ebook img

Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial PDF

16 Pages·2015·0.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial

RESEARCHARTICLE Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses MariannaNiemi1,2*,AuliBläuer1,3,TerhiIso-Touru1,JanneHarjula1,3,VeronicaNyström Edmark4¤,EveRannamäe5,LembiLõugas6,AnttiSajantila2,KerstinLidén7, Jussi-PekkaTaavitsainen3 1 BiotechnologyandFoodResearch,MTTAgrifoodResearchFinland,Jokioinen,Finland,2 Universityof Helsinki,DepartmentofForensicMedicine,Helsinki,Finland,3 DepartmentofArchaeology,Universityof Turku,Turku,Finland,4 DepartmentofZoology,StockholmUniversity,Stockholm,Sweden,5 Instituteof HistoryandArchaeology,UniversityofTartu,Tartu,Estonia,6 Instituteofhistory,TallinnUniversity,Tallinn, Estonia,7 ArchaeologicalResearchLaboratory,StockholmUniversity,Stockholm,Sweden ¤ Currentaddress:DepartmentofBioinformaticsandGenetics,SwedishMuseumofNaturalHistory, Stockholm,Sweden OPENACCESS * [email protected] Citation:NiemiM,BläuerA,Iso-TouruT,HarjulaJ, NyströmEdmarkV,RannamäeE,etal.(2015) TemporalFluctuationinNorthEastBalticSeaRegion Abstract CattlePopulationRevealedbyMitochondrialandY- ChromosomalDNAAnalyses.PLoSONE10(5): e0123821.doi:10.1371/journal.pone.0123821 AcademicEditor:Yong-GangYao,Kunming Background InstituteofZoology,ChineseAcademyofSciences, AncientDNAanalysisoffersawaytodetectchangesinpopulationsovertime.Todate, CHINA moststudiesofancientcattlehavefocusedontheirdomesticationinprehistory,whileonly Received:August29,2014 alimitednumberofstudieshaveanalysedlaterperiods.Conversely,thegeneticstructure Accepted:March7,2015 ofmoderncattlepopulationsiswellknowngiventheundertakingofseveralmolecularand Published:May20,2015 populationgeneticstudies. Copyright:©2015Niemietal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits Results unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare BonesandteethfromancientcattlepopulationsfromtheNorth-EastBalticSearegion credited. datedtothePrehistoric(LateBronzeandIronAge,5samples),Medieval(14),andPost- DataAvailabilityStatement:Theanalysed Medieval(26)periodswereinvestigatedbysequencing667basepairs(bp)fromthemito- sequencesareavailableintheGenBank,accession chondrialDNA(mtDNA)and155bpofintron19intheY-chromosomalUTYgene.Compari- numbersKF233429-KF233528.Allrelevantdataare withinthepaperanditsSupportingInformationfiles. sonofmaternal(mtDNAhaplotypes)geneticdiversityinancientcattle(45samples)with moderncattlepopulationsinEuropeandAsia(2094samples)revealed30ancientmtDNA Funding:ThisresearchwasfundedbyAcademyof Finland(theprojectdecisionnumber128451),http:// haplotypes,24ofwhichweresharedwithmodernbreeds,while6wereuniquetothean- www.aka.fi/en-GB/A/.WorkofMNwasalsofunded cientsamples.OfsevenY-chromosomalsequencesdeterminedfromancientsamples,six byNationalPopulationGeneticsDoctoral wereY2andoneY1haplotype.CombineddataincludingSwedishsamplesfromthesame Programme,fundedbytheMinistryforEducationand periods(64samples)wascomparedwiththeoccurrenceofY-chromosomalhaplotypesin CultureandtheAcademyofFinland,http://www.oulu. fi/biology/PopGenSchool/.Cattlebonesamplesfrom moderncattle(1614samples). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 1/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Estoniawerepartofthegrantprojectno8156of Conclusions EstonianScienceFoundation,http://www.etag.ee/ ThediversityofhaplogroupswashighestinthePrehistoricsamples,wheremanyhaplo- rahastamine/etfgrandid/.Thefundershadnorolein studydesign,datacollectionandanalysis,decisionto typeswereunique.TheMedievalandPost-Medievalsamplesalsoshowahighdiversity publish,orpreparationofthemanuscript. withnewhaplotypes.Someofthesehaplotypeshavebecomefrequentinmodernbreedsin CompetingInterests:Theauthorshavedeclared theNordicCountriesandNorth-WesternRussiawhileotherhaplotypeshaveremainedin