RESEARCHARTICLE Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses MariannaNiemi1,2*,AuliBläuer1,3,TerhiIso-Touru1,JanneHarjula1,3,VeronicaNyström Edmark4¤,EveRannamäe5,LembiLõugas6,AnttiSajantila2,KerstinLidén7, Jussi-PekkaTaavitsainen3 1 BiotechnologyandFoodResearch,MTTAgrifoodResearchFinland,Jokioinen,Finland,2 Universityof Helsinki,DepartmentofForensicMedicine,Helsinki,Finland,3 DepartmentofArchaeology,Universityof Turku,Turku,Finland,4 DepartmentofZoology,StockholmUniversity,Stockholm,Sweden,5 Instituteof HistoryandArchaeology,UniversityofTartu,Tartu,Estonia,6 Instituteofhistory,TallinnUniversity,Tallinn, Estonia,7 ArchaeologicalResearchLaboratory,StockholmUniversity,Stockholm,Sweden ¤ Currentaddress:DepartmentofBioinformaticsandGenetics,SwedishMuseumofNaturalHistory, Stockholm,Sweden OPENACCESS * [email protected] Citation:NiemiM,BläuerA,Iso-TouruT,HarjulaJ, NyströmEdmarkV,RannamäeE,etal.(2015) TemporalFluctuationinNorthEastBalticSeaRegion Abstract CattlePopulationRevealedbyMitochondrialandY- ChromosomalDNAAnalyses.PLoSONE10(5): e0123821.doi:10.1371/journal.pone.0123821 AcademicEditor:Yong-GangYao,Kunming Background InstituteofZoology,ChineseAcademyofSciences, AncientDNAanalysisoffersawaytodetectchangesinpopulationsovertime.Todate, CHINA moststudiesofancientcattlehavefocusedontheirdomesticationinprehistory,whileonly Received:August29,2014 alimitednumberofstudieshaveanalysedlaterperiods.Conversely,thegeneticstructure Accepted:March7,2015 ofmoderncattlepopulationsiswellknowngiventheundertakingofseveralmolecularand Published:May20,2015 populationgeneticstudies. Copyright:©2015Niemietal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits Results unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare BonesandteethfromancientcattlepopulationsfromtheNorth-EastBalticSearegion credited. datedtothePrehistoric(LateBronzeandIronAge,5samples),Medieval(14),andPost- DataAvailabilityStatement:Theanalysed Medieval(26)periodswereinvestigatedbysequencing667basepairs(bp)fromthemito- sequencesareavailableintheGenBank,accession chondrialDNA(mtDNA)and155bpofintron19intheY-chromosomalUTYgene.Compari- numbersKF233429-KF233528.Allrelevantdataare withinthepaperanditsSupportingInformationfiles. sonofmaternal(mtDNAhaplotypes)geneticdiversityinancientcattle(45samples)with moderncattlepopulationsinEuropeandAsia(2094samples)revealed30ancientmtDNA Funding:ThisresearchwasfundedbyAcademyof Finland(theprojectdecisionnumber128451),http:// haplotypes,24ofwhichweresharedwithmodernbreeds,while6wereuniquetothean- www.aka.fi/en-GB/A/.WorkofMNwasalsofunded cientsamples.OfsevenY-chromosomalsequencesdeterminedfromancientsamples,six byNationalPopulationGeneticsDoctoral wereY2andoneY1haplotype.CombineddataincludingSwedishsamplesfromthesame Programme,fundedbytheMinistryforEducationand periods(64samples)wascomparedwiththeoccurrenceofY-chromosomalhaplotypesin CultureandtheAcademyofFinland,http://www.oulu. fi/biology/PopGenSchool/.Cattlebonesamplesfrom moderncattle(1614samples). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 1/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Estoniawerepartofthegrantprojectno8156of Conclusions EstonianScienceFoundation,http://www.etag.ee/ ThediversityofhaplogroupswashighestinthePrehistoricsamples,wheremanyhaplo- rahastamine/etfgrandid/.Thefundershadnorolein studydesign,datacollectionandanalysis,decisionto typeswereunique.TheMedievalandPost-Medievalsamplesalsoshowahighdiversity publish,orpreparationofthemanuscript. withnewhaplotypes.Someofthesehaplotypeshavebecomefrequentinmodernbreedsin CompetingInterests:Theauthorshavedeclared theNordicCountriesandNorth-WesternRussiawhileotherhaplotypeshaveremainedin thatnocompetinginterestsexist. onlyafewlocalbreedsorseemtohavebeenlost.AtemporalshiftinY-chromosomalhaplo- typesfromY2toY1wasdetectedthatcorrespondswiththeappearanceofnewmtDNA