CayanaBot.36(I):39-31. 1999 ISSN 0016-5301 TEMPORAL FLUCTUATION OF PHYTOPLANKTONIC CHLOROPHYLL A AND PRIMARY PRODUCTION IN ATURBIO FLOODPLAIN LAKE OF THE RIVER PARANÁ (ARGENTINA) FLUCTUACIONES TEMPORALESDELA CLOROFILA A YDELA PRODUCCIÓNPRIMARIA FITOPLANCTONICA EN UNA LAGUNA TURBIA DELA LLANURA DEINUNDACIÓNDELRIOPARANÁ (ARGENTINA) & IrinaIzaguirre* Inés O'FarreH* ABSTRACT RESUMEN The seasonal pattern of vertical distribution of Enelpresentetrabajoseanalizalavariaciónestacionalde chlorophyllííandprimaryproduction vvasstudied in ladistribución verticaldeclorofilaí;ydelaproducción a floodplain lake ofthe Lower Paraná River from primariafitoplanctónicadeunalagunade lallanurade May 1995toMay 1996.Nostablestratification was inundacióndelParanáInferior. Losmuéstreosabarcaron observedduringthestudyperiodforlakeMontiel.a un cicloanual,entre mayode 1995 y mayode 1996. typical turbulent and shallow lake. Chlorophyll ív, Debidoalafrecuentemixisdelasaguas,noseevidenció mainly regulatedby the hydrological regime and by ningunaestratificaciónverticalestable.Laconcentración seasonal changes in temperature and light. attained de clorofila a estuvo regulada principalmente porel concentrations whichexceeded 10 pg 1' during late régimen hidrológicoyporlasvariacionesestacionalesde spring and early summer. Severe dilution occurred luzytemperatura. Lasmáximasconcentracionesfueron duringhighwaterlevelperiodswhilelightlimitationin registradashaciafmesdelaprimaveraycomienzosdel the watercolumn was observedforthe driest periods verano,convaloressuperioresa 10pg1'.Enlosperiodos due to sediment resuspension from the bottom. deaguasaltasseobservóunamarcadadilución,mientras Gross primary production perunitárea ranged from queenlasfasedeaguasbajasseevidencióciertalimitación 0.114g m-h' to 1.235 g in-h'. In general, produc- porluzdebidoalaresuspensióndelossedimentos.Lapro- tion sharply declined with depth because oflight ducciónprimariabrutaporáreafluctuóentre0.114gm-h' attenuation by suspended solids. Net production y1.235gm-h"'.Engeneralsedetectóunabruscadisminu- appeared to be Hniited by light penetration and by cióndelaproducciónprimariaenfiíncióndelaprofundidad hydrological mechanisms which exerted a signifi- debidoalagrancantidaddesólidosensuspensión.Lapro- cant influenceon the limnological parametersofthe ducciónnetadeestalagunaestaríalimitadaporladisponi- lake. bilidaddeluzyporladinámicahidrológica. Keywords: Floodplain lake. primary production, Palabrasclan'es: Laguna,llanuradeinundación,pro- chlorophylla,phytoplankton.ParanáRiver,Argentina. ducción primaria,clorofilaa,fitoplancton,ríoParaná, Argentina. INTRODUCTION Chemicalcharacteristics. Thus, the bioproductive mechanisms ofthe water bodies ofthe alluvial TheParanáRiverhydrological regimeregú- valley are also influenced by the hydrological lales most ofthe floodplain lakes physical and tluctuations (Bonetto & Wais, 1987). As it was discussedbyJunketal. (1989),thefloodpulseis considered to be the principal driving forcé for theexistence.productivityandinteractionsofthe biota in Ihese ecosystems. Several studies on 'Depto. Ciencias Biológicas. Facultad Ciencias phytoplankton have been conducted in South E1x4a2c8tBausenyosNaAtiurreas,leAsr,geUntniinvae.rsidad Buenos Aires. American floodplain lakes (Bonettoetal.. 1994; 39 CayanaBot.56(1), 1999 GarcíadeEmiliani, 1993;ZalocardeDomitrovic, combinationoferosiónandsedimentdeposition. 