thatnocompetinginterestsexist. onlyafewlocalbreedsorseemtohavebeenlost.AtemporalshiftinY-chromosomalhaplo- typesfromY2toY1wasdetectedthatcorrespondswiththeappearanceofnewmtDNA haplotypesintheMedievalandPost-Medievalperiod.Thissuggestsareplacementofthe PrehistoricmtDNAandYchromosomalhaplotypesbynewtypesofcattle. Introduction ArchaeologicalandmitochondrialDNAevidenceindicatethatcattleweredomesticatedfrom theauroch(Bosprimigenius)[1–5],about10,000yearsagointheFertileCrescent[6].From theFertileCrescent,domesticcattlespreadtoSouthEasternEuropearound8,800BeforePres- ent(BP),toCentralEuropearound7,000BP,andtoNorthCentralEuropeafter6,700BP[7]. DomesticcattlereachedsouthernScandinaviaby6,000BP[8],Estoniaby4,100BP[7]andfi- nallyFinlandinthenorthernBalticSearegionby3,000BP[9].Theoldestradiocarbondated remainsofcattleinFinlanddatebackto3086±30BP[9]. MolecularanalysesofmitochondrialDNAandtheY-chromosomecanbeusedtotrace bovinematernalandpaternallineages,respectively[10,11].Variationinthehypervariablere- gionofthemithochondrialD-loopdefinesthemajorityoftaurinecattle,aswellassomemi- tochondriallineagesofNearEasternaurochsandmanyItalianaurochs[12],tobelongtothe Tmega-haplogroup,includingthehaplogroupsT,T1,T2,T3,andT4[1,5,13–15].Astudyof thewholemitochondrialDNAhassuggestedanadditionalhaplogroup,T5,definedbysites outsideoftheD-loopregion[15].Threeotherhaplogroupshavebeenidentifiedintaurine cattle,wheretheclosestinphylogenytohaplogroupTishaplogroupQ[10],differingbyone diagnosticSNPsiteinthehypervariableregion(position15953inV00654)[15].Haplogroup QhasbeenfoundatlowfrequencyinmodernSouthEuropeancattlebreeds[10,15].Thedis- tributionofhaplogroupQhasbeenhypothesisedtoindicateaparallelNeareasternoriginfor haplogroupsTandQ,whereQrepresentsaminordomesticatedlineage[16].HaplogroupP thathasonlybeenidentifiedinnorthernandcentralEuropeanaurochs,andinacoupleof scatteredtaurinesamples,divergedfromTandQpriortotheirsplit[15,17].Theoldestdi- vergingbranchinthemtDNAphylogenyistheveryrarehaplogroupRthathasonlybeen identifiedinlocalItaliancattlebreeds[16]. ThegeneticdiversityoftheThaplogroupishighestintheNearandMiddleEastcattlepop- ulations,wherefourhaplogroupsT,T1,T2,andT3exist[1,14],indicatingaNearEasternori- ginoftaurinecattle,whichisalsosupportedbynuclearmarkeranalysesthatshowhigher variabilityintheNearEastthaninotherregions[1,18].Europeandomesticcattlecarrythe samefourhaplogroupsasNearEastcattle,butwithT3predominatinginEuropeatleastfrom theNeolithicperiodonwards[11,14,17,19,20].HaplogroupT1isquitefrequentacrossthe Mediterraneancountries[3,21],andpredominantandalmostfixedinAfrica[14].Haplogroup T4derivesfromT3andhasthusfaronlybeendetectedinAsianandYakutiancattlefromRus- sianSiberia[11].Thestar-likepatternsoftheT3-centeredhaplotypesdetectedinmodernand PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 2/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle NeolithicEuropeancattlepopulationshavebeensuggestedtoresultfrompost-domesticaccu- mulationofmutations[14,19]. Anorth—southgradientofgeneticdiversityhasbeendetectedinmodernEuropeancattle (Bostaurus),[11,18],includingtheY-chromosome[11].Asinglenucleotidepolymorphismin intron19oftheUTYgene(UTY19)canbeusedtodistinguishbetweenthetwoY-chromosom- alhaplotypes,Y1andY2[22].WhereasY1isthedominatinghaplotypeinmodernWestern andNorthernEuropeanbreeds,haplotypeY2dominatesinSouthEuropeanbreeds[22],with acleardividingzoneincentralEurope[23].Apartfromthegeographicalvariation,atemporal fluctuationinY1andY2haplotypefrequencieshasbeendetected,mainlyfromSwedishan- cientbullsandaurochs,suggestingthatvariationinpresent-dayfrequenciesofY1andY2hap- lotypesislikelyduetorecentdemographicevents[24]. Theaimofthisstudywastoexploretemporalpopulationvariationbymaternallyandpater- nallyinheritedmarkersincattlefromtheNorthEastBalticSearegion(N-EBSR),andtocom- pareancientpopulationswithmodernbreeds.Haplotypedatafrom45ancientmtDNAand7 