haplotypesintheMedievalandPost-Medievalperiod.Thissuggestsareplacementofthe PrehistoricmtDNAandYchromosomalhaplotypesbynewtypesofcattle. Introduction ArchaeologicalandmitochondrialDNAevidenceindicatethatcattleweredomesticatedfrom theauroch(Bosprimigenius)[1–5],about10,000yearsagointheFertileCrescent[6].From theFertileCrescent,domesticcattlespreadtoSouthEasternEuropearound8,800BeforePres- ent(BP),toCentralEuropearound7,000BP,andtoNorthCentralEuropeafter6,700BP[7]. DomesticcattlereachedsouthernScandinaviaby6,000BP[8],Estoniaby4,100BP[7]andfi- nallyFinlandinthenorthernBalticSearegionby3,000BP[9].Theoldestradiocarbondated remainsofcattleinFinlanddatebackto3086±30BP[9]. MolecularanalysesofmitochondrialDNAandtheY-chromosomecanbeusedtotrace bovinematernalandpaternallineages,respectively[10,11].Variationinthehypervariablere- gionofthemithochondrialD-loopdefinesthemajorityoftaurinecattle,aswellassomemi- tochondriallineagesofNearEasternaurochsandmanyItalianaurochs[12],tobelongtothe Tmega-haplogroup,includingthehaplogroupsT,T1,T2,T3,andT4[1,5,13–15].Astudyof thewholemitochondrialDNAhassuggestedanadditionalhaplogroup,T5,definedbysites outsideoftheD-loopregion[15].Threeotherhaplogroupshavebeenidentifiedintaurine cattle,wheretheclosestinphylogenytohaplogroupTishaplogroupQ[10],differingbyone diagnosticSNPsiteinthehypervariableregion(position15953inV00654)[15].Haplogroup QhasbeenfoundatlowfrequencyinmodernSouthEuropeancattlebreeds[10,15].Thedis- tributionofhaplogroupQhasbeenhypothesisedtoindicateaparallelNeareasternoriginfor haplogroupsTandQ,whereQrepresentsaminordomesticatedlineage[16].HaplogroupP thathasonlybeenidentifiedinnorthernandcentralEuropeanaurochs,andinacoupleof scatteredtaurinesamples,divergedfromTandQpriortotheirsplit[15,17].Theoldestdi- vergingbranchinthemtDNAphylogenyistheveryrarehaplogroupRthathasonlybeen identifiedinlocalItaliancattlebreeds[16]. ThegeneticdiversityoftheThaplogroupishighestintheNearandMiddleEastcattlepop- ulations,wherefourhaplogroupsT,T1,T2,andT3exist[1,14],indicatingaNearEasternori- ginoftaurinecattle,whichisalsosupportedbynuclearmarkeranalysesthatshowhigher variabilityintheNearEastthaninotherregions[1,18].Europeandomesticcattlecarrythe samefourhaplogroupsasNearEastcattle,butwithT3predominatinginEuropeatleastfrom theNeolithicperiodonwards[11,14,17,19,20].HaplogroupT1isquitefrequentacrossthe Mediterraneancountries[3,21],andpredominantandalmostfixedinAfrica[14].Haplogroup T4derivesfromT3andhasthusfaronlybeendetectedinAsianandYakutiancattlefromRus- sianSiberia[11].Thestar-likepatternsoftheT3-centeredhaplotypesdetectedinmodernand PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 2/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle NeolithicEuropeancattlepopulationshavebeensuggestedtoresultfrompost-domesticaccu- mulationofmutations[14,19]. Anorth—southgradientofgeneticdiversityhasbeendetectedinmodernEuropeancattle (Bostaurus),[11,18],includingtheY-chromosome[11].Asinglenucleotidepolymorphismin intron19oftheUTYgene(UTY19)canbeusedtodistinguishbetweenthetwoY-chromosom- alhaplotypes,Y1andY2[22].WhereasY1isthedominatinghaplotypeinmodernWestern andNorthernEuropeanbreeds,haplotypeY2dominatesinSouthEuropeanbreeds[22],with acleardividingzoneincentralEurope[23].Apartfromthegeographicalvariation,atemporal fluctuationinY1andY2haplotypefrequencieshasbeendetected,mainlyfromSwedishan- cientbullsandaurochs,suggestingthatvariationinpresent-dayfrequenciesofY1andY2hap- lotypesislikelyduetorecentdemographicevents[24]. Theaimofthisstudywastoexploretemporalpopulationvariationbymaternallyandpater- nallyinheritedmarkersincattlefromtheNorthEastBalticSearegion(N-EBSR),andtocom- pareancientpopulationswithmodernbreeds.Haplotypedatafrom45ancientmtDNAand7 Y-chromosomesampleswasusedtogetherwithcontemporarydatafrom2094mtDNA [10,11,15,16,20]and1614modern[22–24]and71ancientY-chromosomes[24–26]samples. ThedataindicatesclearchangesintheN-EBSRcattlepopulationsfromlateBronze/IronAge tomoderntimes. MaterialsandMethods Ancientcattlebones Atotalof77cattleboneswereselectedforaDNAanalysisfromdifferentsitesacrossFinland andEstoniaandinthetownofVyborgintheLeningradRegioninnorth-westernRussia (FigAinS1File).Thesamplesforthisstudywerefrommuseumcollectionsheldat1.)The NationalBoardofAntiquities,2.)MuseumofRaisio(Harkko),3.)TheMuseumCentreof Turku,4.)