ebook img

Temperature for the (2+1)-dimensional Black Hole with Non Linear Electrodynamics from the Generalized Uncertainty Principle PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Temperature for the (2+1)-dimensional Black Hole with Non Linear Electrodynamics from the Generalized Uncertainty Principle

(2+1) Temperature for the -dimensional Bla k Hole with Non Linear Ele trodynami s from the Generalized Un ertainty Prin iple Alexis Larrañaga Universidad Na ional de Colombia. Observatorio Astronómi o Na ional (OAN) and ∗ Universidad Distrital Fran is o José de Caldas. Fa ultad de Ingeniería. Proye to Curri ular de Ingeniería Ele tróni a He tor J. Hortua † Universidad Na ional de Colombia. Observatorio Astronómi o Na ional (OAN) (2+1) In this paper, we study the thermodynami al properties of the dimensional bla k hole with a non-linear ele trodynami s with a negative osmologi al onstant, using the Generalized Un ertainty Prin iple (GUP). This approa h shows that there is a minimum mass or remnant for 9 the bla k hole, orresponding to the minimum radius of the event horizon that has a size of the 0 orderofthePlan ks ale. Wealsoshowthattheheat apa ityforthisbla kholeisalwayspositive. 0 2 Keywords: Bla k Holes Thermodynami s, Generalized Un ertanty Prin iple. n PACS: 04.70.Dy; 04.20.-q; 11.10.Lm a J (2+1) Working in dimensional gravity, and using as the sour e of the Einstein equations the stress-energy tensor 3 2 of non-linear erle2 trodynami s, Cataldo et. al. [1℄ found a solution with a Coulomb-like ele tri (cid:28)eld (proportional to the inverse of ), that des ribes harged-AdS spa e when onsidering a negative osmologi al onstant. ] As is well known, the thermodynami al properties of bla k holes are asso iated with the presen e of the event c (2+1) horizon. Re ently[2℄,ithasbeen shownthatthe dimensional(cid:28)eldequationsforthebla kholewithnonlinear q - ele trodynami s an be interpreted as the di(cid:27)erential (cid:28)rst law with the usual form r g dM =TdS+ΦdQ, [ (1) 1 T κ where is the Hawking temperature that an be expressed in terms of the surfa e gravity at the horizon by v 7 κ 2 T = . 2π (2) 7 3 . On the other hand, in re ent yearsthe un ertainty relation that in ludes gravity e(cid:27)e ts, known as the Generalized 1 0 Un ertainty Prin iple (GUP), has shown interesting results in the ontext of bla k holelpev=ap1o.r6a1tion10[3−℄3,3ecxmtending the relation between temperature and mass to s ales of the order of the Plan k lenght, × . This 9 lp 0 treatmentimplythmat=1is.2t2he s1m0a19llGesetVlengths alein the theoryand it isrelatedto theexisten eofanextreme mass p : (the Plan k mass × , whi h be omes the bla k hole remnant), that orresponds to the maximum v possible temperature. This approa h has been used re ently [4℄ to extend the temperature-masss relation for the i (2+1) (Λ=0) X dimensionalbla kholewithanonlinearele tri (cid:28)eldandwithout osmologi al onstant . Thereisalso shown that there is a maximum temperature permited for the bla k hole that orresponds to a horizon with size in r a the Plan k s ale. (2+1) In this paper, we investigate the thermodynami s of the -dimensional bla k hole with a nonlinear ele tri (cid:28)eld reported in [1℄, to show how the GUP extended to gravity in spa es with osmologi al onstant as proposed T (M) by