Y-chromosomesampleswasusedtogetherwithcontemporarydatafrom2094mtDNA [10,11,15,16,20]and1614modern[22–24]and71ancientY-chromosomes[24–26]samples. ThedataindicatesclearchangesintheN-EBSRcattlepopulationsfromlateBronze/IronAge tomoderntimes. MaterialsandMethods Ancientcattlebones Atotalof77cattleboneswereselectedforaDNAanalysisfromdifferentsitesacrossFinland andEstoniaandinthetownofVyborgintheLeningradRegioninnorth-westernRussia (FigAinS1File).Thesamplesforthisstudywerefrommuseumcollectionsheldat1.)The NationalBoardofAntiquities,2.)MuseumofRaisio(Harkko),3.)TheMuseumCentreof Turku,4.)ÅlandsMuseum,5.)MuseumofViljandi,6.)PärnuMuseum,7.)SaaremaaMuse- um,8.)UniversityofTurku,9.)St.Petersburg,InstitutefortheMaterialCultureHistory,Rus- sianAcademyofSciences,10.)TallinnUniversity,and11.)UniversityofTartu(TableAin S1File).Allnecessarypermitswereobtainedforthedescribedstudy,whichcompliedwith allrelevantregulations. ThesamplesfromVyborgderivefromtheMedievalandPost-Medievalperiods,duringwhich VyborgwaspartofFinland.Theearliestbones(2samples)availableforthisstudyderivefrom theLateBronzeAge(700–500BC)fromtheislandofSaaremaa,Estonia.TherestofthePrehis- toricsamplesdatestotheLateIronAge(800–1200AD).Toverifythateachindividualwithin onesiteandperiodwassampledonlyonce,samplesderivingfromthesamesideoftheanimal wereselected,orthesizeandageoftheindividualwasusedtoseparateindividuals.Whenever possible,metacarpalswerepreferredasmetacarpalsareusedtoosteologicallydeterminethesex oftheanimal[27,28].From77samplesinitiallyselected,atotalof18bonesorteethfromthePre- historicperiod(700BC-1200AD),24fromtheMedievalperiod(1200–1550AD),and34from thePost-Medievalperiod(1550–1800AD)wereusedforaDNAanalyses.Onesamplethatwas radiocarbondatedasmodernwasomittedfromfurtheraDNAanalysis.Atotalof21skeletal sampleswereradiocarbon-datedattheLaboratoryofChronologyoftheFinnishMuseumofNat- uralHistory(LUOMUS),UniversityofHelsinki(TableAinS1File).Radiocarbondatedsamples coveredallbonesandteethfromnon-distinctculturallayersthatwereusedforaDNAanalyses. DNAmarkersandlaboratorymethods TodeterminethemtDNAhaplogroupsT,T1,T2,T3,T4,andT5[15],acombinationofthree fragmentsyielding486bpofsequencecoveringthemtDNAD-loopfromposition16031to PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 3/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle 178[GenBank:V00654]anda181bpsequencefromtheND5gene(position12911to13091 [GenBank:V00654])wereanalysed.Anadditional77bpD-loopfragment(positions15936– 16012inV00654),determininghaplotypeQ,wasanalysedfromonesample(H01,BtTor4).As aY-chromosomalhaplotypemarker,a155bpsequencefromintron19intheUTYgenewas analysed(thetransversionG>Tatposition423in[GenBank:AY936543],defininghaplotypes Y1orY2)[22].DNAextraction[29],PCRmethodsandsequencingofPCRproductswereas describedin[30].Briefly,0.2–0.5mlofbonepowderwassuspendedin900μl0.5MEDTA, 100μl10Mureaand5μlproteinaseK(20mg/ml),andincubatedwithconstantshakingat 55°Covernight.DNAfromtheconcentratedsupernatant(Amicon-430Kcentrifugalfilter units,MerckMillipore)wasextractedwithaQIAquickPCRPurificationKit(Qiagen,Sweden) accordingtomanufacturer’sinstructions.Approximately5–10μLofDNAextractwasusedin thePCRperformedwiththeHotStarTaqDNApolymeraseKit(Qiagen,Sweden)withaninclu- sionof0.4mMdNTP,0.2μMofeachprimerand0.25units(U)ofUracilDNAGlycosylase (UNG,Sigma-Aldrich).ThePCRprogramincludedinitialstepsof37°Cfor10minand95°C for15minfollowedby55three-stepcyclesof94°Cfor30s,AT°Cfor40sand72°Cfor1min and10minat72°,whereATstandsforaspecificannealingtemperatureforeachprimerpair (TableBinS1File).PrimersandsuccessratesofaDNAanalyses(TextAinS1File,TableBin S1File)areprovidedintheSupportingInformation. AuthenticityofancientcattleDNA TheauthenticityofaDNAanalyseswascontrolledinvariousstepsofthelaboratorywork-flow