ÅlandsMuseum,5.)MuseumofViljandi,6.)PärnuMuseum,7.)SaaremaaMuse- um,8.)UniversityofTurku,9.)St.Petersburg,InstitutefortheMaterialCultureHistory,Rus- sianAcademyofSciences,10.)TallinnUniversity,and11.)UniversityofTartu(TableAin S1File).Allnecessarypermitswereobtainedforthedescribedstudy,whichcompliedwith allrelevantregulations. ThesamplesfromVyborgderivefromtheMedievalandPost-Medievalperiods,duringwhich VyborgwaspartofFinland.Theearliestbones(2samples)availableforthisstudyderivefrom theLateBronzeAge(700–500BC)fromtheislandofSaaremaa,Estonia.TherestofthePrehis- toricsamplesdatestotheLateIronAge(800–1200AD).Toverifythateachindividualwithin onesiteandperiodwassampledonlyonce,samplesderivingfromthesamesideoftheanimal wereselected,orthesizeandageoftheindividualwasusedtoseparateindividuals.Whenever possible,metacarpalswerepreferredasmetacarpalsareusedtoosteologicallydeterminethesex oftheanimal[27,28].From77samplesinitiallyselected,atotalof18bonesorteethfromthePre- historicperiod(700BC-1200AD),24fromtheMedievalperiod(1200–1550AD),and34from thePost-Medievalperiod(1550–1800AD)wereusedforaDNAanalyses.Onesamplethatwas radiocarbondatedasmodernwasomittedfromfurtheraDNAanalysis.Atotalof21skeletal sampleswereradiocarbon-datedattheLaboratoryofChronologyoftheFinnishMuseumofNat- uralHistory(LUOMUS),UniversityofHelsinki(TableAinS1File).Radiocarbondatedsamples coveredallbonesandteethfromnon-distinctculturallayersthatwereusedforaDNAanalyses. DNAmarkersandlaboratorymethods TodeterminethemtDNAhaplogroupsT,T1,T2,T3,T4,andT5[15],acombinationofthree fragmentsyielding486bpofsequencecoveringthemtDNAD-loopfromposition16031to PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 3/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle 178[GenBank:V00654]anda181bpsequencefromtheND5gene(position12911to13091 [GenBank:V00654])wereanalysed.Anadditional77bpD-loopfragment(positions15936– 16012inV00654),determininghaplotypeQ,wasanalysedfromonesample(H01,BtTor4).As aY-chromosomalhaplotypemarker,a155bpsequencefromintron19intheUTYgenewas analysed(thetransversionG>Tatposition423in[GenBank:AY936543],defininghaplotypes Y1orY2)[22].DNAextraction[29],PCRmethodsandsequencingofPCRproductswereas describedin[30].Briefly,0.2–0.5mlofbonepowderwassuspendedin900μl0.5MEDTA, 100μl10Mureaand5μlproteinaseK(20mg/ml),andincubatedwithconstantshakingat 55°Covernight.DNAfromtheconcentratedsupernatant(Amicon-430Kcentrifugalfilter units,MerckMillipore)wasextractedwithaQIAquickPCRPurificationKit(Qiagen,Sweden) accordingtomanufacturer’sinstructions.Approximately5–10μLofDNAextractwasusedin thePCRperformedwiththeHotStarTaqDNApolymeraseKit(Qiagen,Sweden)withaninclu- sionof0.4mMdNTP,0.2μMofeachprimerand0.25units(U)ofUracilDNAGlycosylase (UNG,Sigma-Aldrich).ThePCRprogramincludedinitialstepsof37°Cfor10minand95°C for15minfollowedby55three-stepcyclesof94°Cfor30s,AT°Cfor40sand72°Cfor1min and10minat72°,whereATstandsforaspecificannealingtemperatureforeachprimerpair (TableBinS1File).PrimersandsuccessratesofaDNAanalyses(TextAinS1File,TableBin S1File)areprovidedintheSupportingInformation. AuthenticityofancientcattleDNA TheauthenticityofaDNAanalyseswascontrolledinvariousstepsofthelaboratorywork-flow