ebook img

Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe1-x (Ni/Cu)x Te0.5 Se0.5 PDF

0.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe1-x (Ni/Cu)x Te0.5 Se0.5

Temperature-dependent transformationofthe magneticexcitationspectrum onapproaching superconductivity inFe (Ni/Cu) Te Se 1−x x 0.5 0.5 Zhijun Xu,1,∗ Jinsheng Wen,1,2,3,∗ Yang Zhao,4,5 Masaaki Matsuda,6 Wei Ku,1 Xuerong Liu,1 Genda Gu,1 D.-H. Lee,2,3 R. J. Birgeneau,2,3 J. M. Tranquada,1 and GuangyongXu1 1Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA 2Physics Department, University of California, Berkeley, CA 94720, USA 2 3MaterialsScience Division, Lawrence BerkeleyNational Laboratory, Berkeley, CA,94720, USA 1 4NISTCenterforNeutronResearch,NationalInstituteofStandardsandTechnology,Gaithersburg,Maryland20899,USA 0 5DepartmentofMaterialsScienceandEngineering,UniversityofMaryland, CollegePark,Maryland,20742, USA 2 6Quantum Condensed MatterDivision, OakRidgeNationalLaboratory, OakRidge, TN,37831, USA (Dated:January24,2012) n a Spinexcitationsareoneofthetopcandidatesformediatingelectronpairinginunconventionalsuperconduc- J tors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an 0 abruptredistributionofmagneticspectralweightatthesuperconductingtransitiontemperature,Tc,forenergies 2 comparabletothesuperconductinggap.HerewereportinelasticneutronscatteringmeasurementsonFe-based superconductors, Fe1−x(Ni/Cu)xTe0.5Se0.5, thatemphasize anadditional signature. Theoverallshapeofthe n] lowenergymagneticdispersionchangesfromtwoincommensurateverticalcolumnsatT ≫Tctoadistinctly differentU-shapeddispersionatlowtemperature. Importantly,thisspectralreconstructionisapparentfortem- o c perature up to ∼ 3Tc. If the magnetic excitations are involved in the pairing mechanism, their surprising - modificationontheapproachtoTcdemonstratesthatstronginteractionsareinvolved. r p u s Inweak-couplingmodelsofmagnetically-mediatedsuper- tionalLaboratory. Thelatticeconstantsarea = b = 3.81A˚, . conductivity,magnonsessentiallyreplacephononsasthepair- andc = 6.02A˚,usingthetwo-Feunitcell. Forconvenience, t a ing bosons [1]. By assumption, the interaction between the we label these samples as Ni02, Ni04, and Cu10, according m electrons and bosons is not strong enough to modify the to the amount of Ni/Cu doping on the Fe site. The neu- - bosonicexcitationspectrum. Inconventionalsystems,super- tron scattering experiments on the two Ni02 and Ni04 sam- d n conductivitydoesmodifytheself-energyofthephonons,but ples were carried out on the BT7 triple-axis-spectrometerat o there is no significant change in the phonon dispersion [2]. the NIST Centerfor NeutronResearch, usingbeamcollima- c In many unconventionalsuperconductors, including high-T tionsofopen-50′-S-50′-240′,afixedfinalenergyof14.7meV c [ cuprates[3–6],heavyFermionsuperconductors[7,8],andthe andtwopyrolyticgraphitefiltersafterthesample. TheCu10 1 recentlydiscoveredFe-basedsuperconductors[9–11],oneob- samplewasmeasuredontheHB1triple-axis-spectrometerat v serves, oncoolingbelowT , the gappingoflow-energyspin the High Flux Isotope Reactor, Oak Ridge National Labora- c 4 fluctuations and a shift of spectral weight to a “resonance” tory.withbeamcollimationsof48′-40′-S-60′-240′,fixedfinal 0 peak. Empirically, the magnetic spectrum found above and energyof 13.5 meV , and two pyrolytic graphitefilters after 4 4 belowTctendstobequalitativelythesame. the sample. No static order around (0.5,0,0.5)was found in 1. Here we study the low-energy spin fluctuations in single- anyofthethreesamples. Theinelasticscatteringexperiments