andtheanalyseswererepeatedinindependentancientDNAlaboratories.All45ancientsam- plesincludedinthestatisticalanalyseswereextractedatleasttwice(MTTAgrifoodResearch Finland,Jokioinen,Finland,StockholmUniversity,Stockholm,SwedenandDepartmentofFo- rensicMedicine,UniversityofHelsinki,Helsinki,Finland). EachparticipatingancientDNAlaboratoryfollowedgeneralguidelinesforancientDNA worksuchasseparatespaceforsamplepreparationandancientDNAwork,separatepre-and post-PCRareas,air-controlledsterileaDNAworkspace,wearingofprotectiveclothing,using disposabletools,pipetteswithaerosolresistantfiltertipsandtreatingequipmentandworking surfaceswithbleachandultra-violetirradiationfrequently. ToensuretheauthenticityofthemtDNAandY-chromosomalsequences,andtodetectpos- siblePCRerrors,eachDNAfragmentofeachsamplewassequencedfromatleasttwodifferent PCRreactionswithDNAderivedfromdifferentextractions.Thesamplewasconsideredtobe reproduciblewhenconsistentsequencesofeachDNAfragmentwereobtainedfromatleast threeamplifications.Theconsistentsequenceswereverifiedfromtwoextractionsinanalyses doneatleastintwoindependentaDNAlaboratories.Overlappingprimersspecifictocattle DNAweredesignedtopreventcrossreactivitywithhumanDNA(TextAinS1File,TableBin S1File).NegativecontrolswereappliedforallstepsintheaDNAextractionandamplification. Apreviouslyanalysedmammothsample[31]wasusedasapositivecontrolwhenthefirstfive sampleswereextracted.Themammothsamplewassuitableasapositivecontrolasitisancient anditssequenceclearlydiffersfromcattle. Forfurtheranalyses,sequencesfromaDNAsamplesobtainedfromdifferentextractions andamplifications,provenidenticalbyatleasttwoindependentaDNAlaboratorieswereused. Onesamplewasnotrepeatableandwasthusexcludedfromanalyses(TableAinS1File).For sixsamplesonlypartialmtDNAwassuccessfullyamplified.Consequently,theywereomitted fromthestatisticalanalyses.Asamplificationfrom25samples(includingonemodernsample, TableAinS1File)yieldednoDNA,atotalof45samplesremainedforstatisticalanalyses (TableAinS1File). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 4/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Statisticalanalysis ThemtDNAsequencesfromthe45successfullysequencedancientcattlewerealignedsepa- ratelyforthe486bpD-loopandthe181bpND5genesequencesusingCLUSTALW[32] wherepenaltiesusedwere10forgapopening,0.20forgapextension,and5forgapdistances. Thecombinationofthesequencedregionsisreferredtobelowasthe667bphaplotypere- gion.ACLUSTALWalignmentwasalsoperformedforthesevensuccessfullyamplifiedY- chromosomal155bpsequences.TheanalysedsequencesareavailableinGenBank,accession numbersKF233429-KF233528. TheReducedMedian-joiningNetwork(RMNtobemostconservativeε=0)wasconstructed accordingtothealgorithmdescribedbyBandelt,ForsterandRohl[33]withNETWORK4.6.0.0 [33].ThetopologyobtainedinRMNwasconfirmedwiththeMaximumlikelihood(ML)and BayesianMarkovChainMonteCarlo(MCMC)analysesusingjModeltestv2.1[34],PhyML3.0 [35]andMrBayes3.2[36].BoththeMLandtheMCMCtreealongwiththedetailedstatistical methodsarepresentedinSupportingInformation(TextAinS1File,FigBinS1File). DnaSP(version5)[37]wasusedtocalculatethegeneticdiversityestimatesbasedonthe 486bpD-loopsequences.Numberofhaplotypes(h),haplotypicdiversity(Hd),numberofseg- regatingsites(S),nucleotidediversity(π),Tajima’sD(D),andaveragenumberofnucleotide differences(K)werecalculatedforeachpopulation.Toapproximatethelevelofbiasinthedi- versityestimatescausedbyheterochronityinthedatasetwhenpoolingsamplesofdifferent ages,correctedπhμ[38]wascalculatedwithmutationratesof34and53%permillionyearsand generationlengthsof5and7years(upperandlowerrangesascalculatedfromNear-Eastern cattlein[39]).Inordertoprovidedatestothesampleswhencalculatingπhμ,radiocarbondates wereusedandtheuseddateswererandomlyassignedtocovertherangeofcontextforsamples