1990, 1992). Detailedstudiesonprimary produc- These lakes are annually filled during the rising tion ofthe different type ofAmazonian waters waterphase as aconsequence ofthe riverwater werecarriedoutbySchmidt(1976, 1982),Fisher inflow. Atfalling stages, the surpluspondwater (1978), Fisheretal. (1988),Fittkauetal (1975) flowsbackintotheriver.Thestronginfluenceof and Rai & Hill (1984). The Orinoco River, its theseasonalflucmationsoftheParanálevelonthe tributaries and related lakes have been surveyed hydrologicalcharacteristicsofthefloodplainlakes byLewis(1988)andLewis&Weibezahn(1976) has also been well documented by García de originating comprehensive works on the energy Emiliani(1993).FoUowingJunk'scriterion(1983), flow of these systems. In contrast with the thiskindofwaterbodycanbeconsideredasinter- Amazon,theParanálakeswerescarcelystudied. medíate between aclosed lake as accumulating Most investigations referto the ParanáRiveron systemandariverasadischargingone. its UpperandMiddle reaches and specially toits Lake Montiel has an área about 5.4 km-, main channel (Bonetto etai, 1979, 1982, 1983). which is subject to a great variation due to the Inrelationtotheprimaryproductionoftheflood- nature ofthis waterbody. Although the morpho- plainshallowlakes,PerottideJorda(1977)carried metricfeaturesofthelakehavenotbeen studied, outastudyonphytoplanktonbiomassandproduc- observations carried out by Prefectura Naval tion in Los Matadores pond (Middle Paraná). Argentina from Villa Constitución (Santa Fe Later on, Carignan & Planas (1994) compared Province), establish that the máximum depth three approaches for the recognition ofnutrient would be higherthan 10 meters. The máximum and light limitation ofproductivity in different depth at the incubation site forthe study period lakesoftheParanáfloodplain. variedbetween3and6meters. The LowerParaná has a large floodplain, whichextendsovertheleftsideoftherivervalley. Themaincourseisdividedintoseveralchannels METHODS enclosing a complex formation oflow islands. The present study was conducted on a shallow The study comprised one yearofmonthly andturbidlakelocatedonthefringingfloodplain samplings,between24May1995and14May1996. oppositethecityofVillaConstitución,Argentina AsamplingsitewasestabUshedinthepelagiczone (LakeMontiel). ofthe lake where depth was approximately 4-6 The main objectives ofthis study were to meters. Sample collections and incubations were determine the seasonal pattem ofvertical distri- performed at five depths, encompassing com- butionofchlorophylla,grossprimaryproduction pletely the euphotic zone ofthe lake at regular andcommunityrespirationinafloodplainlakeof intervals from the surface up to a depth below theLowerParaná River and to evalúate factors Z u X 3 level. Water samples at the different controllingbothprocesses. depths were obtained by means ofa peristaltic pump. Water temperature, pH and conductivity weremeasuredwithHannaHI8314andHI8033 STUDYSITE portable sensors, andtransparency with aSecchi disk. Dissolvedoxygen was estimated according The study was carried out in a floodplain to Winkler method (APHA, 1975); the titration shallow lake ofthe Lower Paraná River (Lake endpointwasdetectedvisually with starch indi- Montiel), which is located in the left margin of cator (precisión ± 0.2 mgl'). Water samples for themaincourse(33°15'S;60°30'W)(Fig. 1). Chemical analyses were also collected at each Accordingtotheclassificationproposedby depth,andfilteredthroughWhatmanGF/Ffilters. Drago(1990),LakeMontielcanbeconsideredas Solublereactivephosphorus(SRP) wasanalysed atypical pond with "indirect connection" to the according to the stannous chloride method river, since it is communicated with the River (APHA, 1975) and NO3-N was determined Paranáby a stream. Nevertheless during periods following the spongy cadmium technique ofhigh riverdischarge, its connection is direct. (Mackereth etai, 1978). Total phosphorus (TP) As other floodplain waterbodies ofthe Paraná, was determined in non filtered samples after an LakeMontielhasanalluvialorigin,formadbya aciddigestiónbythestannous chloride method. 