ebook img

Technological Approaches to Sustainable Agriculture at a Crossroads PDF

13 Pages·2017·0.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Technological Approaches to Sustainable Agriculture at a Crossroads

sustainability Article Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective MiguelA.Altieri1,*,ClaraI.Nicholls2andReneMontalba3 1 DepartmentofEnvironmentalScience,PolicyandManagement(ESPM),UniversityofCalifornia, Berkeley,CA94720,USA 2 InternationalandAreaStudies,UniversityofCalifornia,Berkeley,CA94720,USA;[email protected] 3 DepartamentodeCienciasAgronomicasyRecursosNaturales,UniversidaddelaFrontera, FranciscoSalazar,01145Temuco,Chile;[email protected] * Correspondence:[email protected] AcademicEditors:ManuelGonzálezdeMolinaandGloriaGuzman Received:24November2016;Accepted:23February2017;Published:27February2017 Abstract: Mosteffortstoimproveagriculturalproductionremainfocusedonpracticesdrivenby anintensificationagendaandnotbyanagroecologicalone. Agroecologytranscendsthereformist notionoforganicagricultureandsustainableintensificationproponentswhocontendthatchanges canbeachievedwithinthedominantagroindustrialsystemwithminoradjustmentsor“greening” ofthecurrentneoliberalagriculturalmodel. Inthetechnologicalrealm,merelymodifyingpractices toreduceinputuseisastepintherightdirectionbutdoesnotnecessarilyleadtotheredesignofa moreselfsufficientandautonomousfarmingsystem. Atrueagroecologicaltechnologicalconversion callsintoquestionmonocultureandthedependencyonexternalinputs. Traditionalfarmingsystems providemodelsthatpromotebiodiversity,thrivewithoutagrochemicals,andsustainyear-round yields. Conversionofconventionalagriculturealsorequiresmajorsocialandpoliticalchangeswhich arebeyondthescopeofthispaper. Keywords: agroecology;organicagriculture;conversion;transition;LatinAmerica;California 1. Introduction InLatinAmerica,agroecologyisnotonlyascientific–technologicalproject,butapoliticalone. Agroecologyisviewedasanappliedscienceembeddedinasocialcontext,problematizingcapitalist relationsofproductionandallyingitselfwithagrariansocialmovements[1]. Mostagroecologistshave embracedthecritiquesoftopdownruraldevelopmentandrecognizedandsupportedthepeasantry intheirnewroleintheresistanceagainsttheadvancementofthecorporatefoodsystem,industrial agricultureandneoliberalpolicies[2]. Itispreciselythispoliticaldimensionofagroecologythatisproblematicfortheapplicationand spreadofagroecologyintheUSA,Europe,Australia,Japanandotherregionsintheindustrialized world. Challengingtherootcausesoftheenvironmentalandsocialcrisisofindustrialagriculture implieschallengingcapitalism. Givensuchchallenge,anaivenotionprevailsthatsocio-ecological changescanbeachievedwithinthecurrentfoodsystemwithjustalittletweakingand“slightgreening” oftheindustrialagriculturalmodel[3]. Usingavarietyofnames(sustainableintensification,climate smartagriculture,diversifiedfarmingsystems,adaptivemanagement,etc.),alukewarmdefinition ofagroecologyhasemerged,regardingitessentiallyasasetofadditionaltoolstofixtheproblems ofindustrialfoodproduction. Inotherwords,manyresearchersseeagroecologyasawaytomake conventional agriculture a little bit more sustainable, without challenging underlying relations of power,northestructureoflarge-scalemonocultures[4]. Nodoubt,agroecologyisnowatacrossroads, facingamajorstruggleoveritspossiblecooptationbythemainstreamandtobefurthersubordinated Sustainability2017,9,349;doi:10.3390/su9030349 www.mdpi.com/journal/sustainability Sustainability2017,9,349 2of13 toconventionalagriculturebyrevisionistacademicprojectsthateraseitshistory,strippingitofits politicalcontentandgoals[5]. Thetechnologicalparadigmespousedbysuch“a-political”conceptionofagroecologycarriesthe sameshortfalls. Definingagroecologysolelyasascienceandpracticeofapplyingecologicalprinciples to the design and management of sustainable farms [6] opens the door to a variety of competing narratives, each suggesting different pathways to supposedly reach healthier agricultural futures. Hallmarksofwhataretermedagroecologicalfarmingpracticesincludeintegratedpestmanagement, organicfarming,conservationagriculture,regenerativeagriculture,sustainableintensification,etc.,all approachesbasedonpracticesthatimplyonlyminoradjustmentstotheindustrialfarmingmodel. In this paper, we argue that what is required, is to rescue agroecology from the confines of academia and non-governmental organizations, into the political arena of progressive social movementsthatembraceagroecologyasapillaroffoodsovereignty,localautonomy,andcommunity controlofland,waterandagrobiodiversity. Promotinganagriculturebasedonpracticesthatincrease theefficiencyofinputuseorthatsubstitutebiologicallybasedinputsforagrochemicals,butthatdonot challengethemonoculturestructure,donothavethepotentialtoleadtoamoreautonomousredesign ofsovereignagriculturalsystems. Atrueagroecologicaltechnologicalconversioncallsintoquestion monoculture and the dependency on external inputs. This conversion also implies socio-political dimensionsthatarebeyondthescopeofthispaper. 