andtheanalyseswererepeatedinindependentancientDNAlaboratories.All45ancientsam- plesincludedinthestatisticalanalyseswereextractedatleasttwice(MTTAgrifoodResearch Finland,Jokioinen,Finland,StockholmUniversity,Stockholm,SwedenandDepartmentofFo- rensicMedicine,UniversityofHelsinki,Helsinki,Finland). EachparticipatingancientDNAlaboratoryfollowedgeneralguidelinesforancientDNA worksuchasseparatespaceforsamplepreparationandancientDNAwork,separatepre-and post-PCRareas,air-controlledsterileaDNAworkspace,wearingofprotectiveclothing,using disposabletools,pipetteswithaerosolresistantfiltertipsandtreatingequipmentandworking surfaceswithbleachandultra-violetirradiationfrequently. ToensuretheauthenticityofthemtDNAandY-chromosomalsequences,andtodetectpos- siblePCRerrors,eachDNAfragmentofeachsamplewassequencedfromatleasttwodifferent PCRreactionswithDNAderivedfromdifferentextractions.Thesamplewasconsideredtobe reproduciblewhenconsistentsequencesofeachDNAfragmentwereobtainedfromatleast threeamplifications.Theconsistentsequenceswereverifiedfromtwoextractionsinanalyses doneatleastintwoindependentaDNAlaboratories.Overlappingprimersspecifictocattle DNAweredesignedtopreventcrossreactivitywithhumanDNA(TextAinS1File,TableBin S1File).NegativecontrolswereappliedforallstepsintheaDNAextractionandamplification. Apreviouslyanalysedmammothsample[31]wasusedasapositivecontrolwhenthefirstfive sampleswereextracted.Themammothsamplewassuitableasapositivecontrolasitisancient anditssequenceclearlydiffersfromcattle. Forfurtheranalyses,sequencesfromaDNAsamplesobtainedfromdifferentextractions andamplifications,provenidenticalbyatleasttwoindependentaDNAlaboratorieswereused. Onesamplewasnotrepeatableandwasthusexcludedfromanalyses(TableAinS1File).For sixsamplesonlypartialmtDNAwassuccessfullyamplified.Consequently,theywereomitted fromthestatisticalanalyses.Asamplificationfrom25samples(includingonemodernsample, TableAinS1File)yieldednoDNA,atotalof45samplesremainedforstatisticalanalyses (TableAinS1File). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 4/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Statisticalanalysis ThemtDNAsequencesfromthe45successfullysequencedancientcattlewerealignedsepa- ratelyforthe486bpD-loopandthe181bpND5genesequencesusingCLUSTALW[32] wherepenaltiesusedwere10forgapopening,0.20forgapextension,and5forgapdistances. Thecombinationofthesequencedregionsisreferredtobelowasthe667bphaplotypere- gion.ACLUSTALWalignmentwasalsoperformedforthesevensuccessfullyamplifiedY- chromosomal155bpsequences.TheanalysedsequencesareavailableinGenBank,accession numbersKF233429-KF233528. TheReducedMedian-joiningNetwork(RMNtobemostconservativeε=0)wasconstructed accordingtothealgorithmdescribedbyBandelt,ForsterandRohl[33]withNETWORK4.6.0.0 [33].ThetopologyobtainedinRMNwasconfirmedwiththeMaximumlikelihood(ML)and BayesianMarkovChainMonteCarlo(MCMC)analysesusingjModeltestv2.1[34],PhyML3.0 [35]andMrBayes3.2[36].BoththeMLandtheMCMCtreealongwiththedetailedstatistical methodsarepresentedinSupportingInformation(TextAinS1File,FigBinS1File). DnaSP(version5)[37]wasusedtocalculatethegeneticdiversityestimatesbasedonthe 486bpD-loopsequences.Numberofhaplotypes(h),haplotypicdiversity(Hd),numberofseg- regatingsites(S),nucleotidediversity(π),Tajima’sD(D),andaveragenumberofnucleotide differences(K)werecalculatedforeachpopulation.Toapproximatethelevelofbiasinthedi- versityestimatescausedbyheterochronityinthedatasetwhenpoolingsamplesofdifferent ages,correctedπhμ[38]wascalculatedwithmutationratesof34and53%permillionyearsand generationlengthsof5and7years(upperandlowerrangesascalculatedfromNear-Eastern cattlein[39]).Inordertoprovidedatestothesampleswhencalculatingπhμ,radiocarbondates wereusedandtheuseddateswererandomlyassignedtocovertherangeofcontextforsamples