datedbycontext. Inordertocompareancientcattlediversitytomoderncattlepopulations,anumberofaddi- tionalsequencesfromEurope,NearEastandNorthAsiawereincludedinthepopulationdiver- sityanalysis.Thesesequenceshavepreviouslybeendescribedandanalysed[10,11,15,16,20]. ThesizeofthecommonalignedmtDNAsequenceinthiscomparisonwas245bpfromatotal of2139individuals.Thisdatasetwasthenusedintwoapproaches. First,toexplorethetemporalfluctuationinhaplotypeswithintheN-EBSR,49moderncat- tlesamplesfromfivenativeN-EBSRbreeds(Northern,Western,andEasternFinncattle,Esto- nianRedandEstonianNative[11,16]),alongwiththe45ancientcattleanalysedherewere extractedfromthealigned245bpdataset.These94N-EBSRsamplesweregroupedintothree temporalcohorts;PrehistoricandMedieval(n=19),Post-Medieval(n=26),andModern (n=49)andintotwogroups:1)themostfrequent245bphaplotypefoundamongtheentire 2139dataset(563samples)and2)therestofthehaplotypes. Thesecondapproachwasusedtoexploretheappearanceandfrequencyofancienthaplotypes among2094moderncattledividedintotengeographicalregions(N-EBSR,Scandinavia,West- ernEurope,SouthernEurope,South-EasternEurope,EasternEurope,WesternRussia,Central Russia,Siberia,andNearEast/CentralAsia).Forthisapproach,the2094modernsampleswere groupedintothreehaplotypegroups:1)themostcommon245bphaplotypeintheentiredataset (563outof2139samples),2)therestofthehaplotypesfoundamong45ancientN-EBSRcattle, and3)otherhaplotypesnotfoundinancientdata.Theprocedurewasusedtostudythedistribu- tionofancienthaplotypesamongcontemporarycattle.NotethatthePrehistorichaplotypeswere excludedhereasmostofthePrehistorichaplotypeswerenotpresentincontemporarydata. Pearson’schi-squaretest,asimplementedinSPSSv.11.5.0,wasconductedtotestfordiffer- encesinfrequenciesofmtDNAhaplotypesinbothapproaches,betweenthetemporalcohorts andthegeographicalregions. PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 5/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Sixty-ninesampleswerefurtheranalysedfortheYchromosomalSNPinUTY19,whichdif- ferentiatescattleYchromosomesintohaplotypesY1andY2[22].Thesevensamplessuccess- fullyanalysedfortheY1/Y2markerwereanalysedfortemporalfluctuationwiththeSwedish ancient(n=64)andFennoscandianmodern(Northern,Western,andEasternFinncattle, SwedishRed,Redpolled,FjallnaraandMountaincattle,n=41)datagivenin[22–25].The combineddatafromFennoscandianbullsweredividedintofourtemporalgroups:IronAge (n=8[25]),Medieval(n=37thisstudyand[24,25]),Post-Medieval(n=19thisstudyand [24]),andmodern(n=28[22]and[11]asreportedin[23]).Tocomparethetemporalanaly- sesinFennoscandiatoCentralEurope,datafromMedievalbulls(n=14,[26])fromSwitzer- landwasanalysedtogetherwithdatafrommodernSwissbreeds(Braunvieh,Ehringer,and Simmental,n=39,[22]and[11,40]asreportedin[23]). Inordertomakewidergeographicalcomparisons,Y1/Y2informationfrom127modern Eurasianbreeds(n=1614[22,24]and[23]combiningthedataof[11,40–42])wereincluded. Datafromatotalof1692bullswasdividedintoninegeographicalregions(theNordiccoun- tries,WesternEurope,SouthernandCentralEurope,SouthEasternEurope,EasternEurope, Near-EastandCentralAsia,WesternRussia,CentralRussiaandSiberia). APearson’schi-squaretest,asimplementedinSPSSv.11.5.0,wasconductedtotestfordif- ferencesinfrequenciesofY1andY2betweenthetemporalcohorts(FennoscandiaandSwitzer- land)andgeographicalregions.Incaseswhere20%ormoreofthegroupshadexpectedcounts lessthan5,Fisher’sexactprobabilitytwo-tailedtestwasusedinstead. Results Radiocarbondating Atotalof21sampleswereradiocarbondated.Threesamplesappearedtobefromalaterperiod thanexpectedbasedonthecontextdatingwhileonesamplefromanIronAgecontextturned outtobemodern(TableAinS1File). Osteologicalanalysis Themetricalanalysisofmetacarpalsrevealedthreemalesand12femaleswhiletwometacar- palswereindeterminableandfivemetacarpalsweretoofragmentedtobeanalysedbyosteo- logicalmethods(TableAinS1File).TheresultsfromtheY-chromosomalUTY19werein