Arraut et. al. [3℄ an be used to al ulate the Hawking temperature asso iated with the bla k hole. The equation gives the usual relation for large masses but gets deformed when the mass be omes small. We also show how there is a minimum mass for the bla k hole that orresponds to a horizon with size in the Plan k s ale. Finally we al ulate the heat apa ity for this bla k hole, to show that it is always positive. I. THE 3-DIMENSIONAL BLACK HOLE WITH NON-LINEAR ELECTRODYNAMICS (2+1) The metri reported by Cataldo et. al. [1℄ is a solution of the dimensional Einstein's (cid:28)eld equations with a Λ<0 negative osmologi al onstant , ∗ †Ele troni address: ealarranagaunal.edu. o Ele troni address: hjhortuaounal.edu. o 2 G +Λg =8πT , µν µν µν (3) G= 1 where we have used units su h that . To obtain a Coulomb-like ele tri (cid:28)eld, CataldoFet.=al1.FuseFdµaνnonlinear ele todynami s, in whi h the ele tromagneti a tion does not depend only on the invariant 4 µν , but it is F3/4 a fun tion of ; and the energy-momentum tensor is restri ted to be tra eless. The stati ir ularly symmetri solution obtained has the line element dr2 ds2 = f(r)dt2+ +r2dϕ2, − f(r) (4) where 4Q2 f(r)= M Λr2+ . − − 3r (5) The ele tri (cid:28)eld for this solution is Q E(r)= , r2 (6) Q whi h is the standard Coulomb (cid:28)eld for a point harge. Note that the metri depends on two parameters and M , that are identi(cid:28)ed as the ele tri hargeand the mass, respe tively. A. Horizons The horizons of this solution are de(cid:28)ened by the ondition f(r)=0 (7) or 4Q2 M Λr2+ =0. − − 3r (8) For a osmologi al onstant in the range M3 Λ<0, − 12Q4 ≤ (9) the roots of the third-order polynomial (8) are all real, and an be written as [2℄ M 1 Q2 3Λ r1 = 2 cos cos−1 2 − r−3Λ 3 M r−M!! (10) M 1 Q2 3Λ 2π r2 = 2 cos cos−1 2 + − r−3Λ 3 M r−M! 3 ! (11) M 1 Q2 3Λ 4π r3 = 2 cos cos−1 2 + . − r−3Λ 3 M r−M! 3 ! (12) Note that the form of this solution impose the ondition Q2 3Λ 2 1. M −M ≤ (13) r 3 The equal sign de(cid:28)nes a extreme bla k hole, with the maximum mass Mmax = 3 12Q4Λ − (14) p and with the horizons Mmax r1 = 2 − − 3Λ (15) r Mmax r2 = r3 =2 . − 3Λ (16) r r 1 Note that the radius is negative, so it does not represent a physi al horizon be ause for other values of the mass r r 2 3 it is always negative. Therefore, this kind of bla k holes have only two physi al horizons, and , that, for the extremal bla k hole, oin ide, 2Q2 1/3 r2 =r3 =rext = . − 3Λ (17) (cid:18) (cid:19) r r r 2 3 + In the general ase, the largestradius between and orrespondsto the event horizon of the bla k hole , while r− theUositnhgerth eorerxesppaonnsidosntocotsh−e1ixnn≈erπ2h−orxizo−n16x3., the radii of the horizons r2 and r3 in equations (11) and (12) an be approximated up to the third order in Q2 3Λ x=2 , M −M (18) r as M 1 √3 4 r2 =r+ √3 x+ x2+ x3 +O x4 ≈ r−3Λ" − 3 18 81 # (19) (cid:0) (cid:1) M 2 8 r3 =r− x+ x3 +O x4 . ≈ −3Λ 3 81 (20) r (cid:20) (cid:21) (cid:0) (cid:1) x If we onsider only the (cid:28)rst ontribution in we get M 2Q2 r2 =r+ ≈ − Λ − 3 M (21) r 4Q2 r3 =r− . ≈ 3 M (22) II. HAWKING TEMPERATURE In this se tion we will dedu e the Hawking temperature for this bla k hole by using the usual de(cid:28)nition (2). The surfa e gravity an be al ulated as κ=χ(xµ)a, (23) a χ χ where isthemagnitudeofthefour-a elerationand