40 Temporalfluctuationofphyloplanktcinicchlorophvllu:Izagliirrk,I.&I.O'Farrell Suspended solids concentrations weie obtained Temperature ranged from 9.9 to 25.4"C. filtering the water samples through predried Differences among the five depths were usually glassfibrefilters(WhatmanGF/F);dry masswas less than 1°C, thus revealing the absence of a determinedaccordingtoAPHA(1975). thermocline. Mean conductivity was of 100 pS Water samples for chlorophyll a analyses cm' with the lowest figure in August 1995 (59.1 werealsofilteredthrough WhatmanGF/F. Filters pS cm') and máximum in November 1996 (173 were stored at -20°C, and then pigments were pScm').Secchitransparencywaslowthroughout extractedwithhotethanol(60-70°C).Theextracts the year varying between 15 and 48 cm. were centrifuged andchlorophyll a (corrected for Transparency was least during drought periods phaeopigments) was measured by spectropho- and relatively high during the flooding season. tometry before and after acidification with HCl Water level of the main course influenced the (0.1 N). Chlorophyll a concentrations were cal- contentofsuspendedsolidsinthelake,whichon culated using the equations given by Marker et timedeterminedthetransparencyvalúes(Fig. 3). al. (1980). Lightpenetrationprotllesshowedasignificantlight Phytoplanktonprimaryproduction wasesti- attenuationwithdepthasaconsequenceofthehigh mated by means ofthe oxygen light-dark bottle content ofsuspended solids. In general terms, the technique, following recommendations given by mixing depth (Zm) exceeded 4-5 times the Dokulil(1984).Bottlesweresuspendedbymeans euphotic zone. Light penetration was influenced ofthe dispositives proposed by Boltovskoy & by river discharge. registering the highest Z,,j|^ Velez (1983/4), and incubated for 5-6 hours duringperiodsofhighwaterlevelinthelake. between 10:00/11:00 - 16:00/17:00 h. Incident Soluble reactive phosphorus (SRP) concen- irradiancewasmeasuredeachhalfanhourduring trationswere máximumin summer(>50pg 1"'), incubation with a quantum sensor (Photovolt and exhibited the lowest valúes during high Corp.). Average irradiance at each incubation water periods. Total phosphorus (TP) ranged depthwasestimatedassumingthatatSecchi disk between9and245pg1' withameanof95.4pg depththeirradianceisabout20% thatofthe sur- 1'. In the same way as SRP, TP was strongly face (Golterman. 1975). Since the water level of influenced by water level (Fig. 4). Nitrate (N- lakeMontielisdirectlyregulatedbythedischarge NO,) mean concentrations for each sampling oftheRiverParaná,thedailyrecordsofthewater daterangedfrom6.1 to309.2pgI' andaveraged levelintheriveratthispoint(VillaConstitución) about 181.35 pg r'(Fig. 5). No seasonal pattern recorded by Prefectura Naval Argentina were wasobserved. used. Twowayanalysesofvariancewithphysical b)Chlorophyllaandprimaryproductionmeasure- and Chemical variables were used to test the ments hypothesis ofvertical homogeneity. Correlation Chlorophyll a concentrations were very low analyses between biotic and abiotic variables fromMaytoAugust 1995(lessthan5pg1"');from were performed using Spearman's rank correla- September on a clear increasing pattern was tionprocedure. observed, reaching a máximum of22.5 pg 1"' in November.Lateron,concentrationsdecreasedupto valúessimilartothoseregisteredatthebeginningof RESULTS thestudy (Fig. 6). Mean chlorophyll aandchloro- phyll a perunit área were inversely correlated to a)Physicalandchemicalfeatures riverwaterlevel(r=-0.66,p<0.01 andr=-0.49.p< ThewaterleveloftheParanáRiveratVilla 0.06) due to the dilution effect. On the other Constitución varied between 1.45 and 3.86 hand. a direct correlation was found between meters. The flood peaks were registered in May mean chlorophyll a and temperature (r = 0.56, 1995 and 1996, a minor increase