accordancewiththeosteologicalanalysesasnoneofthesamplestakenfromfemalemetacar- palsamplifiedwithY-chromosomalprimers.Twomalemetacarpalswereconfirmedandone indeterminablemetacarpalwasdeterminedasmalebyY-chromosomalamplification (TableAinS1File). MtDNAhaplotypes UsingDnaSP,30haplotypeswerefoundamongtheancientcattle,includingonesamplepro- vidingonlypartialinformation.Twenty-ninehaplotypes,includingthefull667bpsequence, wereusedforfurtheranalysis.Whenanalysingthephylogenyofthese29haplotypes,Bayesian MCMC,MLandRMNanalysesgavesimilartopologies(Fig1,Median-joiningnetworkofthe 29ancientmitochondrialhaplotypes(grey-black)with43modernreferencehaplotypes (white),andFigBinS1File).Alloftheancienthaplotypeswereassignedtothetaurinehap- logroupsaccordingtotheknowndiagnosticpositionsofcattlemtDNA[10,11,14,15,20](Text AinS1File).Onesamplewasassignedtotaurinemacro-haplogroupQwhiletherestofthe sampleswereassignedtothetaurinemacro-haplogroupT(Fig1,TextAinS1File).The28an- cienthaplotypesinmacro-haplogroupTwerefurtherdividedintohaplogroupsT2(one PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 6/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Fig1.Median-joiningnetworkofthe29ancientmitochondrialhaplotypes(grey-black)with43modern referencehaplotypes(white).Median-joiningnetwork(ε=0)showsmolecularrelationshipsbetween30 ancienthaplotypes(H01-H03andH05-H30).Majorhaplogroups(T1,T2,T3,T5andQ)andsub-haplogroups (T1f,T3b)aredefinedbyinclusionof43modernreferencehaplotypesfrom[10,15].Eachcirclerepresents onemtDNAhaplotypewherethesizeisproportionaltothenumberofindividualsinthathaplotype.Black diamondsrepresenthypotheticalhaplotypes.Thelengthofthebranchesisproportionaltothenumberof mutationsbetweenthehaplotypesexceptthebranchbetweenBostaurusandBosindicus(32mutations), whichisshortenedtofitinthepicture.HaplotypesfromthePrehistoric,Medieval,andPost-Medievalperiods areindicatedinblack,darkgrey,andlightgrey,respectively. doi:10.1371/journal.pone.0123821.g001 haplotype)andT3(17haplotypes)andsub-haplogroupsT3b(9haplotypes)andT1f(onehap- lotype)(Fig1,BandCFigsinS1File,TextAinS1File).Thesampleprovidingpartialinforma- tionwasassignedtoT2(TextAinS1File,FigCinS1File). Analysisofpopulationdiversity ThemtDNAdiversityintheFinnish,Estonian,andVyborgancientcattledataaresummarized inTable1.Thenucleotidediversityfortheentiredatasetwas0.969.Withineachancienttem- poralcattlecohortthemitochondrialhaplotypediversityestimates(s,h,Hd,K,andπ)indicate ahighdiversity(Table1).ThehaplotypediversitywashighestinPrehistoriccattle(Hd=1.000) andslightlylowerinMedievalandPost-Medievalcattle(Hd=0.956and0.972,respectively). Nucleotidediversityvariedamongperiodswiththehighestobserveddiversity(π=7.41(cid:1)10–3) inthePrehistoricpopulation(Table1).Thebiasinnucleotide-diversityestimatecausedbyhet- erochronitywaslow,lessthan1.5%inalltemporalcohorts(Table1).Tajima’sDvaluewasneg- ativeforalltemporalcohortswithasignificantlynegativepvalueforthePost-Medievalperiod andthewholeancientcattledatasetsuggestingapopulationexpansioninFinlandincludingVy- borgandtheBalticregion(Table1). HaplogroupT3andsub-haplogroupT3bformedastar-likephylogenyofhaplotypes,with majorhaplotypesH17andH05forT3andT3b,respectively.Thehighesthaplotypediversity wasdetectedintheoldestandsmallestsample,fromthePrehistoricperiod.Adifferentsetof haplotypeswasfoundfromtheMedievalandPost-Medievalsamples(Fig1). TemporalmtDNAanalyses SignificanttemporalfluctuationsinthefrequencyofmtDNAhaplotypesintheN-EBSRcattle weredetected(PearsonChi-Squaretest,n=94,χ2=13.1,df=4,p=0.011).Herethemost PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 7/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Table1. SummarystatisticsofmtDNAvariationinancientNorthEastBalticSearegioncattlefromPrehistoric,Medieval,andPost-Medieval periods. AncientNorthEastBalticSearegioncattle Prehistory,700BC-1200AD Medieval,1200–1550AD Post-Medieval,1200–1800AD Total N 5 14 26 45 S 9 15 22 33 h 5 11 20 29 Hd 1.000 0.956 0.972 0.969 K 3.600 3.055 2.788 2.951 θs 4.320 4.717 5.765 7.736 D -1.184 -1.437 -1.869* -2.067* π 7.41 6.29 5.74 6.07 πhμa 7.35 6.28 5.73 6.04 Biasa 0.84% 0.13% 0.10% 0.43% πhμb 7.30 6.28 5.73 6.03 Biasb 1.45% 0.22% 0.17% 0.74% Nisnumberofindividualssampled;Sisthenumberofsegregatingsites(excludingindels);histhenumberofhaplotypes;Hdisthehaplotypediversity;K istheaveragenumberofdifferences;θsis‘Theta’derivedfromtheobservednumberofsegregatingsites(S);DisTajima0sDstatisticvaluewhere statisticalsignificancesP<0.05ismarkedwith*.