2. Agroecology,OrganicFarmingandSustainableIntensification Therearemanymanifestationsofalternativeagriculture:biodynamicagriculture,organicfarming, permaculture,naturalfarmingandothers. Allthesemethodspromoteadiverserangeofalternative practicesdesignedtoreducedependenceonsyntheticchemicalpesticides,fertilizers,andantibiotics, andcutproductioncosts,whichinturndiminishadverseenvironmentalconsequencesofmodern agriculturalproduction[7]. Oneofthesesystemsisorganicagriculturewhichispracticedinalmostall countriesoftheworld,anditsshareofagriculturallandandfarmsisgrowing,reachingacertified areaofmorethan30millionhectaresglobally. Organicfarmingisaproductionsystemthatsustains agriculturalproductivitybyavoidingorlargelyexcludingsyntheticfertilizersandpesticides. Instead organicfarmersrelyheavilyontheuseofcroprotations,covercroppingandgreenmanuring,crop residues,animalmanures,legumes,off-farmorganicwastes,mechanicalcultivation,mineral-bearing rocks,andaspectsofbiologicalpestcontroltomaintainsoilproductivityandtilth,tosupplyplant nutrients,andtocontrolinsectpests,weeds,anddiseases[8]. Pushed by market forces that privilege specialization, many organic farmers have no choice but to replace practices such as rotations, cover cropping, etc. with a set of energy and capital intensiveorganic“technologypackages”andinputsubstitutions,makingtheiroperationsdependent andintensive[9]. Conversionhasbeenconceptualizedasatransitionalprocesswiththreemarked: (1)Increasedefficiencyofinputusethroughintegratedpestmanagementorintegratedsoilfertility management;(2)Inputsubstitutionorsubstitutionofenvironmentallybenigninputs;and(3)System redesign-diversification with an optimal crop/animal diversified assemblage, which encourages synergismssothattheagroecosystemmaysponsoritsownfunction[10]. Manyofthepracticesthat arecurrentlybeingpromotedassustainablefallincategories1and2. Bothofthesestagesreduce environmentalimpactsastheydecreaseagrochemicalinputuse. Solelyincreasingtheefficiencyof inputuseorsubstitutingbiologicallybasedinputsforagrochemicals,butleavethemonocultureintact, dolittletomovefarmerstowardtheproductiveredesignofagriculturalsystems. Manyofthe“alternativeinputs”usedinorganicfarminghavebecomecommodified,therefore farmerscontinuetobedependentoninputsuppliers. InCalifornia,manyorganicfarmerscultivating grapes and strawberries apply between 12 and 18 different types of biological inputs per season enhancingproductioncosts. Manyproductsusedforonepurposeaffectotheraspectsofthesystem. Sulfurusedtocontrolfoliardiseasesofgrapes,canalsowipeoutpopulationsofAnagrusparasitic wasps,keyregulatorsofleafhopperpests. Thusfarmersbecometrappedinan“organictreadmill”[11]. Sustainability2017,9,349 3of13 Manyagroecologistsarguethatimprovementsinefficiencyofinputuseandinputsubstitutionmust givewaytofarmingsystemredesignbasedonanewsetofecologicalrelationships,whichentailsbasing conversiononprinciplesofagroecology[12]. Thecoreprinciplesofagroecologyincluderecycling nutrients and energy on the farm, rather than introducing external inputs; enhancing soil organic matterandsoilbiologicalactivity;diversifyingplantspeciesandgeneticresourcesinagroecosystems overtimeandspace;integratingcropsandlivestockandoptimizinginteractionsandproductivityof thetotalfarmingsystem,ratherthantheyieldsofindividualspecies[13,14]. RecentlyFAO[15]alongwithotherinternationalorganizations(i.e.,CGIAR)haveembraceda versionofagreocology,regardedasanoptionthatcanbepracticedalongwithotherapproachessuchas transgeniccrops,conservationfarming,microdosingoffertilizersandherbicides,andintegratedpest management. Theyproposeadjustingtheecologicalinefficienciesofindustrialagriculturethrough “sustainableintensification”,e.g.,byincreasingefficiencyofwaterandfertilizeruse,andconfronting climatechangebydeploying“climate-smart”geneticvarieties. Ofcoursethisvisionrenderstheterm agroecologymeaningless,likesustainableagriculture,aconceptdevoidofmeaning,anddivorcedfrom therealityoffarmers,thepoliticsoffoodandoftheenvironment. Infact,thesesuperficialtechnical adjustmentsareideologicallybuttressedbyintellectualprojectstoreframeandredefineagroecology bystrippingitofitspoliticalandsocialcontentandpromotethewrongnotionthatagroecological methodscanco-existalongsidetheaggressiveexpansionofindustrialagriculture,transgeniccrops andagrofuels[16]. Agroecologydoesnotneedtobecombinedwithotherapproaches. Withoutthe needofhybridsandexternalagrochemicalinputs,ithasconsistentlyprovencapableofsustainably increasingproductivityandhasfargreaterpotentialforfightinghunger,particularlyduringeconomic andclimaticallyuncertaintimes,whichinmanyareasarebecomingthenorm. 