was observed p<0.05) and with nutrients, being more signifi- duringNovember(Fig.2). cant the relation with TP (r = 0.73, p<0.01). The analyses ofvariance revealed that the Chlorophyll a shows an increasing trend with mixingofthewatercolumnwascomplete, while enhanced mean incident light (Fig. 7), revealed significant differences were observedamong the by a significant correlation (r = 0.59, p< 0.05). samplingdates(p<0.001). Mean gross primary production (GPP) foreach 41 CayanaBot.56(1), H sampling date varied between 1085 and 133 |ag rabletootherturbidsystems(Padisák&Dokulil, O,l''h"' ,con-espondingthesevalúestoMay 1995 1994;Yinetal., 1996).Duetoitsdirectconnec- andMay 1996respectively. Withtheexceptionof tion with the Paraná River, waterretention time thefigures recordedforMay 1995 andJune 1995, is strongly influenced by riverdischarge. In this mean GPP showed atemporal pattern similarto sense, LakeMontielexhibitsasimilarbehaviour chlorophylla,withaclearmáximuminspring(Fig. asotherfloodplainlakes(Drago, 1990). 8). Meancommunityrespiration (CR) was máxi- According to the nutrient concentrations mumin May 1995 duringhigh waterlevel (1910 and following Lee etal. (1981), the lake can be |igO, l'h' ). whereasthelowestvaluéwasregis- considered as eutrophic. In general terms, in teredatthebeginningofAugust(8.6pgO,l'h'). lowland rivers with large catchment áreas, the GPPperunitárearangedfrom0.114gO-,m"-h"' to nutrient input from the watershed is likely to 1.235gO,m-h',CRperunitaieabetween0.09g exceed the requirements ofprimary production O,m-h'and2.29gO,m-h'(TableI). (Descy etai, 1987). The high TP figures regis- In general, máximum production was found teredduringlowwaterlevelperiodsareprobably at the surface or at the first 40 cm, declining relatedtotheresuspensionofsedimentsfromthe shaiplywithdepthbecauseoflightattenuationby bottom due to the shallowness of the lake. suspendedsolids.Thus,GPPperunitáreashowed Soluble reactive phosphorus (SRP) and nitrate a significant correlation with Z^^jj^ (r=-0.52, concentrations are within the range reported for p<0.05). Regarding the vertical profiles ofGPP anothermarginallakeoftheLowerParanáRiver andCRforeachsamplingdate(Fig.9),ingeneral (Bonetto etai, 1994). In this study, the authors NPPisconfinedtothefirst40-60cmdepth. speculate that nitrogen limitation may occur in The P:R ratio (GPP:CR) varied between thissystem.Inthesameway,Carignan&Planas 0.54 (May 1995) and 2.61 (July 1995), with an (1994) indicated that in some floodplain lakes average of 1.47. The lowest figures coincided surveyedintheMiddleParaná,planktonicprima- withperiodsofhighriverdischargeandflooding. ry production can be limited by nitrogen and/or Theratioofproductionperunitbiomass of light. the producer (GPP: milligram ofchlorophyll a) Algalgrowth,measuredbymeansofchloro- perunittimeestimatedforLakeMontiel showed phyll a. is mainly regulated by the hydrological reladvely high valúes, probably due to the lew regime and seasonal changes in temperature and pigment concentration found for some sampling light. Thus, máximum chlorophyll a concentra- dates. Since the oxygen technique is not so pre- tions were registered for late spring and early cise as the C|^ method, in the estimation ofthe summerwithadequatelightintensitiesandmédi- photosynthetic capacity we only consider data um waterlevéis. Moreover, the high nitratecon- correspondingtodates when meanchlorophylla centrations which are related to the inputs from was higher than 5 |ig 1"'. Thus. figures ranged theriverduringthefillingphaseofthelake,may from20to50mgO,(mgchla)h'.Ontheother also explain the November chlorophyll a peak. hand,ifthequotientsarebasedontheNPP,their The influence ofthe river discharge on phyto- valúesvariedfrom 11 to42mgO,(mgchla)h"'. plankton