πisthenucleotidediversity*10–3;ThePrehistoriccohortincludestwosamplesfromLateBronzeAgeand threesamplesfromLateIronAge. aBasedongenerationlengthof7yearsandmutationrateof43%permillionyears bBasedongenerationlengthof5yearsandmutationrateof53%permillionyears doi:10.1371/journal.pone.0123821.t001 common245bphaplotypeincreasedinfrequencymorethantwicefromMedievaltoPost-Me- dievalandmorethanthricefromPost-Medievaltomoderntime(greyinFig2binFig2,Distri- butionofancientN-EBSRcattlemtDNAhaplotypesinmodernEurasiancattlepopulations). Consequently,theproportionofotherhaplotypesdecreasedthroughtime(colouredandwhite patternsinFig2b).Nearlyhalfoftheseotherhaplotypesincontemporarycattlewerenot foundinancientcohorts(whiteinFig2b);andthustheproportionoftheancienthaplotypes (otherthanthemostcommon)inmodernN-EBSRisapproximately20%(coloredpatternsin Fig2b).Theproportionofuniqueancienthaplotypes(uniqueamong2139samples)washigh- estinthePrehistoricsample(blackinFig2b). GeographicalmtDNAanalyses Themostcommon245bphaplotype(includingtheancient667bphaplotypesH05,H06,H11, H17,H24,andH26,TableCinS1File)wasfoundinmostmodernEuropeanandRussian breedswithafrequencyrangingfrom16to63%withingeographicalregions(Table2).The otherancienthaplotypeshadmorerestrictedoccurrencesandfrequencies,lessthan1.6% amongthe2094moderncattledataset(TableCinS1File). Thereweresignificantdifferencesinappearanceandfrequencyofancienthaplotypes amongtengeographicalregionsofcontemporarycattle(PearsonChi-Squaretest,n=2094, χ2=355,df=18,p<0.001).Theproportionofancienthaplotypeswashighestincontemporary N-EBSRcattleandWesternRussiancattle(Table2),whiletheproportionofhaplotypesnot foundinourancientsampleincreasedwithgeographicaldistanceshowinghighestproportions inSouthandSouth-EastEurope,andNearEast/CentralAsia(Table2,indicatedinwhitein Fig2a). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 8/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Fig2.DistributionofancientN-EBSRcattlemtDNAhaplotypesinmodernEurasiancattle populations.HaplotypedistributioninancientFinnish,EstonianandWesternRussian(Vyborgattheshore ofBalticSea)cattlepopulationsfromtheLateBronzeAge,IronAge,Medieval,andPost-Medievalperiodsis indicatedwithpiechartsattherightsideofthemap(2B,seeTableCinS1File).Seventeenancient haplotypesfoundinmodernEurasianpopulations(TableCinS1File)areindicatedbypiechartswith correspondingpatterns(seekey)onthemap(2A).Themodernhaplotypesnotfoundinancientcattleare countedtogetherandindicatedinwhite.Countsofuniqueancienthaplotypesnotfoundinmodern populationsareindicatedinblack. doi:10.1371/journal.pone.0123821.g002 Y-chromosomalanalysis UTY19allelefrequenciesinFennoscandiancattle(TableDinS1File)differedsignificantlybe- tweentemporalcohorts(Chi-Squaretest,p<0.001).TypeY2wasdominatinginboththeIron Age(7/8)andtheMedievalperiod(36/37),withnostatisticaldifferenceinallelefrequencies betweenthetwoperiods(Fisher’sExacttest,p=0.327).TheproportionofY1increasedsignifi- cantlyfromtheMedieval(1/37)tothePost-Medievalperiod(9/19,Fisher’sExactTest, p<0.001)andthenagainfromthePost-Medievalperiod(9/19)toModerntimes(33/41,Fish- er’sExactTestp=0.015).TheY1typewasfixedinmostcontemporaryFennoscandiannative breedswithonlyoneexceptionwhereY2wasdominating(8/9),viz.inoneFinnishbreed,the