3. TraditionalAgricultureasSustainabilityandResiliencyModels In the current realm of commercial agriculture, it is difficult to find agricultural systems that promotebiodiversity,thrivewithoutagrochemicals,andsustainyear-roundyields. Forthisreason, in their search for new and promising models, agroecologists have turned their attention to the studyoftraditionalagriculture. Suchcomplexfarmingsystems,adaptedtolocalconditions,have helpedsmallfarmerstosustainablymanageharshenvironmentsandtomeettheirsubsistenceneeds, withoutdependingonmechanization,chemicalfertilizers,pesticidesorothertechnologiesofmodern agricultural science [17]. Guided by an intricate knowledge of nature, traditional farmers have nurtured biologically and genetically diverse smallholder farms with a robustness and a built-in resiliencenecessarytoadjusttorapidlychangingclimates,pests,anddiseases,andmorerecentlyto globalization,technologicalpenetration,andothermoderntrends[18]. A salient feature of traditional farming systems is its high level of biodiversity deployed in theformofpolycultures,agroforestryandothercomplexfarmingsystems,inwhichtheecological interactionsamongplant,animalandsoilcomponentspromotekeyprocessessuchasnutrientcycling, pestregulationandproductivity. Guidedbyanacuteobservationofnature,manytraditionalfarmers haveintuitivelymimickedthestructureofnaturalsystemswiththeircroppingarrangements[19]. Examples of such bio mimicry abound and below we describe two striking examples from which principlescanbederivedtodesignmodernagroecosystems. 3.1. TheRice-Fish-DuckSystemsinChina ThemainspeciespresentinmanyChinesetraditionalricepaddiesincludefish,ducks,weeds, plankton,photosyntheticbacteria,aquaticinsects,benthos,ricepests,watermice,watersnakes,birds, andothersoilandwatermicrobes. Inaddition,farmersplantuptotendifferentspeciesofindigenous vegetablesinthefieldbordersoftheterracefields,wherealsoatleast62forestspeciesthrive;21ofthese usedasfoodand53formedicinalandherbalpurposes[20]. Thesericebasedfarmingsystemssupport a variety of beneficial interactions: the various species of fish (Tilapia nilotica and Cyprinus carpio) consumeinsectpests(mainlyleafhoppersandleafrollers)thatattackthericeplantaswellasweeds SSuussttaaiinnaabbiilliittyy 22001177,, 99,, 334499 44 ooff 1133 the rice plant as well as weeds that choke rice plants and rice leaves infected by sheath blight disease that choke rice plants and rice leaves infected by sheath blight disease thus reducing the need for thus reducing the need for pesticides. These systems exhibit a lower incidence of insect pests and pesticides. Thesesystemsexhibitalowerincidenceofinsectpestsandplantdiseaseswhencompared plant diseases when compared to monoculture rice farming [21]. Further, the fish oxygenate the tomonoculturericefarming[21]. Further,thefishoxygenatethewaterandmovethenutrientsthereby water and move the nutrients thereby benefiting the rice. Azolla species proliferate fixing nitrogen benefitingtherice. Azollaspeciesproliferatefixingnitrogen(243–402kg/ha)someofwhich(17%–29%) (243–402 kg/ha) some of which (17%–29%) is used by the rice [22]. The ducks consume the Azolla isusedbytherice[22]. TheducksconsumetheAzollabeforeitcoversthewholesurfaceandtriggers before it covers the whole surface and triggers eutrophication, in addition to consuming snails and eutrophication,inadditiontoconsumingsnailsandweeds. Byconsumingbiomass,thefishandducks weeds. By consuming biomass, the fish and ducks reduce the methane emissions otherwise reducethemethaneemissionsotherwiseproducedbydecomposingvegetationbyupto30percent,as produced by decomposing vegetation by up to 30 percent, as compared to conventional farming. comparedtoconventionalfarming. Clearly,thecomplexanddiversefoodwebsofmicrobes,insects, Clearly, the complex and diverse food webs of microbes, insects, predators and associated crops predatorsandassociatedcropsplantspromoteanumberofecologicalaswellsocialandeconomic plants promote a number of ecological as well social and economic services, beneficial to the local services,beneficialtothelocalruralcommunities(Figure1). rural communities (Figure 1). Figure 1. Interactions among different components in Chinese rice–fish–duck agricultural systems Figure1.InteractionsamongdifferentcomponentsinChineserice–fish–duckagriculturalsystems[20]. [20]. 3.2. TheMilpa 3.2. The Milpa Intercropping is a form a bio mimicry which is widely practiced in Latin America, Asia, and Intercropping is a form a bio mimicry which is widely practiced in Latin America, Asia, and Africabysmallholdersasameansofincreasingcropproductionperunitlandarea,withlimitedcapital Africa by smallholders as a means of increasing crop production per unit land area, with limited investmentandminimalriskoftotalcropfailure[23]. Inthesetraditionalmultiplecroppingsystems, capital investment and minimal risk of total crop failure [23]. In these traditional multiple cropping productivityintermsofharvestableproductsperunitareacanrangefrom20%to60%higherthan systems, productivity in terms of harvestable products per unit area can range from 20% to 60% undersolecroppingwiththesamelevelofmanagement[24]. Themechanismsthatresultinhigher higher than under sole cropping with the same level of management [24]. The mechanisms that productivityindiverseagroecosystemsareembeddedintheprocessoffacilitation. Facilitationoccurs result in higher productivity in diverse