developmentin the lake isevidentdur- Considering only these sampling dates, daily ing the high waterphase when algal populations GPPperunitáreavariedbetween 1.14and3.65g are severely diluted. During these periods the O,m-day' . hydraulic retention time strongly decreases. In this sense. Van den Brink (1994) discussed the influence ofthe connectedness ofthe floodplain lakestothemainchannelonthedevelopmentof DISCUSSIONSANDCONCLUSIONS its plankton communities. The direct connection of Lake Montiel to the river during floods Lake Montiel is a typical turbulent, turbid explains the fact that changes in phytoplankton shallow lake lacking stable stratification. This abundanceareimmediatetotheincreaseinwater was evidenced from the homogeneous distribu- discharge. On the other hand, during the driest tion ofphysical and chemical parameters in the period(latesummer),eventhoughin'adiancewas incubation profile. Suspended solid concentra- high,pigmentconcentrationwaslowduetolight tion, as well as Secchidiskvalúes, werecompa- limitationbyturbidityinthewatercolumn. 42 TemporallluL'tuaUoiiofpliyloplaiikloniccliloiupliylla:IZACLUKKiC.1.&I.O'Farrkí.I. According to chloiophyll a concentiations. light penetration and by hydrological mecha- Lake Montiel could be characteiised as a typical nisms which exert a significant inlluence on the mesoto eutrophic system. reaching valúes higher limnological paramelers ofthe lake. According than 10 (jg 1"' in spring time. In general, our to Talling (1971), net photosynthesis may be chlorophyllavaliiesarehigherthanthosereponed negative when the mixing depth exceeds 4-5 fortheParanáRiveratitsUpperreach(Tiiomaze! times the euphotic zone. This condition was al., 1992),andsimilartothoseregisteredbyPerotti repeatedly registered in Montiel Lake where tur- deJorda(1977)forafloodplainlakeoftheMiddie bulence together with the morphometric charac- Paraná. AsThomaz (1991) inThomaz(1992)and teristics (shallowness, relatively short residence Bonettoe!al.(1969)retenedto,phytoplankton in time)severelylimittheeuphoticzone. Ingeneral water bodies ofthe alluvial valley reaches sub- terms, and considering an annual cycle, net pro- stantial densities, with concomitant high chloro- duction ofthe whole watercolumn is restricted phyllaconcentrations. toshortperiods.Thesuppressionofproductionby The vertical distribution ofchlorophyll a in lowtransparencyhasbeenobservedthroughoutthe the euphotic zone is fairly homogeneous due to LowerOrinocoSystem(Lewis, 1988). the continuous mixis ofthe lake. Contrarily, pri- The high valúesyielded when estimating the maryproduction showsaprofiletypical ofturbid photosyntheticcapacities, probably obey tothe low and eutrophic systems, where a sharp decline sensibility oftheoxygen technique forlowchloro- with depth occurs. The high turbidity limits the phyll a concentrations. Nevertheless, when higher euphoticlayerandcondensestheproductivezone pigmentconcentrations were registered the ratioof toonemeterorless.Onlyduringperiodsoffairly production perchlorophyll a showedelevated val- hightransparency,thenetproductionexceedsthe úes.Thehigheftlcienciesobsei-vedlu'etypicaloftur- first meter. The same pattern was described by bidsystemswherelightlimitationisoneofthemain PerottideJorda(1977). Nevertheless, itisimpor- factorsregulatingphytoplanktongrowth. tan!tostressthatinturbulentwaterbodiesprima- ry production incubation should simúlate the ACKNOWLEDGMENTS algal transport by turbulent flow (Uehlinger, 1993). As illustratedin Fig. 8,community produc- This study was fmancially supported by the tion and respiration are regulated by the hydro- UniversityofBuenosAires(Ai'gentina).Theauthors logical changes and by temperature. At the wish to thank Prefectura Naval Argentinaforthe beginning ofthe study CR is enhanced after an logisticassistancedurinsthefíeldwork. important flood, probably by an increase of allochtonous matter and a consequent bacterial metabolism. Thus the lowest P:R quotient was References observedatthismoment.Theimportantroleofthe organic matter from adjacent tloodplains on the Apha.1975. Standardmethodsfortheexaminationof CR has been reponed by Uehlinger(op. cit.). We Awsastoecriaatnidonw,asWtaeswhaitnegrtso.nA.mericanPublicHealth hypothesisethatthehighGPPobsei-vedin spiteof BOLTOVSKOY. D. &G. Velez. 