wereallperformedinthe(HK0)zone,sothatthescattering 0 crystalsamplesofthesuperconductorFeTe0.5Se0.5(the“1:1” 2 system,T = 14K)asweperturbthesystembymakingpar- planeisdefinedbythe[100]and[010]wave-vectors.Alldata 1 c have been normalized into absolute units of µ2eV−1/Fe by tialsubstitutionsforFe.Substituting2%and4%ofNireduces B : incoherentelastic scatteringintensitiesfromthesamples. X- v T to12Kand8K,respectively,while10%ofCuresultsinan c i absenceofsuperconductivity,asshowninFig.1(a). Ourin- ray diffractionmeasurementsof lattice parameterswere per- X formedatbeamlineX22BoftheNationalSynchrotronLight elasticneutronscatteringmeasurementsshowthatlowenergy ar (~ω . 12 meV) magnetic excitations transform from hav- Source,BrookhavenNationalLaboratory. ing two peaks clearly away from the antiferromagnetic(AF) We are interested in the magnetic excitations near the AF wave-vectorathightemperatureinthenormalstate,tohaving wave-vectorQAF = (0.5,0.5,0). Figure1(c)-(e)showsthe a broad maximum near the AF wave-vector at low tempera- measuredinelasticneutronscatteringintensityasafunctionof tureinthesuperconductingphase. Thisdrasticchangeonthe energyobtainedatT =2.8Kand15Kforallthreesamples. magnetic dispersion between the superconducting and non- It has been established in previous studies [13–16] that the superconductingphases suggests that strong correlationsbe- unperturbedsuperconductorhasamagneticresonancepeakat tweenelectronshavetobetakenintoaccountwhenthemag- E ∼7meV.HereweseethatE decreasesto∼6and5meV r r neticandelectronicpropertiesofthe“1:1”systemareconsid- in the Ni02and N04samples, respectively,while thereis no ered. observableresonancein the nonsuperconductingCu10. One SinglecrystalsofFe1−x(Ni/Cu)xTe0.5Se0.5weregrownby canalsoseeaspingapofabout3meVinNi02,butthegapis aunidirectionalsolidificationmethod[12]atBrookhavenNa- moredifficulttoresolveforNi04. 2 Things get more interesting when we look at the wave- vector(q)dependenceofthemagneticscattering. Ithasbeen established in previousstudies [13, 14, 17] of superconduct- ing FeTe1−xSex that the magnetic excitations disperse from QAF only in the transverse direction, along [1,−1,0]. Fig- ure2showsscansalongthisdirectionfortheNi04sampleat a series ofenergies,illustrating thevariationofthe qdepen- denceasthetemperaturechangesfrom2.8K(≪T )to15K c (&T )andthenupto100K(T ≫T ). Thevariationsaremi- c c noratthehigherenergies,asinFig.2(e)-(f),butbecomedra- maticforE ∼ E ≈ 5meV,asinFig.2(a)-(c). Thechange r from T ≪ T to T & T is simply the standard resonance c c behavior.Thefeaturethatwewishtoemphasizeisthechange fromasinglecommensuratepeakatT &T toapairofwell- c resolvedincommensuratepeaksatT ≫T . Thischangecan- c notbeconfusedwithatemperature-dependentchangeinpeak width. Thesamedataarepresentedagain,slightlycleanedupand inadifferentformat,inFig.3(a)-(c). Thelower-temperature dataexhibitaU-shapeddispersion,withthebottomoftheU at ∼ E . Except for the change in the resonant peak, the r basicshapeofthedispersiondoesnotreallychangeoncross- FIG. 2. (Color online) Wave-vector dependence of the magnetic ing Tc. In contrast, the dispersion at 100 K is qualitatively scatteringintensityalongthetransversedirectionthroughQAF[see different: it looks like the legs of a pair of trousers. It also Fig. 1 (b)] for the Ni04 sample at T = 2.8 K (red circles), 15 K looks very similar to the low-temperature dispersion of the (blue squares), and 100 K (green triangles), obtained at excita- tion energies (a) 3.5 meV, (b) 5 meV, (c) 6.5 meV, (d) 8 