agroecosystems are embedded in the process of facilitation. whenonecropmodifiestheenvironmentinawaythatbenefitsasecondcrop,forexamplebylowering Facilitation occurs when one crop modifies the environment in a way that benefits a second crop, for thepopulationofacriticalherbivore,orbyreleasingnutrientsthatcanbetakenupbythesecond example by lowering the population of a critical herbivore, or by releasing nutrients that can be crop[25]. Pestandpathogenincidenceisgenerallylowerinintercropsduetoassociationalresistance taken up by the second crop [25]. Pest and pathogen incidence is generally lower in intercrops due to effects[26]andhighertotalresourceuseefficiencyresultswhengrowingtogethercropswithdifferent associational resistance effects [26] and higher total resource use efficiency results when growing root systems and leaf morphologies. Usually a combination of two contrasting species, usually a together crops with different root systems and leaf morphologies. Usually a combination of two legumeandacereal,leadstogreateroverallbiologicalproductivitythaneachspeciesgrownseparately contrasting species, usually a legume and a cereal, leads to greater overall biological productivity becausethemixturecanuseresourcesmoreeffectivelythanseparatemonocultures[27]. Intercropping than each species grown separately because the mixture can use resources more effectively than is an effective agroecological strategy of introducing more biodiversity into agroecosystems and separate monocultures [27]. Intercropping is an effective agroecological strategy of introducing more increasedcropdiversityusuallyincreasesthenumberofecosystemservicesprovided. Higherspecies biodiversity into agroecosystems and increased crop diversity usually increases the number of ecosystem services provided. Higher species richness of planned and associated biodiversity Sustainability2017,9,349 5of13 Sustainability 2017, 9, 349 5 of 13 rimichpnroevsseso fnpultarinennet dcyacnldinags saoncdia tseodil bfieordtiilviteyr,s iltiymiitm npurotrvieenstn luetarciehnintgc ylcolsisnegs,a nreddusoceils fethrtei lintye,glaitmiviet nimutpraiecntst olef apcehsitnsg, dliossesaesse,sr aenddu cweseetdhes annedg aetnivheanimceps aocvtseroafllp reesstisli,ednicsee aosf etshea ncrdopwpeiendgs saynsdtemen (hFaingucerse o2v) e[2ra8l]l. resilienceofthecroppingsystem(Figure2)[28]. FFiigguurree 22. .SocioS-Eoccoiolo-Egcicoallo goiuctaclomoeust cfroomme sintfrreocmroppinintrge csryosptepminsg dessyigstneemd sbadseedsi gonne adgrobeacsoeldogiocanl apgrrinoceicpolleosg. icalprinciples. Among the most prevalent intercropping systems is the “milpa”, a polyculture originated and Amongthemostprevalentintercroppingsystemsisthe“milpa”,apolycultureoriginatedand still practiced in Mexico and the rest of Mesoamerica. In this system maize, common beans and stillpracticedinMexicoandtherestofMesoamerica. Inthissystemmaize,commonbeansandsquash squash are typically grown in association, sometimes along with tomatoes, multiple varieties of aretypicallygrowninassociation,sometimesalongwithtomatoes,multiplevarietiesofchiliesand chilies and semi-domesticated herbs (quelites). In this system, beans fix nitrogen which benefit maize, semi-domesticatedherbs(quelites). Inthissystem,beansfixnitrogenwhichbenefitmaize,butalso but also harbor beneficial insects that control maize pests. Squash plants suppress weeds and protect harborbeneficialinsectsthatcontrolmaizepests. Squashplantssuppressweedsandprotectagainst against erosion by quickly covering the soil. Maize provides support to climbing beans and shade erosionbyquicklycoveringthesoil. Maizeprovidessupporttoclimbingbeansandshadeforbeans for beans creating a microclimate unfavorable to certain insect pests while also preserving moisture. creatingamicroclimateunfavorabletocertaininsectpestswhilealsopreservingmoisture. Inaddition, In addition, maize forms a physical barrier against certain diseases by blocking the dissemination of maizeformsaphysicalbarrieragainstcertaindiseasesbyblockingthedisseminationofspores[23]. spores [23]. All these interactions favor productivity leading to over yielding; the crop mixture Alltheseinteractionsfavorproductivityleadingtooveryielding;thecropmixtureyieldsmorethan yields more than any monoculture of the component species despite their low use of chemical anymonocultureofthecomponentspeciesdespitetheirlowuseofchemicalinputs. Moststudies inputs. Most studies reveal land equivalent ratios (LER) values for maize/bean polycultures higher reveallandequivalentratios(LER)valuesformaize/beanpolycultureshigherthan1.5[24]. InMexico, than 1.5 [24]. In Mexico, 1.73 ha of land has to be planted with monoculture maize to produce as 1.73haoflandhastobeplantedwithmonoculturemaizetoproduceasmuchfoodasonehectare much food as one hectare planted with the traditional milpa (mixture of maize, beans and squash). plantedwiththetraditionalmilpa(mixtureofmaize,beansandsquash). Most milpa farmers destine maize cultivation to obtain grain for human consumption and seeds for the