1983/4. Asimpleand the low chlorophyll a valúes, could correspond to inexpensivedeviceforrigginglightanddarkbot- OatshcetaopbceiroconapslenaeqtnukeptrnoicnmeiacroyffprlraoocdtwuicoCtni.RonFirwnoawsminoJtbuesnre.erveItdno BonetttLtliioeem,scnaosiAlnt.oiAngt.gih:sec.aWlAM.ciitdnaDdvieiHosielndiirPgoaab&triioaolCnn..ás2oP5Rni/i2gvb6nei(aortl1ib)V:cea1rel1il7oe-.m1ym.11u99n.I6ni9t-.. November, withanewwaterpeak,CRincreased Vereinigung Theor. Limnol. Verh. 17:1035- and once again the P:R quotient was less than 1050. one. From December to March, GPP decreased Bonetto,A.A.&I.Wais. 1987.Consideracionessobre following high turbidity. A second period ofnet laincidenciadel Valle Aluvial del ríoParanáen laproductividad biológicade sus aguas. Revista production was observed when light conditions Mus. Argcnl. Ci. Nat. Bernardino Rivadavia, improved (March to May). Finally, with a new 6(8):53-59. tlooding period (May 1996) CR increased and a Bonetto,A.A.:Y.Zalocar&E.R.Vallejos. 1982. new heterotophic phase was observed. So, net Contribución al conocimientodel ntoplancU)n production inthissystem seems tobe limitedby delParanáMedio.1.Ecosur9(18):189-212. 43 CayanaBot.56(1), 1999 BONETTO, C.A.; Y. Zalocar, P.M. Caro & E.R. energyflow,andcommunitystructureinsome Vallejos. 1979. Producciónprimariadel río Venezuelanfreshwaters.Arch.Hydrobiol.Suppl. Paranáenel áreade su confluenciacon elrío 50(2/3):145-207. Paraguay.Ecosur6(12):207-227. Mackereth,F.;J.Hiron&J.Talling. 1978.Water BoNETTO,C.A.;Y.Zalocar&E.R.Vallejos. 1983. Analysis: some revised methods forlimnolo- Fitoplanctonyproducciónprimariadel ríoAlto gists.FreshwaterBiol.Assoc.Sci.36,120p. Paraná (Argentina). Physis (Buenos Aires), Marker, A.F.H.; C.A. Crowther& R.J.M. Gunn. 41(101):81-93. 1980.Methanolandacetoneassolventsforesti- BoNETTO, C.A.; L. DE Cabo, N. Gabellone, A. mating chlorophyll a and phaeopigments by VlNOCUR,J. DONADELLI & F. UNREIN. 1994. spectrophotometry.Ergerb.Limnol.14:52-69. Nutrientdynamicsinthedeltaicfloodplainofthe Padisak, J. & M. Dokulil. 1994. Meroplankton Lower Paraná River. Arch. Hydrobiol. dynamics in asaline, turbulent, turbid shallow 131(3):277-295. lake (Neusiedlersee, Austria and Hungary). Descy,J.P.;P.Serváis,J.S.Smitz,G.Billen&E. Hydrobiologia289:23-42. Everbecq. 1987. Phytoplanktonbiomass and PerottideJorda,N.M. 1977.Pigmentosyproducción production in the River Meuse (Belgium) primaria en el Paraná Medio: laguna Los WaterRes.21(12):1557-1566. Matadores(SantaFe,Argentina).Physis(Buenos Carignan,R.&D.Planas.1994.Recognitionofnutrient Aires),35(92):89-l13. andlightlimitationinturbidmixedlayers:Three Raí, H. & G. HlLL. 1984. Primaryproduction inthe approachescomparedattheParanáfloodplain Amazonian aquaticecosystem. In: H. Siolied., (Argentina).Limnol.