datedbycontext. Inordertocompareancientcattlediversitytomoderncattlepopulations,anumberofaddi- tionalsequencesfromEurope,NearEastandNorthAsiawereincludedinthepopulationdiver- sityanalysis.Thesesequenceshavepreviouslybeendescribedandanalysed[10,11,15,16,20]. ThesizeofthecommonalignedmtDNAsequenceinthiscomparisonwas245bpfromatotal of2139individuals.Thisdatasetwasthenusedintwoapproaches. First,toexplorethetemporalfluctuationinhaplotypeswithintheN-EBSR,49moderncat- tlesamplesfromfivenativeN-EBSRbreeds(Northern,Western,andEasternFinncattle,Esto- nianRedandEstonianNative[11,16]),alongwiththe45ancientcattleanalysedherewere extractedfromthealigned245bpdataset.These94N-EBSRsamplesweregroupedintothree temporalcohorts;PrehistoricandMedieval(n=19),Post-Medieval(n=26),andModern (n=49)andintotwogroups:1)themostfrequent245bphaplotypefoundamongtheentire 2139dataset(563samples)and2)therestofthehaplotypes. Thesecondapproachwasusedtoexploretheappearanceandfrequencyofancienthaplotypes among2094moderncattledividedintotengeographicalregions(N-EBSR,Scandinavia,West- ernEurope,SouthernEurope,South-EasternEurope,EasternEurope,WesternRussia,Central Russia,Siberia,andNearEast/CentralAsia).Forthisapproach,the2094modernsampleswere groupedintothreehaplotypegroups:1)themostcommon245bphaplotypeintheentiredataset (563outof2139samples),2)therestofthehaplotypesfoundamong45ancientN-EBSRcattle, and3)otherhaplotypesnotfoundinancientdata.Theprocedurewasusedtostudythedistribu- tionofancienthaplotypesamongcontemporarycattle.NotethatthePrehistorichaplotypeswere excludedhereasmostofthePrehistorichaplotypeswerenotpresentincontemporarydata. Pearson’schi-squaretest,asimplementedinSPSSv.11.5.0,wasconductedtotestfordiffer- encesinfrequenciesofmtDNAhaplotypesinbothapproaches,betweenthetemporalcohorts andthegeographicalregions. PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 5/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Sixty-ninesampleswerefurtheranalysedfortheYchromosomalSNPinUTY19,whichdif- ferentiatescattleYchromosomesintohaplotypesY1andY2[22].Thesevensamplessuccess- fullyanalysedfortheY1/Y2markerwereanalysedfortemporalfluctuationwiththeSwedish ancient(n=64)andFennoscandianmodern(Northern,Western,andEasternFinncattle, SwedishRed,Redpolled,FjallnaraandMountaincattle,n=41)datagivenin[22–25].The combineddatafromFennoscandianbullsweredividedintofourtemporalgroups:IronAge (n=8[25]),Medieval(n=37thisstudyand[24,25]),Post-Medieval(n=19thisstudyand [24]),andmodern(n=28[22]and[11]asreportedin[23]).Tocomparethetemporalanaly- sesinFennoscandiatoCentralEurope,datafromMedievalbulls(n=14,[26])fromSwitzer- landwasanalysedtogetherwithdatafrommodernSwissbreeds(Braunvieh,Ehringer,and Simmental,n=39,[22]and[11,40]asreportedin[23]). Inordertomakewidergeographicalcomparisons,Y1/Y2informationfrom127modern Eurasianbreeds(n=1614[22,24]and[23]combiningthedataof[11,40–42])wereincluded. Datafromatotalof1692bullswasdividedintoninegeographicalregions(theNordiccoun- tries,WesternEurope,SouthernandCentralEurope,SouthEasternEurope,EasternEurope, Near-EastandCentralAsia,WesternRussia,CentralRussiaandSiberia). APearson’schi-squaretest,asimplementedinSPSSv.11.5.0,wasconductedtotestfordif- ferencesinfrequenciesofY1andY2betweenthetemporalcohorts(FennoscandiaandSwitzer- land)andgeographicalregions.Incaseswhere20%ormoreofthegroupshadexpectedcounts lessthan5,Fisher’sexactprobabilitytwo-tailedtestwasusedinstead. Results Radiocarbondating Atotalof21sampleswereradiocarbondated.Threesamplesappearedtobefromalaterperiod thanexpectedbasedonthecontextdatingwhileonesamplefromanIronAgecontextturned outtobemodern(TableAinS1File). Osteologicalanalysis Themetricalanalysisofmetacarpalsrevealedthreemalesand12femaleswhiletwometacar- palswereindeterminableandfivemetacarpalsweretoofragmentedtobeanalysedbyosteo- logicalmethods(TableAinS1File).TheresultsfromtheY-chromosomalUTY19werein