following agricultural cycle, as well as straw for direct consumption of households’ animals. Our studies in Tlaxcala showed that a typical milpa parcel produces on average 1200 kg of maize grain per hectare [29]. Daily consumption of maize is on average 3 kg per household, thus maize Sustainability2017,9,349 6of13 Mostmilpafarmersdestinemaizecultivationtoobtaingrainforhumanconsumptionandseeds forthefollowingagriculturalcycle,aswellasstrawfordirectconsumptionofhouseholds’animals. OurstudiesinTlaxcalashowedthatatypicalmilpaparcelproducesonaverage1200kgofmaizegrain perhectare[29]. Dailyconsumptionofmaizeisonaverage3kgperhousehold,thusmaizeproduction (without accounting for the yields of beans, squash and other crops and quelites (which amount toanadditionaltotalediblebiomassofapproximately1.5tons)coversthe1-tonannualhousehold maize requirement, plus 20–25 kg/ha of seeds needed for sowing the next season. In addition, a maize–squash–beanpolyculturecanproduceupto4t/haofdrymatterthatcanbeusedasfodder (strawfromtenmaizeplantsareusedtofeedoneortwoanimalsperday),orplowedintothesoilas greenmanure,comparedwith2t/hainamaizemonoculture. 4. TowardsaRadicalRe-DesignofAgroecosystems Studieselucidatingtheunderpinningsoftraditionalfarmingsystemssuggestthatinorderto incorporateanecologicalrationale,modernagroecosystemsrequiresystemicchange. However,new redesignedfarmingsystemswillnotemergefromsimplyimplementingasetofpractices(rotations, composting,covercropping,etc.),whichtendtoaddresscomponentsinisolation,focusingonthe optimizationofonecomponent(soilfertility,plantnutrition,cropgrowth,etc.) failingtoexploitthe propertiesthatemergethroughtheinteractionofthevariousfarmcomponents.Inputsubstitutionthus becomesprimarilyreactive,shiftingeffortstosolvingproblemsastheyarise,amelioratingsymptoms ratherthandiscoveringrootcauses[30]. Insteadoffocusingononeparticularcomponentoftheagroecosystem,agroecologyemphasizes the interrelatedness of all agroecosystem components and the complex dynamics of ecological processes. Thus agroecology is an alternative approach that goes beyond the use of alternative inputstodevelopintegratedagroecosystemswithminimaldependenceonexternal,off-farminputs. The emphasis is on the design of complex agricultural systems (similar to the rice–fish–duck and milpasystemsdescribedabove)inwhichecologicalinteractionsandsynergismsbetweenbiological componentsreplaceinputstoprovidethemechanismsforsponsoringsoilfertility,productivity,and cropprotection[31]. Agroecologicalsystemredesignconsistsintheestablishmentofanecologicalinfrastructurethat encourages ecological interactions through restoration of agricultural biodiversity at the field and landscapelevel. Asinthecaseoftherice–fish–duckandmilpasystems,welldesignedbiodiverse agroecosystemsexhibitanumberofsynergieswhichinturnleadtoenhancedsoilfertility,nutrient cyclingandretention,waterstorage,pest/diseaseregulation,pollination,andotheressentialecosystem services. The production, resource conserving and socio-economic benefits of integrated farms designedbasedonagroecologicalprincipleshavebeenwidelydescribedintheliteraturefeaturing examplesfromLatinAmerica,AsiaandAfrica(Table1)[32]. Theassociatedcost(labor,resources,andmoney)toestablishtheecologicalinfrastructureofan integratedfarm(soilconservationworks,livingfences,croprotations,insecthabitats,etc.) duringthe redesignphasetendtobehighinthefirst3–5years[33]. Oncetherotationandothervegetational designs(covercrops,polycultures,fieldborders,etc.) startlendingecologicalservicestothefarmby settinginmotionkeyecologicalprocesses,theneedforexternalinputsandthusmaintenancecostsstart decreasingasthefunctionalbiodiversityofthefarmsponsorsecologicalfunctions(nutrientcycling, pestregulation,etc.),thusfamersdonothavetoweedorfertilizetheirfieldsasoften. Afteryears ofconversion,theneedforexternalinputsdecreaseasdesignedbiodiversefarmsstartsponsoring theirownfunction[30]. Thetransitionisfromcapital–inputintensivetoaprocess-basedagriculture (Figure3). Sustainability2017,9,349 7of13 Sustainability 2017, 9, 349 7 of 13 oriTgainbalete1s. fMroamin leoncvairl osnomurecnetas l(,bsioocmialaasns,d bfiooogdass efcruormity biimodpiagcetsstoofrvsa, rainouimsaagl rtoraeccotiloongi,c haulimniatina tliavbesor, etci.m) plementedinLatinAmerica[31,33]. Social cohesion: flourishing of local social organizations; collective efforts for restoration and pNraotduruacltrieosonu prcuercponosseersv;a teimonp:roewforeersmtedenmti corof -wwaotmersehned asn;fdor yesotufrtahgm; henigtshreer-c soonnceiactle cdo;fhoeressitosnre mton raenstsisetn riched withnativespecies negative external influences and to fight for rights. Waterconservation:harvested-collectedwatersufficientforfamilyconsumptionandsubsistencecropplots;protection Economic viability: local markets; solidarious networks with consumers, low dependency of ofriparianforests;massiveimplementationofwaterharvestingtechniques;soilorganicmatterenrichmenttoenhance ewxatteerrnhaolld iinnpgucatps;a clietsys debt; agroecotourism initiatives