meV, (e) 11 meV, (f) 20 meV [which was measured in a higher zone, near Q=(1.5,0.5,0)].Solidlinesareguidestotheeye. non-superconductingCu10sampleshowninFig.3(d). Thereisclearlyamajorchangeinthelow-energyportionof thedispersionbetween15and100K,buthowdoesitchange betweenthosetemperatures? ThisisillustratedinFig.4. Fo- cusing in particular on the results for the Ni04 sample, in Fig. 4(e) we see that the crossover is continuous in temper- ature,butwithareasonablydefinedmid-pointat30±10K. ForNi02,themidpointmaybecloserto40K.Inbothcases, thecrossoveroccursattemperaturesoforder3T . We previ- c ouslyobserved[16]hintsofthistemperaturedependentmod- ificationofthedispersioninsuperconductingFeTe Se ; 0.35 0.65 however,thehigh-temperatureincommensurabilitywasnotas largenoraswellresolvedasfortheNi-andCu-dopedsamples [seeFig.4(e)]. It is possible to see the incommensuratecolumnsof mag- netic scattering even at low temperaturewhen the supercon- ductivity is suppressed, as shown for the Cu10 sample in FIG.1. (Coloronline)Magneticsusceptibilityandinelasticneutron Fig. 3(d). A similar low-temperaturespectrum has been ob- scattering measurements performed on the Ni02, Ni04, Cu10, and servedpreviouslyinnon-bulk-superconducting“1:1”samples SC50(FeTe0.5Se0.5)samples. (a)Magneticsusceptibilitymeasure- suchasFe Te Se [17]andFe Te Se [18]. 1.04 0.73 0.27 1.10 0.75 0.25 ments, and (c), (d), (e) magnetic neutron scattering intensity mea- There is an evident pattern that superconducting1:1 sam- suredatQAFwithT =2.8K(redcircles)and15K(bluesquares). Theerrorbarsrepresentthesquarerootofthenumberofcounts.Fit- ples have commensurate or almost commensurate mag- tedbackground obtainedfromconstant-energyscanshasbeensub- netic excitations at the resonance energy, while non- tractedfromall datasets. The(HK0) scatteringplaneisplottedin superconducting samples have incommensurate excitations. (b)whilethedashedlinedenotesthedirectionfortheQ-scansshown OurresultsfortheNi-dopedsamplesshowthatitispossible inFig.2. fora sampletotransformfromtheincommensuratephaseat 3 FIG. 4. (Color online) Thermal evolution of the magnetic scatter- ingat~ω = 5meV.ThedataaremeasuredthroughQAFalongthe transversedirectionfortheNi02sampleat(a)100K,(b)40K,(c) 15K,(d)2.8K,and(e)fortheNi04sampleplottedasanintensity FIG.3. (Coloronline)Magneticscatteringintensityplottedforthe contourmapintemperature–wave-vectorspace. Thedatahavebeen Ni04sampleinenergy-momentumspaceat(a)2.8K,(b)15K,and smoothed. The yellow and black symbols in (e) denote the corre- (c)100K.ResultsfortheCu10samplemeasuredat2.8Kareplot- sponding peak positions for the Ni02 sample (yellow squares) and ted in (d). The data have been smoothed, and non-magnetic sharp forasuperconductingFe1+δTe0.35Se0.65sample[16]. spurioussignals[seeFig.2(a)]havebeenremovedforbettervisual effects. high temperature to the low-energy-commensuratephase on cooling.Thecommensurabilityappearsattheenergyscaleof theresonanceenergyatatemperatureof∼3T . Onepossible c explanation of this incommensurate-to-commensurate trans- formationmayberelatedtothestrongorbitalcorrelationsin this system. In the iron-based superconductors, it has been proposedthattherearecompetingelectronicinstabilitiessim- ilar to those in the cuprates [19, 20]. In addition to anti- ferromagnetism and superconductivity, the material also has a propensity toward xz/yz orbital ordering. Such ordering can modify the shape of the Fermi surface (e.g., enlarging one electron Fermi pocket while shrinking the other), lead- ingtoenhancementofthecommensuratemagneticscattering betweentheholeandtheelectronpockets[20]. Eveniflong- FIG.5. (Coloronline)Latticeparametersa(redcircle)andc(blue rangeorbitalorderingdoesnotsetinuponcooling,thesystem squares)measuredontheNi04sample. maystillhaveregionsoflocallyorderedorslowlyfluctuating orbital correlations. It is possible that the crossover we ob- serveat∼3Tcreflectssuchanorbitalordering“transition”in netic spectrum is unusual among unconventional supercon- thepresenceofdisorder. Anadditionalexperimentalsupport ductors. For example, in superconducting YBa Cu O 2 3 6+x ofthisscenarioisgivenbyx-rayscatteringmeasurementson systems [3–5], the spin resonance develops at commensu- Fe1+ySe0.57Te0.43[21]whereitwasshownthataweaklattice ratewave-vectorsbelowTc, butthe“hour-glass”shapeddis- distortion,reflectingthebreakingof90degreerotationsym- persion with a commensurate saddle point is still compati- metry,setsinaround40K,similartothecrossovertempera- blewiththehightemperaturespectrum,withintheincreased tureobservedin ourexperiment. In oursamples, we didnot q widths. In superconducting La2−xSrxCuO4 the spin res- seesuchalatticedistortion.Nevertheless,thetemperaturede- onance occurs at lower energies where the spin fluctuations pendenceofthelatticeparameters(Fig.5)obtainedfromthe are incommensurate [22, 23], both in the normal and super- Ni04sampleindicateananomalousin-planeexpansionbelow conducting phases. Returning to the analogy with electron- 60K,whilecdecreasesmonotonicallywithcooling. phononcoupling, strong interactionscan lead to a modifica- This temperature-dependent transformation of the mag- tion of the spectrum througha structuralphase transition, as 4 occurs [24] in Nb3Sn at a temperature above the supercon- [8] C.Stock, C.Broholm, J.Hudis, H.J.Kang, andC.Petrovic, ductingT .Inthepresentcase,stronginteractionsappearnec- PhysicalReviewLetters100,087001(2008). c essary to cause the transformation from incommensurate to [9] A. D. Christianson, E. A. Goremychkin, R. Osborn, commensuratemagneticexcitations.Itisthereforereasonable S.Rosenkranz,M.D.Lumsden,C.D.Malliakas,I.S.Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, and toexpectthatmeasurementsontheelectronicstructuresinthe T.Guidi,Nature456,930(2008). system may also provide hints of this transformation in the [10] S.Chi,A.Schneidewind,J.Zhao,L.W.Harriger,L.Li,Y.Luo, sametemperaturerange.Wenotethatarelatedprecursorevo- G.Cao,Z.A.Xu, M.Loewenhaupt, J.Hu, andP.Dai,Phys. lutionofthechargeresponseisapparentintheopticalconduc- Rev.Lett.102,107006(2009). tivityof1:1superconductor[25]. Itmayalsobeworthnoting [11] Y.Qiu,W.Bao,Y.Zhao,C.Broholm,V.Stanev,Z.Tesanovic, that a thermally-inducedenhancementof magneticmoments Y. C. Gasparovic, S. Chang, J. Hu, B. Qian, M. Fang, and hasbeen identifiedin non-superconductingFe Te [26] ata Z.Mao,Phys.Rev.Lett.103,067008(2009). 1.1 [12] J.Wen,G.Xu,G.Gu,J.M.Tranquada, andR.J.Birgeneau, similartemperaturescale. Rep.Prog.Phys.74,124503(2011). Commensurate excitations are needed for the spin- [13] D. N. Argyriou, A. Hiess, A. Akbari, I. Eremin, M. M. Ko- fluctuation mechanism of electron pairing considered by a rshunov, J. Hu, B. Qian, Z. Mao, Y. Qiu, C. Broholm, and number of authors [19, 27–30]. In such a scenario, the mo- W.Bao,Phys.Rev.B81,220503(2010). mentum of the repulsive spin excitationscouplesthe nearly- [14] S.H.Lee,G.Xu,W.Ku,J.S.Wen,C.C.Lee,N.Katayama, nestedholeandelectronpockets, andinturnallowsa super- Z.J.Xu,S.Ji,Z.W.Lin,G.D.Gu,H.B.Yang,P.D.Johnson, conducting gap to develop on both sets of pockets, though Z.H.Pan,T.Valla,M.Fujita,T.J.Sato,S.Chang,K.Yamada, andJ.M.Tranquada,Phys.Rev.B81,220502(2010). withoppositephases. Obviously,losingthecommensuration [15] S. Li, C. Zhang, M. Wang, H.-q. Luo, X. Lu, E. Faulhaber, of the spin excitations would seriously impair the develop- A.Schneidewind, P.Link, J.Hu, T.Xiang, andP.Dai,Phys. mentofsuperconductivityinthiskindofweakcouplingsce- Rev.Lett.105,157002(2010). nario. On cooling, do the electronic and magnetic correla- [16] Z.J.Xu,J.S.Wen,G.Y.Xu,S.X.Chi,W.Ku,G.D.Gu, and tionsadjustthemselvestoenablethespin-fluctuationmecha- J.M.Tranquada,PhysicalReviewB84,052506(2011). nism? If so, whatare the energetictradeoffsassociated with [17] M.D.Lumsden,A.D.Christianson,E.A.Goremychkin,S.E. this transformation? And can interactions strong enough to Nagler, H.A.Mook, M.B.Stone, D.L.Abernathy, T.Guidi, G.J.MacDougall,C.delaCruz,A.S.Sefat,M.A.McGuire, achievethistransformationlead to effectivelythe same pair- B.C.Sales, andD.Mandrus,Nat.Phys.6,182(2010). ing mechanism as the one identified from a weak-coupling [18] P.Babkevich, M.Bendele, A.T.Boothroyd, K.Conder, S.N. approach? Wehopethatthesequestionswillbeaddressedby Gvasaliya, R.Khasanov, E.Pomjakushina, andB.Roessli,J. futureinvestigations. Physics-CondensedMatter22,142202(2010). We thank Igor Zaliznyak for useful discussions. Work at [19] F.WangandD.-H.Lee,Science332,200(2011). BNL is supported by the Office of Basic Energy Sciences, [20] H. Zhai, F. Wang, and D.-H. Lee, Phys. Rev. B 80, 064517 U.S. Department of Energy under contract No. DE-AC02- (2009). [21] N. C. Gresty, Y. Takabayashi, A. Y. Ganin, M. T. McDonald, 98CH10886.WorkatBerkeleyissupportedbythesameoffice J. B. Claridge, D. Giap, Y. Muzuguchi, Y. Takano, T. Ka- throughcontractNo. DE-AC02-05CH11231.Theresearchat gayama, Y. Ohishi, M. Takata, M. J. Rosseinsky, S. Mar- ORNL was sponsored by the Scientific User Facilities Divi- gadonna, and K. Prassides, J. Am. Chem. Soc 131, 16944 sion,OfficeofBasicEnergySciences,U.S.DOE. (2009). [22] N.B.Christensen,D.F.McMorrow, H.M.Rønnow, B.Lake, S. M. Hayden, G. Aeppli, T. G. Perring, M. Mangkorntong, M.Nohara, andH.Takagi,Phys.Rev.Lett.93,147002(2004). [23] J.M.Tranquada, C.H.Lee,K.Yamada,Y.S.Lee,L.P.Reg- ∗ ZJXandJSWcontributedequalytothiswork. nault, andH.M.Rønnow,Phys.Rev.B69,174507(2004). [1] D.J.Scalapino,PhysicaC470,S1(2010). [24] G.ShiraneandJ.D.Axe,Phys.Rev.B4,2957(1971). [2] F.WeberandL.Pintschovius,Phys.Rev.B82,024509(2010). [25] C.C.Homes,A.Akrap,J.S.Wen,Z.J.Xu,Z.W.Lin,Q.Li, [3] J. Rossatmignod, L. P. Regnault, C. Vettier, P. Bourges, andG.D.Gu,Phys.Rev.B81,180508(2010). P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, Physica C [26] I.A.Zaliznyak,Z.Xu,J.M.Tranquada,G.Gu,A.M.Tsvelik, 185,86(1991). andM.B.Stone,Phys.Rev.Lett.107,216403(2011). [4] P.Bourges,L.P.Ragnault,Y.Sidis, andC.Vettier,Phys.Rev. [27] T.A.Maier,S.Graser,D.J.Scalapino, andP.Hirschfeld,Phys. B53,876(1996). Rev.B79,134520(2009). [5] P.C.Dai,H.A.Mook,G.Aeppli,S.M.Hayden, andF.Dogan, [28] H.Ikeda,R.Arita, andJ.Kunescaron,Phys.Rev.B81,054502 Nature406,965(2000). (2010). [6] H.F.Fong,P.Bourges,Y.Sidis,L.P.Ragnault,A.Ivanov,G.D. [29] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov, Phys. Gu,N.Koshizuka, andB.Keimer,Nature398,588(1999). Rev.B80,140515(2009). [7] N. K. Sato, N. Aso, K. Miyake, R. Shiina, P. Thalmeier, [30] V. Cvetkovic and Z. Tesanovic, Euro. Phys. Lett. 85, 37002 G.Varelogiannis, C.Geibel,F.Steglich,P.Fulde, andT.Ko- (2009). matsubara,Nature410,340(2001).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.