EasternFinncattle. Table2. DistributionofN-EBSRancienthaplotypesinmodernEuropeanandAsiancattlebreeds. N-EBSR Scandinavia Western Southern South- Eastern Western NearEast Central Siberia Total Europe Europe Eastern Europe Russia andCentral Russia Europe Asia CommonH 31 23 93 334 8 13 16 4 12 14 548 63.3% 28.4% 38.1% 21.7% 16.0% 50.0% 61.5% 16.0% 37.5% 58.3% 26.2% Other 10 27 17 51 7 2 9 1 10 2 136 AncientH 20.4% 33.3% 7.0% 3.3% 14.0% 7.7% 34.6% 4.0% 31.3% 8.3% 6.5% Hnotfound 8 31 134 1152 35 11 1 20 10 8 1410 inAncient 16.3% 38.3% 54.9% 75.0% 70.0% 42.3% 3.8% 80.0% 31.3% 33.3% 67.3% data Total 49 81 244 1537 50 26 26 25 32 24 2094 Figuresrepresentthecountandpercentageofmoderncattledatafromtengeographicalregionsgroupedinthreehaplotype(H)groupsaccordingtothe appearanceofthehaplotypesinancientN-EBSRdata:Themostcommon245bphaplotype(CommonH),otherancienthaplotypesfoundinPost- MedievalorMedievalperiodsandhaplotypesnotfound(Hnotfound)inancientNorth-EastBalticSearegioncattle. doi:10.1371/journal.pone.0123821.t002 PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 9/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Table3. SummaryofancientandmodernY-haplotypesdistributionacrossEurasia. Nordic Western Southernand South- Eastern Western NearEastand Central Siberia Total counties Europe CentralEurope Eastern Europe Russia CentralAsia Russia Europe Ancient Y1 11 1 17% 7% Y2 53 13 83% 93% Total 64 14 78 Modern Y1 101 334 120 53 9 1 24 84% 83% 13% 82% 100% 3% 96% Y2 19 70 806 10 12 31 1 23 16% 17% 87% 100% 18% 97% 4% 100% Total 120 404 926 10 65 9 32 25 23 1614 Dataincludes78ancient(fromFinland,SwedenandSwitzerland)and1621modernEurasianbulls.Separatefiguresforeachbreedandancient populationsaregiveninTableEinS1File. doi:10.1371/journal.pone.0123821.t003 TherewasnosignificanttemporalchangesdetectedinCentralEurope(Switzerland)from Medieval(late13thcentury)tomoderntimes(Fisher’sExactTest,p=0.462),whereY2domi- natedboththeMedieval(13/14)andthemodern(38/39)periods. Y1andY2haplotypefrequenciesvariedsignificantlybetweengeographicalregions(Chi- Squaretest,p<0.001,Table3,TableEinS1File).Mostofthemodernbreeds(105from127)in allregionswerefixedforoneY-haplotype,eitherY1(46)orY2(59),while22displayedboth Y1andY2(TableEinS1File). Discussion MtDNAhaplogroups Theassignmentofancientsamplesintobovinehaplogroups(Q,T2,T3)orsub-haplogroups (T1f,T3b),withT3andT3bpredominating,isingoodagreementwithpopulationanalysisof moderncattle,whereT3isthemajormtDNAhaplogroupinEurasianpopulations[11,14].Itis alsoinaccordancewithpreviousanalysisofancientEuropeancattlepopulationswhereapre- dominanceoftheT3haplogrouphasbeenshownfromtheNeolithic[19]. Ararehaplotype,belongingtosub-haplogroupT1f,wasfoundinasampledatedtotheLate BronzeAgeinEstoniaatafrequencyof1/5inthePrehistoriccohort(Fig2).Inaprevious study,T1fhasbeenfoundinthreeindividualsfromthemodernItalianbreedPodolian(3/80of T1haplogroupsequencesfoundinEurope)andinthemodernbreedMenofifromEgypt(fre- quency1/196ofT1haplogroupsequencesfoundinAfrica)[20].TakingintoaccountthatBon- figlioetal.[20]analysedmorethantwothousandmtDNAsamplesinordertoobtain54T1 haplotypes,thefrequencyofT1fmustbelessthan4/2000amongEuropean,African,and Americancattlebreeds. HaplogroupsQandT2wererareintheancientcattlepopulationsintheN-EBSRjustas theyareincontemporarypopulations[11].HaplogroupQwasfoundintheNorthernFinnish Post-Medievalpopulationatafrequencyof1/26;ithaspreviouslybeenfoundinfiveItalianna- tivecattlebreeds[10,15,16].Mostpreviousstudies,however,failedtodifferentiatehaplogroup QfromhaplogroupT,astheyoverlookedthesequenceofthediagnosticsiteoutsidetheD- PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 10/16

Description:
1 Biotechnology and Food Research, MTT Agrifood Research Finland, and in Estonia by reign of multiple forces e.g. the Teutonic Order [51].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.