isthered-shiftfa tor. Inorderto al ulate ,wewill onsider aKsµtati observer, for whomVµthe red-shift fa tor is just the proportionality fa tor between the timelike Killing ve tor and the four-velo ity , i.e. 4 Kµ =χVµ. (24) The metri (4) has the Killing ve tor Kµ =(1,0,0) (25) while the four-velo ity is al ulated as dxµ dt Vµ = = ,0,0 . dτ dτ (26) (cid:18) (cid:19) This gives 1 Vµ = f−1(r),0,0 = ,0,0 ,  M Λr2+ 4Q2  (27) (cid:0) (cid:1) − − 3r q  and therefore, the red-shift fa tor is 4Q2 χ(r)= M Λr2+ . − − 3r (28) r On the other hand, the four-a elerationis given by dVµ aµ = , dτ (29) that has omponents a0 =aϕ = 0 (30) 2Q2 ar = Λr . − − 3 r2 (31) and therefore, the magnitude of the four-a eleration is Λr 2Q2 a= g aµaν = − − 3 r2 . µν M Λr2+ 4Q2 (32) p − − 3r q Then, the surfa e gravity at the event horizon is given by the absolute value 2Q2 κ+ = −Λr− 3 r2 . (33) (cid:12) (cid:12)r=r+ (cid:12) (cid:12) (cid:12) (cid:12) r = r κ((cid:12)r ) = 0 (cid:12) ext max Note that for , the surfa e gravity is , i.e. that the extreme bla k hole has zero Hawking temperature, T (Mmax)=0. (34) r+ r− Usingtheapproximateformsfor and givenbyequations(19)and(20),we anwritetheHawkingtemperature x as a fun tion of the mass. For the event horizon we have, up to se ond order in , 5 κ+ 1 2Q2 T+(M)= 2π = 2π −Λr+− 3r2 (35) (cid:12) +(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −1 −2 1 M 1 2 M 1 T+(M) Λ √3 x Q2 √3 x ≈ 2π (cid:12)(cid:12)− r−3Λ(cid:20) − 3 (cid:21)− 3 (cid:18)−3Λ(cid:19) (cid:20) − 3 (cid:21) (cid:12)(cid:12) (36) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 MΛ1 2ΛQ2 2x −1 T+(M) √ MΛ x+ 3 ≈ 2π (cid:12)(cid:12) − −r− 3 3 M (cid:18) − √3(cid:19) (cid:12)(cid:12) (37) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 MΛ1 2√3ΛQ2 T+(M) √ MΛ x+ ≈ 2π (cid:12) − −r− 3 3 M 3√3 2x (cid:12) (38) (cid:12) − (cid:12) (cid:12) (cid:12) (cid:12) (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) 1 2ΛQ2 2√ MΛQ2 T+(M) √ MΛ + − . ≈ 2π (cid:12)(cid:12) − − 3 M 3 M3 4Q2(cid:12)(cid:12) (39) (cid:12) − Λ − (cid:12) (cid:12) q (cid:12) (cid:12) (cid:12) Q=0 (cid:12) (cid:12) Note that, for , this expression be omes √ MΛ TBTZ(M)= − , + 2π (40) that orrespondsto the temperatureat the horizon of the stati non- hargedBTZ bla k hole [5℄. Onthe otherhand, r− for the inner horizon we have κ− 1 2Q2 T−(M)= 2π = 2π (cid:12)−Λr−− 3 r−2 (cid:12) (41) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −2 1 M 2 2 M 2 T−(M) Λ x Q2 x ≈ 2π (cid:12)(cid:12)− r−3Λ3 − 3 "r−3Λ3 # (cid:12)(cid:12) (42) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 M 2 9ΛQ2 T−(M) Λ x+ ≈ 2π (cid:12)− r−3Λ3 2Mx2(cid:12) (43) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 4ΛQ2 3M2 T−(M) . ≈ 2π −3 M − 8Q2 (44) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) III. HAWKING RADIATION AND THE GENERALIZED UNCERTAINTY PRINCIPLE Nowwewill onsidertheGUP andtheHawkingradiationderivedfromit. WewillshowhowtheGUP willprodu e a deformation in the temperature-mass relation when onsidered lose to the Plan k lenght. As stacte=d~by=A1rraut et. al. [3℄ the GUP an be stated, in the ase of a non-zero osmologi al onstant and in units with , by the relation 1 G γ 1 2 ∆x∆p& + (∆p) , 2 2 − 3Λ(∆p)2 (45) 6 G Λ γ where is the gravitational onstant, is osmologi al onstant and is a onstant fa tor whi h a ounts for the fa t that the GUP equation is dealing with orders of magnitudes estimates. When omparing the GUP results with γ l p the aboveHawkingtemperature, wewill seethat isexpe ted to be of the orderof1. Sin e thePlan k lenght an be written as ~2 l2 =G~= , p m2 (46) p m p where is the mass of Plan k, the GUP an be written as 1 l2 γ 1 ∆x∆p& + p (∆p)2 , 2 2 − 3Λ(∆p)2 (47) or 2 1 1(∆p) γ 1 ∆x∆p& + . 