accordancewiththeosteologicalanalysesasnoneofthesamplestakenfromfemalemetacar- palsamplifiedwithY-chromosomalprimers.Twomalemetacarpalswereconfirmedandone indeterminablemetacarpalwasdeterminedasmalebyY-chromosomalamplification (TableAinS1File). MtDNAhaplotypes UsingDnaSP,30haplotypeswerefoundamongtheancientcattle,includingonesamplepro- vidingonlypartialinformation.Twenty-ninehaplotypes,includingthefull667bpsequence, wereusedforfurtheranalysis.Whenanalysingthephylogenyofthese29haplotypes,Bayesian MCMC,MLandRMNanalysesgavesimilartopologies(Fig1,Median-joiningnetworkofthe 29ancientmitochondrialhaplotypes(grey-black)with43modernreferencehaplotypes (white),andFigBinS1File).Alloftheancienthaplotypeswereassignedtothetaurinehap- logroupsaccordingtotheknowndiagnosticpositionsofcattlemtDNA[10,11,14,15,20](Text AinS1File).Onesamplewasassignedtotaurinemacro-haplogroupQwhiletherestofthe sampleswereassignedtothetaurinemacro-haplogroupT(Fig1,TextAinS1File).The28an- cienthaplotypesinmacro-haplogroupTwerefurtherdividedintohaplogroupsT2(one PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 6/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Fig1.Median-joiningnetworkofthe29ancientmitochondrialhaplotypes(grey-black)with43modern referencehaplotypes(white).Median-joiningnetwork(ε=0)showsmolecularrelationshipsbetween30 ancienthaplotypes(H01-H03andH05-H30).Majorhaplogroups(T1,T2,T3,T5andQ)andsub-haplogroups (T1f,T3b)aredefinedbyinclusionof43modernreferencehaplotypesfrom[10,15].Eachcirclerepresents onemtDNAhaplotypewherethesizeisproportionaltothenumberofindividualsinthathaplotype.Black diamondsrepresenthypotheticalhaplotypes.Thelengthofthebranchesisproportionaltothenumberof mutationsbetweenthehaplotypesexceptthebranchbetweenBostaurusandBosindicus(32mutations), whichisshortenedtofitinthepicture.HaplotypesfromthePrehistoric,Medieval,andPost-Medievalperiods areindicatedinblack,darkgrey,andlightgrey,respectively. doi:10.1371/journal.pone.0123821.g001 haplotype)andT3(17haplotypes)andsub-haplogroupsT3b(9haplotypes)andT1f(onehap- lotype)(Fig1,BandCFigsinS1File,TextAinS1File).Thesampleprovidingpartialinforma- tionwasassignedtoT2(TextAinS1File,FigCinS1File). Analysisofpopulationdiversity ThemtDNAdiversityintheFinnish,Estonian,andVyborgancientcattledataaresummarized inTable1.Thenucleotidediversityfortheentiredatasetwas0.969.Withineachancienttem- poralcattlecohortthemitochondrialhaplotypediversityestimates(s,h,Hd,K,andπ)indicate ahighdiversity(Table1).ThehaplotypediversitywashighestinPrehistoriccattle(Hd=1.000) andslightlylowerinMedievalandPost-Medievalcattle(Hd=0.956and0.972,respectively). Nucleotidediversityvariedamongperiodswiththehighestobserveddiversity(π=7.41(cid:1)10–3) inthePrehistoricpopulation(Table1).Thebiasinnucleotide-diversityestimatecausedbyhet- erochronitywaslow,lessthan1.5%inalltemporalcohorts(Table1).Tajima’sDvaluewasneg- ativeforalltemporalcohortswithasignificantlynegativepvalueforthePost-Medievalperiod andthewholeancientcattledatasetsuggestingapopulationexpansioninFinlandincludingVy- borgandtheBalticregion(Table1). HaplogroupT3andsub-haplogroupT3bformedastar-likephylogenyofhaplotypes,with majorhaplotypesH17andH05forT3andT3b,respectively.Thehighesthaplotypediversity wasdetectedintheoldestandsmallestsample,fromthePrehistoricperiod.Adifferentsetof haplotypeswasfoundfromtheMedievalandPost-Medievalsamples(Fig1). TemporalmtDNAanalyses SignificanttemporalfluctuationsinthefrequencyofmtDNAhaplotypesintheN-EBSRcattle weredetected(PearsonChi-Squaretest,n=94,χ2=13.1,df=4,p=0.011).Herethemost PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 7/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Table1. SummarystatisticsofmtDNAvariationinancientNorthEastBalticSearegioncattlefromPrehistoric,Medieval,andPost-Medieval periods. AncientNorthEastBalticSearegioncattle