealistic p e ice-streamgeometries,theeffectoftidalstressperturbationonflowistoosmalltoaccount r for observations. In addition to this, our own 3-D modeling study including side drag and | capableofreproducingthelongperiodmodulation,producedM amplitudesmuchsmaller sf D thanthoseobserved(Rosieretal.,2014b).Asaresultofthediscrepanciesoutlinedabove, is c u the question as to what mechanism can lead to the observed fluctuations in surface ice s s velocitystillremainsanopenone. ion ThefirstmeasurementsofthiseffectmadebyGudmundsson(2006),suggestedM amplitudPes sf a p of∼0.3matthegroundingline,decayingto∼0.1mat40kmupstreamandstillpresentat e r 73kmupstream.ThemodeldescribedbyGudmundsson(2011),althoughcorrectlyproduc- | ing strongest tidal response at the M frequency, appears only to be capable of reproduc- sf ing M amplitudes of ∼0.1 m at most. In a more recent fully 3-D study, that in contrast to D sf is Gudmundsson(2011)includedlateraldrag,thisamplitudeisdecreasedfurtherto∼0.05m c u s at the grounding line when forced with the same tidal regime as that of the RIS (Rosier s io et al., 2014b). Hence, the observed response at the M frequency in that model is an or- n sf P der of magnitude too small. Thompson et al. (2014) conclude that the observed effect is a p e too strong to be produced by transmission of tidal stresses only and suggest that a tidally r | 4 driventime-dependentvariabilityintillstrengththroughhydrologicalcouplingcouldexplain D is theobservedM response. c sf u s Hereweusea3-Dnonlinearvisco-elasticmodelwithageometrycloselymatchingthatof s io RIStoinvestigatethecausesfortheobservedtidalresponse.Wecoupleourice-mechanical n P model to a model describing the changes in basal water pressure due to ocean tides, by a p allowingbasalvelocitytochangeinresponsetochangesineffectivebasalwaterpressure. er Thepaperisorganisedasfollows.Wefirstdescribeournonlinearvisco-elasticmodeland | present the basic govering equations. We then perform a full-Stokes surface-to-bed inver- D sion of medial line surface velocities to determine the time averaged spatial distribution of is c basalsliperiness.WethenestablishinathoroughparameterstudythatthemodelofRosier u s s et al. (2014b) cannot reproduce the observed long-period velocity fluctuations of sufficient io n amplitude to agree with observations. In particular, and in an agreement with Thompson P a etal.(2014),wefindthattheobservationscannotbereplicatedthroughtheeffectsofme- p e chanics transmission of stresses through the ice and the till alone, but that in addition the r effectsofsubglacialwaterpressurevariationsonslidingmustbeincluded.Finallywesimu- | lateperturbationsineffectivebasalpressuresduetooceantides,andallowthosechanges D insubglacialpressuretoimpactslidingthroughacommonly-usedparameterisationrelating is c u sliding velocity and effective basal water pressure. After a new model parameter optimisa- s s tion, we are able to replicate the RIS observations in considerable detail, but only within a ion fairlystrictrangeofparameters. P a p e r 2 Methodology | D 2.1 Iceflowmodel is c u s Our numerical ice flow model solves the field equations for conservation of mass, linear sio momentum(equilibriumequations)andangularmomentum: n P a p Dρ e +ρv =0 (1) r i,i Dt | 5 D is σ +f =0 (2) c ij,j i u s s io n P a σ −σ =0 (3) p ij ji e r whereD/Dtisthematerialtimederivative,ρisdensity,ν arethecomponentsoftheveloc- i | ityvector,σ arethecomponentsoftheCauchystresstensorandf arethecomponentsof ij i D thegravityforcepervolume.Weusethecommatodonatepartialderivativesandthesum- is c mation convention, in line with notation commonly used in continuum mechanics. None of u s s thetermsintheequlibriumequationsareomitted.Inglaciologysuchmodelsarecommonly io n referredtoasfull-Stokesmodels. P a Weuseaanupper-convectedMaxwellrheologicalmodelthatrelatesdeviatoricstresses p (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) e τ anddeviatoricstrainse with r ij ij | 1 (cid:79) e˙ij = τij+Aτn−1τij, (4) D 2G is c where A is the rate factor, the superscript (cid:79) denotes the upper-convected time derivative, us s n is the constant in Glen’s flow law (a nonlinear relation with n=3 is used throughout), G io (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) n istheshearmodulus P a p E e r G= , (5) 2(1+ν) | ν isthePoisson’sratioandE istheYoung’sModulus.Theupper-convectedMaxwellmodel D (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) (cid:58)a(cid:58)ll(cid:58)o(cid:58)w(cid:58)s(cid:58)(cid:58)f(cid:58)o(cid:58)r(cid:58)c(cid:58)a(cid:58)(cid:58)lc(cid:58)u(cid:58)l(cid:58)a(cid:58)ti(cid:58)o(cid:58)n(cid:58)(cid:58)o(cid:58)f(cid:58)(cid:58)la(cid:58)r(cid:58)g(cid:58)e(cid:58)(cid:58)s(cid:58)t(cid:58)ra(cid:58)(cid:58)in(cid:58)(cid:58)u(cid:58)n(cid:58)d(cid:58)(cid:58)e(cid:58)r(cid:58)r(cid:58)o(cid:58)t(cid:58)a(cid:58)ti(cid:58)o(cid:58)n(cid:58)(cid:58)w(cid:58)(cid:58)h(cid:58)ic(cid:58)h(cid:58),(cid:58)(cid:58)a(cid:58)lt(cid:58)h(cid:58)o(cid:58)u(cid:58)g(cid:58)(cid:58)h(cid:58)(cid:58)n(cid:58)o(cid:58)t(cid:58)e(cid:58)(cid:58)s(cid:58)s(cid:58)e(cid:58)n(cid:58)t(cid:58)ia(cid:58)l(cid:58)f(cid:58)o(cid:58)r(cid:58)(cid:58)th(cid:58)e(cid:58) iscu strains present in our model, we have chosen to use for completeness. More details of s (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) sio this rheological model can be found in Gudmundsson(2011). The deviatoric stresses are n (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) P definedas a p 1 er τ =σ − δ σ , (6) ij ij ij pp 3 | 6 andthedeviatoricstrainsas D is c 1 u eij =(cid:15)ij− 3δij(cid:15)pp, (7) ssio n P whereσij and(cid:15)ij arethestressesandstrains,respectively.Thisrheologicalmodelapprox- ap imates the visco-elastic behaviour of ice at tidal time scales, and can be thought of as a er spring and dashpot in series such that the resulting strain is the sum of the elastic and | viscouscomponentsandthestressesareequal. D Theseequationsaresolvedusingthecomercialfinite-elementsoftwarepackageMSC.Marc is c (MARC,2013).Theice-streamicestreamandtheunderlayingtillaretreatedastwosepa- u (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) s s ratedeformablebodies.Inapreviousstudywehavecalculatedthemigrationoftheground- io n ing line in response to ocean tides, and accounted for the resulting effect on ice flow up- P a streamfromthegroundinglineinaflow-linesetting(Rosieretal.,2014b).Duetocomputa- p e tionalconsiderationswehavehere,however,notallowedthegroundinglinetomigrateover r tidalcycles. | Basalvelocityisgivenbyacommonlyusedempiricalformthatincludeseffectsofhydrology (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) D (e.g.BuddandKeage1979;Bindschadler1983): is (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) c u s u =cτbm, (8) sion b Nq P a p whereτ isthetangentialcomponentofthebasaltraction,N istheeffectivepressure(kept e b r constant for the initial parameter study and subsequently perturbed due to the tide), c is | basal slipperiness and both m and q are exponents. The slipperiness, tangential basal D tractionandeffectivepressureareallspatiallyvariable. is The effective subglacial water pressure N at the ice-till interface is defined as the differ- cu s encebetween(cid:58)th(cid:58)(cid:58)e(cid:58)normalcomponentofthebasaltraction(σnn(cid:58),(cid:58)w(cid:58)i(cid:58)th(cid:58)(cid:58)a(cid:58)p(cid:58)(cid:58)o(cid:58)s(cid:58)it(cid:58)iv(cid:58)e(cid:58)(cid:58)s(cid:58)t(cid:58)re(cid:58)s(cid:58)s(cid:58)(cid:58)a(cid:58)c(cid:58)t(cid:58)in(cid:58)g(cid:58) sio n upwards)andthesubglacialwaterpressure(p ),i.e.N =σ −p N =−σ −p ,where (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) w nn w(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)n(cid:58)n(cid:58)(cid:58)(cid:58)(cid:58)w(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) P apositivevalueforN indicatesgroundedicewherethedownwardspressureoficeexceeds ap (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) e waterpressure(asisthecaseeverywhereupstreamofthegroundinglineinthismodel). r (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) | 7 2.2 Subglacialhydrologymodel D is c u Our approach to including subglacial hydrology within the finite element model framework s s io described in Rosier et al. (2014b) is to reduce the problem to the simplest possible set n P of equations. Rather than attempt to model a complex system of connected channels and a p distributed flow, we treat the drainage system as a homogenous porous medium with a e r characteristic ’conductivity’ that, once coupled to the ice-flow model, can be tuned so that | the velocity response matches observations. This approach to modeling subglacial hydrol- ogyhasbeenusedsuccessfullyinpreviouscoupledstudieseg.deFleurianetal.