& Oceanogr.39(3):580-596. The Amazon. Limnology and landscape ofa DOKULIL,M. 1984.Metodologíademedicióndefoto- mighty tropicalriveranditsbasin. TheHague, síntesisenfitoplancton. En: Programasobreel W.Junk.pp.311-335. hombreylabiosfera,UNESCO.Embalses,foto- SCHMiDT, G.W. 1976. Primary production ofphyto- síntesisyproductividadprimaria.Universidadde plankton in the three types ofAmazonian Chile,p.73-85. waters.IV.Primaryproductionofphytoplankton Drago,E.C. 1990.Hydrologicalandgeomorphological in a Bay oftheLowerRioNegro (Amazonas, characteristicsofthehydrosystemoftheMiddle Brazil).Amazoniana5:517-528. ParanáRiver.Acta.Limnol.Brasil.3:907-930. SCHMiDT, G.W. 1982. Primary production ofphyto- Fisher,T.R. 1978.Planctoneprodu9áoprimariaem plankton in the three types ofAmazonian sistemas aquáticos da bacia da Amazonia waters. V. Some investigations on the phyto- Central.Supl.ActaAmazon.8(4):43-54. plankton and its primary productivity in the Fisher,T. R.; K.M. Morrisey, P.R. Carlson,L.F. clear water of the Lower Rio Tapajoz Alves & J.M. Melack. 1988. Nitrate and (Amazonas,Brazil).Amazoniana7:335-348. ammonium uptake by plankton in an Amazon Talling,J.F. 1971.Theunderwaterlightclimateasa Riverfloodplainlake.J.Plankt.Res. 10:7-29. controllingfactorintheproductionecologyof FiTTKAU, E.J.: U. Irmler, W.J. Junk, F. Reiss & freshwaterphytoplankton.Mitt.Int.Vereinigung G.W. SCHMIDT. 1975. Productivity, biomass Theor.Angew.Limnol. 19:214-243. and ecological population dynamics in Thomaz, S.M.;M.C. Roberto,F.A. LansacToha, Amazonian waterbodies. In: F.B. Golley &E. A.F.Lima&F.A.ESTEVES. 1992.Características Medina eds. Tropical Ecological systems. limnológicasdeurnaestagáodeamostragemdo Springer,Berlinpp.289-311. AltoRioParanáeoutradoBaixoRioIvinheima GarcíadeEmiliani,M.O.1993.Seasonalsuccessionof (PR,MS-Brasil).ActaLimnol.Brasil.4:32-51. phytoplanktoninalakeoftheParanáRiverflood- Uehlinger,U. 1993.Primaryproductionandrespiration plain,Argentina.Hydrobiologia264:101-114. intheoutletofaneutrophic lake (RiverGlatt, Golterman, H.L. 1975. Physiological limnology. Switzeriand).Arch.Hydrobiol.128(l):39-55. Amsterdam.Elsevier,489p. Van den Brink, F.W.B.V.; M.M. Katwijk & G. Junk, W. J. 1983. Aquatic habitats in Amazonia. VenderVedde. 1994.Impactofhydrologyon Environmentalist,3:24-34. phyto- and zooplankton community composi- Junk,W. J.;P.B. Bayley& R.E. Sparks. 1989.The tion in floodplainlakes alongtheLowerRhine floodpulseconceptinriver-floodplainsystems. andMeuse.J.PlankLRes. 16(4):351-373. In:D.P.Dodge,ed.ProceedingoftheInternational Yin, C; Z. Lan & M. Zhao. 1996. Factors limiting LargeRiverSymposium.Can. Spec. Publ. Fish. algal growth in eutrophic Chohu Lake, China. Aquat.Sci.106,p.l10-127. Mitt. Int. VereinigungTheor. Angew. Limnol. LeeF.G.;R.A.Jones&W. Rast. 1981. Alternative 24:213-218. approachtotrophicstateclassificationforwater ZalocardeDomitrovic,Y.1990.Efectodelasfluctua- qualitymanagement..DepartmentofCivilEngi- cionesdelnivelhidrométricosobreelfitoplancton neering. Colorado State University, Fort entreslagunasisleñaseneláreadeconfluenciade CoUins,CO.Occationalpaper66.65p. losríosParanáyParaguay.Ecosur16:13-29. Lewis,W.M. 1988.PrimaryproductionintheOrinoco ZalocardeDomitrovic, Y. 1992. Fitoplanctonde River.Ecology 69(3):679-692. ambientesinundablesdelRíoParaná(Argentina). Lewis,W.M. & F.H. Weibezahn. 1976. Chemistry, Rev.Hydrobiol.Trop.25(3): 177-188. 44 TemporalfluctuationofPhytoplanktonicchlorophylla:IZACiUIRRK,I.&I.O'Farrell TableI:Grossprimaryproduction(GPP)andcommiinityrcspiration(CR)perunitárea(gO,m-h').GPP/CR ratesandmeanchlorophylla(pg1'). GPP CR ¡PP/CR CayanaBot.56(1), 1999 46 Temporal(luctiuitionofPhytoplaiikUinicL-liloropliyHíí:Iza(;uirri%I.&I.O'FarrELL 1/5/95 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/1/96 1/2 1/3 1/1 1/5 FlG.2.WaterlevelannualcurvefortheParanáRiveratVillaConstitución. May CayanaBot.56(1),1999 TotalPandP-P04(jjg1-1 300 250 200 150 100 May Jun Jul Aug Sep Oct Nov Dec Jan Mar Apr May -^TotalP +P-P04 FlG.4.Totalandsolublereactivephosphorusconcentrationscorrespondingtomeanvalúesofthewatercolumn forthestudyperiod. N-N03(pg1-1) 200 May Jun Jul Aug Sep Oct Nov Dec Jan Mar Apr May FlG.5.Meannitrateconcentrationsofthewatercolumnduringthestudyperiod. 48