Prehistory,700BC-1200AD Medieval,1200–1550AD Post-Medieval,1200–1800AD Total N 5 14 26 45 S 9 15 22 33 h 5 11 20 29 Hd 1.000 0.956 0.972 0.969 K 3.600 3.055 2.788 2.951 θs 4.320 4.717 5.765 7.736 D -1.184 -1.437 -1.869* -2.067* π 7.41 6.29 5.74 6.07 πhμa 7.35 6.28 5.73 6.04 Biasa 0.84% 0.13% 0.10% 0.43% πhμb 7.30 6.28 5.73 6.03 Biasb 1.45% 0.22% 0.17% 0.74% Nisnumberofindividualssampled;Sisthenumberofsegregatingsites(excludingindels);histhenumberofhaplotypes;Hdisthehaplotypediversity;K istheaveragenumberofdifferences;θsis‘Theta’derivedfromtheobservednumberofsegregatingsites(S);DisTajima0sDstatisticvaluewhere statisticalsignificancesP<0.05ismarkedwith*.πisthenucleotidediversity*10–3;ThePrehistoriccohortincludestwosamplesfromLateBronzeAgeand threesamplesfromLateIronAge. aBasedongenerationlengthof7yearsandmutationrateof43%permillionyears bBasedongenerationlengthof5yearsandmutationrateof53%permillionyears doi:10.1371/journal.pone.0123821.t001 common245bphaplotypeincreasedinfrequencymorethantwicefromMedievaltoPost-Me- dievalandmorethanthricefromPost-Medievaltomoderntime(greyinFig2binFig2,Distri- butionofancientN-EBSRcattlemtDNAhaplotypesinmodernEurasiancattlepopulations). Consequently,theproportionofotherhaplotypesdecreasedthroughtime(colouredandwhite patternsinFig2b).Nearlyhalfoftheseotherhaplotypesincontemporarycattlewerenot foundinancientcohorts(whiteinFig2b);andthustheproportionoftheancienthaplotypes (otherthanthemostcommon)inmodernN-EBSRisapproximately20%(coloredpatternsin Fig2b).Theproportionofuniqueancienthaplotypes(uniqueamong2139samples)washigh- estinthePrehistoricsample(blackinFig2b). GeographicalmtDNAanalyses Themostcommon245bphaplotype(includingtheancient667bphaplotypesH05,H06,H11, H17,H24,andH26,TableCinS1File)wasfoundinmostmodernEuropeanandRussian breedswithafrequencyrangingfrom16to63%withingeographicalregions(Table2).The otherancienthaplotypeshadmorerestrictedoccurrencesandfrequencies,lessthan1.6% amongthe2094moderncattledataset(TableCinS1File). Thereweresignificantdifferencesinappearanceandfrequencyofancienthaplotypes amongtengeographicalregionsofcontemporarycattle(PearsonChi-Squaretest,n=2094, χ2=355,df=18,p<0.001).Theproportionofancienthaplotypeswashighestincontemporary N-EBSRcattleandWesternRussiancattle(Table2),whiletheproportionofhaplotypesnot foundinourancientsampleincreasedwithgeographicaldistanceshowinghighestproportions inSouthandSouth-EastEurope,andNearEast/CentralAsia(Table2,indicatedinwhitein Fig2a). PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 8/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Fig2.DistributionofancientN-EBSRcattlemtDNAhaplotypesinmodernEurasiancattle populations.HaplotypedistributioninancientFinnish,EstonianandWesternRussian(Vyborgattheshore ofBalticSea)cattlepopulationsfromtheLateBronzeAge,IronAge,Medieval,andPost-Medievalperiodsis indicatedwithpiechartsattherightsideofthemap(2B,seeTableCinS1File).Seventeenancient haplotypesfoundinmodernEurasianpopulations(TableCinS1File)areindicatedbypiechartswith correspondingpatterns(seekey)onthemap(2A).Themodernhaplotypesnotfoundinancientcattleare countedtogetherandindicatedinwhite.Countsofuniqueancienthaplotypesnotfoundinmodern populationsareindicatedinblack. doi:10.1371/journal.pone.0123821.g002 Y-chromosomalanalysis UTY19allelefrequenciesinFennoscandiancattle(TableDinS1File)differedsignificantlybe- tweentemporalcohorts(Chi-Squaretest,p<0.001).TypeY2wasdominatinginboththeIron Age(7/8)andtheMedievalperiod(36/37),withnostatisticaldifferenceinallelefrequencies betweenthetwoperiods(Fisher’sExacttest,p=0.327).TheproportionofY1increasedsignifi- cantlyfromtheMedieval(1/37)tothePost-Medievalperiod(9/19,Fisher’sExactTest, p<0.001)andthenagainfromthePost-Medievalperiod(9/19)toModerntimes(33/41,Fish- er’sExactTestp=0.015).TheY1typewasfixedinmostcontemporaryFennoscandiannative