(2014). D is As a starting point we must lay out how the tide perturbs the subglacial water pressure. cu s We write the subglacial water pressure (pw) at any location upstream from the grounding sio n lineas P a p (x,t)=ρ gh(x,t)+ρ g(S¯−b(x)), pe w w w r where h(x,t) is the tidally induced perturbation in the hydrological head, ρ is the ocean | w density, g the gravitational acceleration, b(x) the bed elevation, and the ocean surface ele- D vationS(t)isgivenby isc u s s S(t)=S¯+∆S(t), (9) io n P where S¯ is the mean ocean surface elevation, and ∆S(t) the ocean tide. We incorporate ap e the effects of the tides on subglacial water pressure through the grounding-line boundary r condition for the perturbation in the hydrological head h. We assume that at the grounding | linethesubglacialwatersystemisindirectcontactwiththeocean,andthesubglacialwater D pressureatthatlocationisthereforeequaltotheoceanpressure,or is c u s pw(x,t)=ρwg(S(t)−b(x))=ρwg(S¯+∆S(t)−b(x)), (10) sio n P atx=x ,andhence a gl p e r h(x ,t)=∆S(t), (11) gl | 8 Thetidally-inducedperturbationinhydrologicalheadisthenmodelledasadiffusionpro- D is cess,i.e. c u s s ∂ h=K ∂2 h, (12) io t xx n P where K is the hydraulic conductivity. In the context of Darcy groundwater flow, K can be a p expressedas er ρwgk | K = , (13) µS s D is wherek isthepermeability,µtheviscosityofwater,andS thespecificstoragecapacity.In c s u s realitythisparametercombinationispoorlyconstraintedandheretreatedasanunknown. s io Thus our approach is to solve for tidal perturbations in hydraulic head (rather than water n P pressure)whichisknownatthegroundinglineandtransmittedupstreamthroughasimple a p diffusionprocesscontrolledbytheconductivityK.Whenmodelingthespatialandthetem- er poral variations of the subglacial drainage system water, we only attempt to describe the | perturbationsineffectivepressureduetotides.Thisavoidsthecomplicationsofcalculating D the temporally-averaged pressure field, which is unnecessary as the effects of the mean is c pressure on basal flow are already accounted for in the temporally averaged value of the u s s basalslipperinesswhichwederiveinourinversion(seebelow). io n Thisiscoupledtoourice-streammodelthroughtheslidinglaw(Eq.8)whichweexpand P a toconsiderperturbationsinN: p e r τm ub=c b (14) | (N +∆N)q D where is c u s ∆N =−ρ gh(x,t) (15) s w io n andN ismeaneffectivepressuresuchthatN =N +∆N.Re-arrangingthisgives P a p τm e u =c(cid:48) b , (16) r b (1+ξ)q | 9 wherec(cid:48)=cN−q andξ=∆N/N.Thisnowputsslipperinessandmeaneffectivepressure D is into a new c(cid:48) term which is a function of x but not a function of t. In this way the baseline cu s s effective pressure and slipperiness conditions that affect the mean velocity of the glacier io n are separated from the perturbed terms. The c(cid:48) term is what is inverted for, as described P a later,tomatchobservedmediallineflow.Re-arrangingtheequationinthiswaymeansthat p e N onlyaffectstherelativesizeofthenon-dimensionalisedperturbationξ andnotthemean r flowwhichisconstrainedbyobservations. | Thehydrologicalcouplingleadstosixconstants:N,K,ν,E,mandq whicharetreated D asunknowns.TherheologicalparametersE (Young’smodulus)andν (Poisson’sratio)are is c u constrained to some extent from previous visco-elastic modeling efforts on tidally induced s s motion, with values of E expected to be ∼ 4.8 GPa and ν of ∼ 0.41 (Reeh et al., 2003; io n Gudmundsson, 2011). The sliding law exponents m and q are treated here as tunable pa- P a rameters.Notethatoncec(cid:48) hasbeendetermined,throughtheinversionprocedureoutlined pe r below, K and N only affect modeled flow through their combined effect on ξ. Sensitivity of themodeltothechoiceoftheseparametersispresentedlater. | D 2.3 Modelgeometry is c u s s OurmodelgeometryisbasedontheRIS,however,wehavenotattemptedtoreproduceits io n geometry exactly and our thickness distribution in along-flow direction corresponds to the P a mean ice thickness across the ice-stream. The 3-D model domain (Fig. 2) has zero bed p e r slope, a surface slope of 0.0036 and ice thickness at the grounding line of 2040 m. This (cid:58)(cid:58)(cid:58)(cid:58) simplegeometryisderivedfromaveragebedandsurfaceprofilesalongtheRISmedialline | (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) from BEDMAP2 data (Fretwelletal.,2013). While using constant slopes is a simplification D (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) and in reality the bed undulates considerably over the 100 km length being considered, isc u there is no obvious overall shallowing or deepening, and the surface slope is relatively s s uniform. The width and length of the model domain are 16 and 120 km, respectively. The ion P modelwidthdoesnotvaryalongflowandthevaluechosenisanapproximateaveragewidth (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) ap fortheregionofinterest.Thehydrologicalcomponentofthemodelextendsafurther100km e (cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58)(cid:58) r upstream. | 10

Description:
long period Msf modulation of ice-stream velocity observed in data cannot be reproduced . tative terms. Recent work by Thompson et al. (2014), which does not explicitly investigate long-period modulation but includes the effects of ice-stream In particular, and in an agreement with Thompson et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.