controlled by the community; cSoomilmconesrecrivaaltiizoant:iroenst oorfa tpiornodofudcetgsr awdeitdhs ociulsl;teurroasilo indceonnttriotylv. iaimplementationofseveralsoilconservation practices(terracing,contourfarming,mulching,etc.) RecoTvheery aasnsdoccoiantseedrv actoiosnt (olfanbaotirv, eregesromuprlcaessm, :arnecdo vmeroynoefyth)o tuos aensdtsaboflilsanhd thraec eescaonldolgoiccaallly iandfarpatsetdrusecetdusrvei aof an onfarm-conservationprograms,seedfairs,networksofseedsaversandparticipatoryplantbreedingprojects. integrated farm (soil conservation works, living fences, crop rotations, insect habitats, etc.) during thAe grreicdueltsuigranl pprhodauscet itoenn:dim tpol ebmee hntiagthio nino fthinete fgirrastte d3–fa5r myesaferast u[3ri3n]g. rOotnatcioen tsh,ep orloyctualttiuornes aanndd aontihmearl ivneteggeratatitoino,nal producingatleast25%moreperunitlandthanconventionalmonoculturefarms.Morethan70%oftheinputsusedin designs (cover crops, polycultures, field borders, etc.) start lending ecological services to the farm by thesefarmsarelocal,enhancingproductiveautonomy setting in motion key ecological processes, the need for external inputs and thus maintenance costs Foodself-sufficiency:Atleast60%ofthebasicfoodconsumedbythefamilyorcommunityareproducedlocally start decreasing as the functional biodiversity of the farm sponsors ecological functions (nutrient Energyself-sufficiency:Atleast60%oftheenergyrequiredforfoodproductionandcookingoriginatesfromlocal cyscoluinrcges, (pbeiosmt arsesg,ubiloagtaisofnro, metcb.io),d tigheustso rfsa,maneimrsa ldtora cntoiotn h,hauvmea tnol awboere,det co.)r fertilize their fields as often. After yeSaorcsia locfo hceosniovne:rflsoiuornis,h itnhgeo fnloeceadls ofcoiarl oerxgatenriznaatilo nisn;pcoulltesc tidveecerffeoartssef oarsre sdtoersaitgionneadn dbpiroodduivcteiornsep ufrapromsess; start speomnpsoowreinrmge tnhteofirw oowmenn faunndcytoioutnh ;[h3i0g]h.e Trshoec iatrlaconhseistiioonnt oisr efsriostmne cgaatpivietaelx–teinrnpaulitn iflnuteenncessivaned toto afi gphrtofocresrisg-hbtsa.sed agErciocnuolmtuicrev i(aFbiigliutyr:el o3c)a.l markets;solidariousnetworkswithconsumers,lowdependencyofexternalinputs;lessdebt; agroecotourisminitiativescontrolledbythecommunity;commercializationofproductswithculturalidentity. FFigiguurere 3.3. MMaaiinntteennaannccee ccoossttss dduurriinngg tthhee ttrraannssiittiioonn ttoowwaarrddss fafarrmminingg ssyysstetemmss rereddeessigignneedd uussiningg aaggroroeeccoolologgicicaallp prirninccipipleless[ 3[300].]. 44.1.1..R ReeddeessigignnininggA AnnnnuuaallC CrrooppB BaasseeddF FaarrmmininggS Syystsetmemss LLaarrggeerrs sccaalelec coommmmeerrcciaiallf faarrmmssa arreem moorreed difififfcicuultltt otot rtraannssitiitoionna annddi ninitiitaialllylym maayyr reeqquuirirees simimpplelerr ddiviveerrssifiifcicaatitoionns scchheemmeessb baasseeddo onn2 2o orr3 3p plalanntts pspeeccieiessu ussininggm mooddeernrne eqquuipipmmeennt.t.O Onnees suucchhs scchheemmeei sis sstrtripipi ninteterrccrrooppppiningg,,w whhicichh ininvvoollvveess tthhee pprroodduuccttiioonn ooff mmoorree tthhaann oonnee ccrrooppi nins sttrripipsst thhaatta arreen naarrrrooww eennoouugghhf oforrt htheec crrooppsst otoi ninteterraacct,t,y yeettw widideee ennoouugghht otop peerrmmititi ninddeeppeennddeennttc cuultlitvivaatitoionn..A Aggrroonnoommicicaalllyly bbeenneefifciciaialls tsritpripin tienrtcerrocproppinpginsgy stseymstsemhasv ehuavsue alulysuianlcllyu dinedclucodrendo rcosronrg hour mso,rwghhiucmhr, eawdhiliychr ersepaodnidly torehspigohnedr ltiog hhtiignhteern sliitgiehst [i3n4t]e.nSstiutidesie s[3w4]i.t hSctuodrnieas nwdisthoy cboerann satnrdip sso4y–b1e2arno wstsriwpsid 4e–d1e2m roonwsst rawteidde indcermeaosnesdtrcaoterdn yinieclrdesas(5ed–2 6coprenr cyeineltdhsi g(h5–e2r)6 apnedrcdeenctr ehaisgehders)o yabneda ndeycireeldasse(d8 .5s–o3y3bepaenr cyenietldlosw (e8r.5)–a3s3 sptreirpcsengto tlonwarerro) waes r.stAripltse rgnoatt innagrrcoowrnera.n Adlatelfranlafatinsgtr icposrnp raonvdid eadlfaglfrae astterripgsr opsrsorveitduerdn sgtrheaatners ignrgolses crreotpusr.nSst rtihpasno sfi2n0gflte. c(aropppsr.o Sxtimripaste olyf 62.01 fmt. e(taeprps)rwoxiidmthatweleyr e6t.1h emm) owsitdatdhv wanetraeg tehoeu sm,wositt hadsuvbasnttaangteiaolulys, hwigihthe rsuecbosntaonmtiiacllrye thuirgnhsert heacnonthoemsiicn rgelteucrrnosp tsh[a3n5 ]t.hTe hsiisngaldev carnotpasg e[3i5s]c. rTithicisa lafdovrafnatramgee riss wcrhitoichaal vfoer dfeabrmt-teor-sa wssheto rhaativoes doefb4t0-top-earscseent troatriohsi gohf e4r0( $p4e0rcoefndt eobr thfiogrheerv e($ry40$ o1f0 0deobfta fsosre tesv).erSyu $c1h0a0 olefv aeslshetass). aSlruecahd ya bleeveenl rheaasc haelrdeabdyym boereent hreaanch11e–d1 b6yp emrcoerne ttohfafna r1m1–e1r6s ipnetrhceenmt iodf- wfaermsteerrns iUnn tihteed mSitda-twesewstheron dUesnpiteerda tSetlaytense ewdhtoo dceustpceorsattseolyf pnreoeddu tcot icount cboysatsd oofp ptirnogdduicvtieornsi fibcya atidoonpsttirnagt edgiiveesr.sification strategies. As shown in the Milpa system, legumes intercropped with