2 2 m2 − 3Λ(∆p)2 (48) p ∆x To apply this un ertainty prin iple to the bla k hole evaporation pro ess onsist in identifying the with the r+ ∆p 2π (∆P 2πT) event horizon radius and the momentum with the Hawking temperature up to a fa tor [? ℄ ∼ . Therefore, we an write the GUP as a fourth order equation for the temperature, 1 2π2T2 γ 1 r+2πT = 2 + m2 − 3Λ4π2T2 (49) p For high temperatures, the GUP equation an be approximated by 1 2π2T2 r+2πT = 2 + m2 (50) p T that orrespondsto a quadrati polynomial for , 4π2 m2T2−4πr+T +1=0 (51) p From whi h it follows that the temperature-mass relation is T (M)= m2pr+ 1 r2 1 . 2π " ±s +− m2p# (52) Note that the argument in the square root de(cid:28)nes a minimum radius for the event horizon, 1 rmin = =l , + m p (53) p r + i.e. that an not be smaller than the Plan k lenght. This lenght orresponds to a minimum mass or remnant for the bla k hole of the order of Mmin =Λl2. p (54) Using equation (39), the emperature of the bla k hole orresponding to this mass is 7 1 2Q2 2 Λ l Q2 T+ Mmin ≈ 2π |Λ|lp− 3 l2 + 3 Λ|l3| p 4Q2 . (55) (cid:12) p | | p− (cid:12) (cid:0) (cid:1) (cid:12) (cid:12) (cid:12) (cid:12) Q=0 (cid:12) (cid:12) Note that this expression gives, in the ase, a minimum mass for the BTZ bla k hole, Λ l TBTZ Mmin = | | p. + 2π (56) (cid:0) (cid:1) Λ=0 Finally, the heat apa ity for the bla k hole an be al ulated using equation (52), ∂M C = Q ∂T (57) (cid:18) (cid:19)Q = 1 r+2 − m12p 1 Λ + 2 Q2 −1. 2πm2pq2r+2 − m12p −2Λr−M 3M2! (58) ∂T <0 Note that the heat apa ity of this bla k hole is negative, ∂M , when 1 l2 r2 < = p, + 2m2 2 (59) p rmin = l + p but ondition (53) impose that the minimum radius is . Therefore the heat apa ity of this bla k hole is always positive. IV. CONCLUSION (2+1) We have studied the thermodynami s of the dimensional bla k hole with non-linear ele trodynami s and with a negative osmologi al onstant using the Generalized Un ertainty Prin iple. This gives a minimum mass or remnant for the bla k hole, that orresponds to a maximum Hawking temperature depending only on the ele tri Q harge . The solutionwith the maximumtemperatureis obtained when the bla k hole hasasizeof the orderofthe Plan k s ale (minimum horizon). Equation (52) gives the temperature-mass relation, and asMismshinown, it gives the standard Hawking temperature (39) for small masses, but gets deformed for masses lose to . Finally, the heat apa ity of this bla k hole is (2+1) always positive. This analysis on(cid:28)rms that Plan k lenght seems to be the smallest lenght in nature, even in dimensions. [1℄ M. Cataldo, N. Cruz, S. del Campo and A. Gar ia. Phys. Lett. B 484, 154 (2000) [2℄ A. Larranaga and L. A. Gar ia. arXiv: 0811.3368 [gr-q ℄ [3℄ I. Arraut,D. Bati and M. Nowakowski. arXiv: 0810.5156 [gr-q ℄ [4℄ A. Larranaga. arXiv: 0811.3368 [gr-q ℄ [5℄ M. Akbar,Chin. Phys.Lett. 24 (5) (2007) 1158

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.