breedswithonlyoneexceptionwhereY2wasdominating(8/9),viz.inoneFinnishbreed,the EasternFinncattle. Table2. DistributionofN-EBSRancienthaplotypesinmodernEuropeanandAsiancattlebreeds. N-EBSR Scandinavia Western Southern South- Eastern Western NearEast Central Siberia Total Europe Europe Eastern Europe Russia andCentral Russia Europe Asia CommonH 31 23 93 334 8 13 16 4 12 14 548 63.3% 28.4% 38.1% 21.7% 16.0% 50.0% 61.5% 16.0% 37.5% 58.3% 26.2% Other 10 27 17 51 7 2 9 1 10 2 136 AncientH 20.4% 33.3% 7.0% 3.3% 14.0% 7.7% 34.6% 4.0% 31.3% 8.3% 6.5% Hnotfound 8 31 134 1152 35 11 1 20 10 8 1410 inAncient 16.3% 38.3% 54.9% 75.0% 70.0% 42.3% 3.8% 80.0% 31.3% 33.3% 67.3% data Total 49 81 244 1537 50 26 26 25 32 24 2094 Figuresrepresentthecountandpercentageofmoderncattledatafromtengeographicalregionsgroupedinthreehaplotype(H)groupsaccordingtothe appearanceofthehaplotypesinancientN-EBSRdata:Themostcommon245bphaplotype(CommonH),otherancienthaplotypesfoundinPost- MedievalorMedievalperiodsandhaplotypesnotfound(Hnotfound)inancientNorth-EastBalticSearegioncattle. doi:10.1371/journal.pone.0123821.t002 PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 9/16 MitochondrialandY-ChromosomalDNAAnalysesofN-EBalticSeaCattle Table3. SummaryofancientandmodernY-haplotypesdistributionacrossEurasia. Nordic Western Southernand South- Eastern Western NearEastand Central Siberia Total counties Europe CentralEurope Eastern Europe Russia CentralAsia Russia Europe Ancient Y1 11 1 17% 7% Y2 53 13 83% 93% Total 64 14 78 Modern Y1 101 334 120 53 9 1 24 84% 83% 13% 82% 100% 3% 96% Y2 19 70 806 10 12 31 1 23 16% 17% 87% 100% 18% 97% 4% 100% Total 120 404 926 10 65 9 32 25 23 1614 Dataincludes78ancient(fromFinland,SwedenandSwitzerland)and1621modernEurasianbulls.Separatefiguresforeachbreedandancient populationsaregiveninTableEinS1File. doi:10.1371/journal.pone.0123821.t003 TherewasnosignificanttemporalchangesdetectedinCentralEurope(Switzerland)from Medieval(late13thcentury)tomoderntimes(Fisher’sExactTest,p=0.462),whereY2domi- natedboththeMedieval(13/14)andthemodern(38/39)periods. Y1andY2haplotypefrequenciesvariedsignificantlybetweengeographicalregions(Chi- Squaretest,p<0.001,Table3,TableEinS1File).Mostofthemodernbreeds(105from127)in allregionswerefixedforoneY-haplotype,eitherY1(46)orY2(59),while22displayedboth Y1andY2(TableEinS1File). Discussion MtDNAhaplogroups Theassignmentofancientsamplesintobovinehaplogroups(Q,T2,T3)orsub-haplogroups (T1f,T3b),withT3andT3bpredominating,isingoodagreementwithpopulationanalysisof moderncattle,whereT3isthemajormtDNAhaplogroupinEurasianpopulations[11,14].Itis alsoinaccordancewithpreviousanalysisofancientEuropeancattlepopulationswhereapre- dominanceoftheT3haplogrouphasbeenshownfromtheNeolithic[19]. Ararehaplotype,belongingtosub-haplogroupT1f,wasfoundinasampledatedtotheLate BronzeAgeinEstoniaatafrequencyof1/5inthePrehistoriccohort(Fig2).Inaprevious study,T1fhasbeenfoundinthreeindividualsfromthemodernItalianbreedPodolian(3/80of T1haplogroupsequencesfoundinEurope)andinthemodernbreedMenofifromEgypt(fre- quency1/196ofT1haplogroupsequencesfoundinAfrica)[20].TakingintoaccountthatBon- figlioetal.[20]analysedmorethantwothousandmtDNAsamplesinordertoobtain54T1 haplotypes,thefrequencyofT1fmustbelessthan4/2000amongEuropean,African,and Americancattlebreeds. HaplogroupsQandT2wererareintheancientcattlepopulationsintheN-EBSRjustas theyareincontemporarypopulations[11].HaplogroupQwasfoundintheNorthernFinnish Post-Medievalpopulationatafrequencyof1/26;ithaspreviouslybeenfoundinfiveItalianna- tivecattlebreeds[10,15,16].Mostpreviousstudies,however,failedtodifferentiatehaplogroup QfromhaplogroupT,astheyoverlookedthesequenceofthediagnosticsiteoutsidetheD- PLOSONE|DOI:10.1371/journal.pone.0123821 May20,2015 10/16
Description: