ebook img

Tectonic geomorphology of mountains: a new approach to paleoseismology PDF

328 Pages·2007·16.782 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tectonic geomorphology of mountains: a new approach to paleoseismology

Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology William B. Bull Tectonic Geomorphology of Mountains Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology William B. Bull (cid:2)2007WilliamB.Bull BLACKWELLPUBLISHING 350MainStreet,Malden,MA02148-5020,USA 9600GarsingtonRoad,OxfordOX42DQ,UK 550SwanstonStreet,Carlton,Victoria3053,Australia TherightofWilliamB.BulltobeidentifiedastheAuthorofthisWorkhasbeenassertedinaccordancewiththeUKCopyright,Designs,and PatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designs,andPatentsAct1988,without thepriorpermissionofthepublisher. Firstpublished2007byBlackwellPublishingLtd 1 2007 LibraryofCongressCataloging-in-PublicationData Bull,WilliamB.,1930– Tectonicgeomorphologyofmountains:anewapproachtopaleoseismology/WilliamB.Bull. p.cm. Includesbibliographicalreferencesandindex. ISBN-13:978-1-4051-5479-6(hardback:alk.paper) ISBN-10:1-4051-5479-9(hardback:alk.paper)1.Morphotectonics.2.Paleoseismology.I.Title. QE511.44.B852007 551.43’2–dc22 2006100890 AcataloguerecordforthistitleisavailablefromtheBritishLibrary. Setin10.74/11ptAGaramond bySPiPublisherServices,Pondicherry,India PrintedandboundinSingapore byC.O.SPrintersPteLtd Thepublisher’spolicyistousepermanentpaperfrommillsthatoperateasustainableforestrypolicy,andwhichhasbeenmanufacturedfrom pulpprocessedusingacid-freeandelementarychlorine-freepractices.Furthermore,thepublisherensuresthatthetextpaperandcoverboard usedhavemetacceptableenvironmentalaccreditationstandards. Forfurtherinformationon BlackwellPublishing,visitourwebsite: www.blackwellpublishing.com Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Scrunch and Stretch Bedrock Uplift 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Pure Uplift, Stretch andScrunch Bedrock Uplift . . . . . . . . . . . . . . . . . 6 1.2.1 Isostaticand Tectonic Uplift . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 StretchandScrunch Tectonics . . . . . . . . . . . . . . . . . . . . . 12 1.3 Landscape ResponsestoRegional Uplift . . . . . . . . . . . . . . . . . . . . 23 2 Concepts for Studies of Rising Mountains 2.1 Themesand Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 The Fundamental Control ofBase Level . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Base Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Base-Level Change . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 The Base Level ofErosion . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 The Changing Level ofthe Sea . . . . . . . . . . . . . . . . . . . . 33 2.2.5 SpatialDecayof theEffectsofLocal Base-Level Changes . . . . . . . . . . . 37 2.3 Thresholdof Critical PowerinStreams . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Relative Strengths ofStream Powerand ResistingPower. . . . . . . . . . . . 41 2.3.2 Threshold-Intersection Points . . . . . . . . . . . . . . . . . . . . . 42 2.4 Equilibrium inStreams . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.1 Classification ofStream Terraces . . . . . . . . . . . . . . . . . . . . 42 2.4.2 Feedback Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 DynamicandStatic Equilibrium . . . . . . . . . . . . . . . . . . . . 46 2.5 Time Lags ofResponse . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5.1 ResponsestoPulses ofUplift . . . . . . . . . . . . . . . . . . . . . 50 2.5.2 Perturbations that Limit Continuity ofFluvialSystems . . . . . . . . . . . . 51 2.5.3 Lithologic andClimaticControls ofRelaxation Times . . . . . . . . . . . . 54 2.5.4 Time Spans Needed toErodeLandforms . . . . . . . . . . . . . . . . . 57 2.6 Tectonically-InducedDowncutting . . . . . . . . . . . . . . . . . . . . . . 58 2.6.1 Straths,Stream-Gradient Indices,and Strath Terraces. . . . . . . . . . . . . 58 2.6.2 Modulation ofStream-TerraceFormationby Pleistocene–Holocene ClimaticChanges . 65 2.7 Nontectonic Base-Level Falland Strath Terrace Formation . . . . . . . . . . . . . 66 2.8 HydraulicCoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3 Mountain Fronts 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Tectonically ActiveEscarpments . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.1 Faceted Spur Ridges . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2.2 Mountain–PiedmontJunctions . . . . . . . . . . . . . . . . . . . . 83 3.2.3 PiedmontForelands . . . . . . . . . . . . . . . . . . . . . . . . 86 vi Contents 3.3 Fault Segmentation ofMountain Fronts. . . . . . . . . . . . . . . . . . . . 97 3.3.1 Different Ways toStudyActiveFaults. . . . . . . . . . . . . . . . . . 97 3.3.2 SegmentationConcepts and Classification . . . . . . . . . . . . . . . . 104 3.3.3 Fault-Segment Boundaries . . . . . . . . . . . . . . . . . . . . . . 105 3.3.4 Normal Fault Surface Ruptures . . . . . . . . . . . . . . . . . . . . 106 3.3.5 Strike-Slip FaultSurface Ruptures . . . . . . . . . . . . . . . . . . . 113 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 Tectonic Activity Classes of Mountain Fronts 4.1 Tectonic Settingofthe NorthAmerica–Pacific Plate Boundary. . . . . . . . . . . . 117 4.2 Appraisalof Regional Mountain Front TectonicActivity . . . . . . . . . . . . . . 119 4.2.1 Geomorphic Tools For Describing RelativeUplift Rates . . . . . . . . . . . 119 4.2.1.1 Mountain-Front Sinuosity . . . . . . . . . . . . . . . . . . 122 4.2.1.2 Widthsof Valleys. . . . . . . . . . . . . . . . . . . . . . 124 4.2.1.3 TriangularFacets . . . . . . . . . . . . . . . . . . . . . . 127 4.2.2 Diagnostic Landscape Classes ofRelativeTectonic Activity . . . . . . . . . . 128 4.2.3 RegionalAssessmentsofRelativeTectonicActivity . . . . . . . . . . . . . 141 4.2.3.1 Response Time Complications andStrike-SlipFaulting . . . . . . . . 141 4.2.3.2 MapsofRelativeUplift . . . . . . . . . . . . . . . . . . . 145 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5 Fault Scarps 5.1 GeneralFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.2 ScarpMorphologyChanges with Time . . . . . . . . . . . . . . . . . . . . 172 5.2.1 ChangesinScarpHeight . . . . . . . . . . . . . . . . . . . . . . 173 5.2.2 Decreases inMaximum Scarp Slope . . . . . . . . . . . . . . . . . . 174 5.2.3 Diffusion-EquationModeling. . . . . . . . . . . . . . . . . . . . . 175 5.3 ClimaticControls ofFault-Scarp Morphology . . . . . . . . . . . . . . . . . 181 5.4 Lithologic Controlsof Fault-ScarpMorphology . . . . . . . . . . . . . . . . . 184 5.4.1 FaultRuptureofDifferentMaterials . . . . . . . . . . . . . . . . . . 185 5.4.2 Lithologic Controls on an 1887FaultScarp. . . . . . . . . . . . . . . . 187 5.4.2.1 Geomorphic Processes . . . . . . . . . . . . . . . . . . . . 190 5.4.2.2 ScarpMaterials . . . . . . . . . . . . . . . . . . . . . . 193 5.4.2.3 ScarpMorphology . . . . . . . . . . . . . . . . . . . . . 194 5.5 LaserSwathDigitalElevationModels . . . . . . . . . . . . . . . . . . . . 196 5.6 Dating FaultScarps with TerrestrialCosmogenic Nuclides . . . . . . . . . . . . . 201 5.6.1 Alluvium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.6.2 Bedrock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6 Analyses of Prehistorical Seismic Shaking 6.1 PaleoseismologyGoals . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.2 Earthquake-Generated Regional RockfallEvents. . . . . . . . . . . . . . . . . 212 Contents vii 6.2.1 New Zealand Earthquakes . . . . . . . . . . . . . . . . . . . . . . 212 6.2.1.1 Tectonic Setting . . . . . . . . . . . . . . . . . . . . . . 212 6.2.1.2 Background andProcedures . . . . . . . . . . . . . . . . . . 215 6.2.1.3 Diagnostic Lichen-SizePeaks . . . . . . . . . . . . . . . . . . 225 6.2.1.4 Tree-Ring Analyses . . . . . . . . . . . . . . . . . . . . . 227 6.2.1.5 AlpineFault Earthquakes . . . . . . . . . . . . . . . . . . . 241 6.2.1.6 RecentMarlboroughEarthquakes . . . . . . . . . . . . . . . . 246 6.2.2 CaliforniaEarthquakes . . . . . . . . . . . . . . . . . . . . . . . 255 6.2.2.1 Calibration of Lichen GrowthRates . . . . . . . . . . . . . . . 257 6.2.2.2 RecentCliff Collapse. . . . . . . . . . . . . . . . . . . . . 258 6.2.2.3 RockfallProcesses inGlaciatedValleys. . . . . . . . . . . . . . . 262 6.2.2.4 SanAndreas FaultEarthquakes . . . . . . . . . . . . . . . . . 265 6.2.2.5 Lichenometry and Precise RadiocarbonDating Methods . . . . . . . . 270 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 References Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Preface Uplift by mountain-building forces changes fluvial New Zealand and the northern Basin and Range landscapes. Pulsatory tectonic activity on a range- Provinceinthe UnitedStates. bounding fault increases relief, changes rates of geo- Thisbookapplies avariety ofgeomorphic con- morphic processes, and modifies the shapes of hills cepts to tectonics and paleoseismology. Don’t expect and streams. Landscape responses to uplift occupy a landscape summaries for all major mountain ranges. critical time frame for studies of past earthquakes Repetitive descriptions would dilute explanation and between the brevity of instrumental seismic data applicationofbasicprinciples.Doexpectessentialcon- and long-term geologic crustal shifts. The appealing cepts that should help you better understand the land- challenge for us is to determine how and when nearby scape evolution of your favorite mountains. Mountain anddistantpartsofthelandscapechangeinconsecutive fronttectonicgeomorphology studiescan determine: reachesupstreamfromatectonicallyactiverangefront. 1) Which faults areactive [Holocene ruptures], Each climatic and lithologic setting has a characteristic 2)Faultslipratesforshorttimespans[offsetlandforms] style and rate of erosion, which adds spice to the andlong time spans [landscapeevolution], scientific challenge. Landscape analyses include the 3) Time of most recent surface rupture and degree of geomorphic consequences of seismic shaking and irregularity ofearthquake recurrence interval, and surface rupture and their associated hazards to human- 4) Intensity and extent ofseismicshaking. kind.Tectonicgeomorphologyisessentialforcomplete Theamountofrelatedliteraturecitedbordersonbeing paleoseismology investigations. Locations, sizes, times, unwieldy because of topic diversity of and the rapidly and patterns of seismic shaking by prehistorical earth- increasing interest of earth scientists in these subjects. quakes can be described and surface rupture and I had to pick and choose so as to not overwhelm seismic-shaking hazardsevaluated. the content with citations of relevant literature. My This book explores tectonic geomorphology of citations are merely agatewayto related literature. mountain fronts on many temporal and spatial scales Dating times of prehistoric earthquakes and to encourage expansion of paleoseismology inquiries estimating rates of tectonic and geomorphic processes from the present emphasis on stratigraphic investiga- continue to be of paramount importance. Study tions in trench exposures. Evaluating earthquake haz- methods are changing, and precision and accuracy are ards is in part a study of mountain-front segments. improving.Diffusion-equationmodelingoffaultscarps Cumulative displacements over late Quaternary time and stratigraphic radiocarbon dates on pre- or post spans create landscape assemblages with distinctive earthquake material collected from trenches have long signatures that are functions of uplift rate, rock mass been bastionsfor approximate age estimates. Sykes and strength, and the geomorphic processes of erosion and Nishenkomadeapleain1984forbetterwaysofdating deposition. Such interactions define classes of relative frequent earthquakes along plate boundary fault zones uplift. Tectonic activity class maps define tectonically whose earthquake recurrence intervals may be shorter inactiveregionsaswellasfrontsofslowtorapidlyrising than the intervals defined by groups of overlapping mountains. Fault scarps focus our attention on recent radiocarbon age estimates. The rapid development of surfacerupturesandpropagationofactivefaults.Dating terrestrialcosmogenicnuclidesbroadensdatingperspec- and describing the characteristics of single prehistoric tivesbyestimatingagesbeyondthereachofradiocarbon surface-ruptures is important. But now we can link analyses and by making surface-exposure dating a cor- sequences of events and depict sequences of prehistori- nerstone for studies of geomorphic processes. Tree-ring cal earthquakes along complex plate boundary fault analyses and lichenometry have potential for dating zones. Examples here include the Alpine fault in prehistorical earthquakes with a precision of (cid:2)5 years.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.