cereals is a key diversification strategy, not only because of their provision of nitrogen, but also because the mixtures enhance soil Sustainability2017,9,349 8of13 AsshownintheMilpasystem,legumesintercroppedwithcerealsisakeydiversificationstrategy, not only because of their provision of nitrogen, but also because the mixtures enhance soil cover, smotherweedsandincreasenutrients(e.g.,potassium,calciumandmagnesium)inthesoilthrough theadditionofbiomassandresiduestothesoil.Suchintercroppingsystemsalsoincreasesoilmicrobial diversitysuchasvesiculararbuscularmycorrhizae(VAM)fungiwhichfacilitatephosphoroustransfer tothecropsandenhancecropswateruseefficiency[36]. Inthecaseofadverseweatherconditions, such as a delay in the onset of rains and/or failure of rains for a few days, weeks or during the croppingperiod,anintercroppingsystemprovidestheadvantagethatatleastonecropwillsurvive togiveeconomicyields,therebyservingasthenecessaryinsuranceagainstunpredictableweather. Polyculturesexhibitgreateryieldstabilityandlowerproductivitydeclinesduringadroughtthan monocultures. Thiswaswelldemonstratedbyresearchers[37]whoexaminedtheeffectsofdrought onpolyculturesbymanipulatingwaterstressonintercropsofsorghum(Sorghumbicolor)andpeanut (Arachisspp.),millet(Panicumspp.)andpeanut,andsorghumandmillet.Alltheintercropsconsistently providedgreateryieldsatfivelevelsofmoistureavailability,rangingfrom297to584mmofwater applied over the cropping season. Interestingly, the rate of over-yielding actually increased with waterstress,suchthattherelativedifferencesinproductivitybetweenmonoculturesandpolycultures becamemoreaccentuatedasstressincreased. No-till row crop production is also promising, given its soil conservation and improvement potential,butitishighlydependentonherbicides. However,therearesomeorganicfarmerswho practice it without synthetic herbicides. A breakthrough occurred with the discovery that certain winterannualcovercrops,notablycerealryeandhairyvetch,canbekilledbymowingatasufficiently latestageintheirdevelopmentandcuttingclosetotheground. Theseplantsgenerallydonotre-grow significantly,andtheclippingsformaninsitumulchthroughwhichvegetablescanbetransplanted with no or minimal tillage. The mulch hinders weed seed germination and seedling emergence, often for several weeks. As they decompose, many cover crop residues can release allelopathic compoundsthatmaysuppressweedgrowth[38]bymeansofphytotoxicsubstancesthatarepassively liberated through decomposition of plant residues. There are several green manure species that haveaphytotoxiceffectwhichisusuallysufficienttodelaytheonsetofweedgrowthuntilafterthe crop’sminimumweed-freeperiod. Thismakespost-plantcultivation,herbicidesorhandweeding unnecessary,yetexhibitsacceptablecropyields[39]. Tomatoesandsomelate-springbrassicaplantings performespeciallywell,andsomelarge-seededcropssuchasmaizeandbeanscanbesuccessfully direct-sownintocovercropresidues. Notonlycancovercropsplantedinno-tillfieldsfixnitrogen in the short term; they can also reduce soil erosion and mitigate the effects of drought in the long term,asthemulchconservessoilmoisture. Covercropsbuildverticalsoilstructureastheypromote deepmacroporesinthesoil,whichallowmorewatertopenetrateduringthewintermonthsandthus improvesoilwaterstorage. Experimentalresultsaswellasfarmers’observationsinsouthernBrazilsuggestthatcovercrops canenhanceweedsuppressionandhencecropproductivitypossiblythroughallelopathyandviaa hostofeffectsonsoilqualityandfertilityandsoilmoisture[40]. Resultsfromfieldtrialsindicatethat thebestcovercropmixturesshouldincludeasignificantproportionofrye,vetch,andfodderradish, asmixtureswiththeseplantspecies: • producelargebiomass,atleastfourtonsofabovegrounddrymatterperhectare; • arereadilykilledbyrollingformingathickmulchsufficienttoprovideeffectiveweedcontrolin thesubsequentvegetablecrop; • donotsuppressthevegetableorgraincropthroughchemical(allelopathic)ormicrobialeffects (i.e.,Nimmobilization);and • increasetheproportionofvetchinthemixturesdecreasestheC/Nratio,whichgivesagradual releaseofplantavailableN. Sustainability2017,9,349 9of13 4.2. RedesigningModernVineyards Cover crops are often planted in between vineyard rows to reduce soil erosion, increase soil fertility,improvesoilstructureandenhancebiologicalpestsuppression. Rootsofbothgrapevines andcovercropsformmutualisticsymbioseswitharbuscularmycorrhizal(AM)fungi,andmaybe interconnectedbyAMhyphae. StudieshaveshownevidenceofAMfungi-mediated15Ntransferfrom covercropstograpevines5and10daysafterlabeling. Ntransferwassignificantlygreaterfromgrass covercroptothegrapevinethanfromthelegumetothegrapevine. Possiblereasonsforthedifferences betweenthetwocovercropsincludelowerNenrichmentinlegumeroots,higherbiomassofgrass roots,and/ordifferencesinAMfungalcommunitycomposition. Sincethefungicanassociatewitha widerangeofplants,certaincovercropscan,therefore,beanimportantreservoirorsourceofthese fungiforyounggrapevineroots[41]. Becausemostfarmerseithermoworploughundercovercropsinthelatespring,organicvineyards becomevirtualmonocultureswithoutfloraldiversityinearlysummer. Itisimportanttomaintain a green cover during the entire growing season in order to provide habitat and alternate food for naturalenemiesofinsectpests. Anapproachtoachievethisistosowsummercovercropsthatbloom earlyandthroughouttheseason,thusprovidingahighlyconsistent,abundantandwell-dispersed alternativefoodsource, aswellasmicrohabitats, foradiversecommunityofnaturalenemies[42]. Suchfoodsupplydecouplespredatorsandparasitoidsfromastrictdependenceongrapeherbivores, allowinganearlybuildupofnaturalenemiesinthesystem,whichhelpsinkeepingpestpopulations atacceptablelevels. MaintainingfloraldiversitythroughoutthegrowingseasoninnorthernCaliforniavineyardsin theformofsummercovercropsofbuckwheatandsunflower,reducedsubstantiallytheabundanceof grapeleafhoppersandthrips,whiletheabundanceofassociatednaturalenemiesincreased. Intwo consecutiveyears,vineyardsystemswithfloweringcovercropswerecharacterizedbylowerdensities ofleafhoppernymphsandadults. Thripsalsoexhibitedreduceddensitiesinvineyardswithcover cropsinbothseasons. Duringbothyears,generalpredatorpopulationsonthevineswerehigherin thecover-croppedsectionsthaninthemonocultures. Generally,thepopulationswerelowearlyinthe seasonandincreasedaspreybecamemorenumerousastheseasonprogressed. Dominantpredators includedspiders,Nabissp.,Oriussp.,Geocorissp.,Coccinellidae,andChrysoperlasp. Theabovestudiessuggestafewguidelineswhichneedtobeconsideredwhenimplementing habitatmanagementstrategiestoenhancebiologicalpestcontrolinvineyards[43]: • Selectthemostappropriateplantspecies. • Determinethemostbeneficialspatialandtemporalarrangementofsuchplants,withinand/or aroundthefields. • Considerthespatialscaleatwhichthehabitatenhancementoperates(e.g.,fieldorlandscapelevel). • Understandthepredator–parasitoidbehavioralmechanismsinfluencedbythehabitatmanipulation. • Anticipatepotentialconflictsthatmayemergewhenaddingnewplantstotheagroecosystem. • Developwaysinwhichtheaddedplantsdonotupsetotheragronomicmanagementpractices, andselectplantsthathavemultipleeffects,suchasimprovingpestregulation,while,atthesame time,contributingtosoilfertilityandweedsuppression. 5. Conclusions Wehaveemphasizedthatmerelymodifyingpracticestoreduceinputuseisastepintheright direction but does not necessarily lead to the redesign of a more self sufficient and autonomous farmingsystem. Diversificationtobreakthemonocultureisakeyagroecologicalprincipletoredesign farms. However,diversifyingfarmspersedoesnotnecessarilymeanthattheyarebeingmanaged agroecologically, if the collection of crops/animals chosen do not interact biologically to enhance agroecosystemfunction,asinthecaseoftheChineserice–fish–ducksystems. Manyorganicfarmsare diversifiedtorespondtothevarietyofmarketdemands,butagroecologicallythefarmsdonotwork, Sustainability2017,9,349 10of13 asthecropsdonotecologicallycomplementeachotherthereforefarmersstillneedexternalinputs (althoughorganic). Studiesofsmallholderfarmingsystemsinthetropicsshowthatacrossgeographies,biophysical andsocio-economicconditionsthereisabroadrangeofbiodiversefarmingsystems(intercropping, agroforestry, crop livestock integrated systems, etc.) which sustain a series of ecosystem services such as pest regulation, enhanced productivity (LER), resiliency to climatic extremes, soil health, waterconservation,etc.[19]. However,ecosystemservicesbundlesarenotsustainedbyjustadding companion species at random, most associations have been tested by farmers for decades if not centuriesandfarmersmaintainedthembecausesuchsystemsstrikeabalancebetweenfarm-level productivity, resilience, agroecosystem health and livelihoods [32]. A community of organisms in an agroecosystem becomes more complex when a larger number of different kinds of plants are included,leadingtomoreinteractionsamongarthropodsandmicroorganisms,componentsofabove andbelowgroundfoodwebs. Asdiversityincreases,sodoopportunitiesforcoexistenceandbeneficial interferencebetweenspeciesthatcanenhanceagroecosystemsustainability.Diversesystemsencourage complexfoodwebs,whichentailmorepotentialconnectionsandinteractionsamongmembers,creating manyalternativepathsforenergyandmaterialflow[25]. Forthisreason,amorecomplexcommunity exhibits more stable production and fewer fluctuations in the numbers of undesirable organisms. Byenhancingfunctionalbiodiversity,amajorgoaloftheredesignprocessisachieved: strengthening theweakecologicalfunctionsintheagroecosystem,allowingfarmerstograduallyeliminateinputs altogetherbyrelyinginsteadonecosystemfunctions[44]. Newdesignsofmodernagroecosystemswillrequiresystemicchangeguidedbytheapplication ofalreadywelldefinedagroecologicalprinciples(Table2). Theseprinciplescanbeappliedbyway ofvariouspracticesandstrategies(Table3), eachhavingdifferenteffectsonproductivity, stability andresiliencywithinthefarmsystem. Oneofthekeyprinciplesisdiversificationwhichoccursin manyformsatthefield(varietymixtures,rotations,polycultures,agroforestry,andcrop–livestock integration)andatthelandscapelevel(hedgerows,corridors,etc.),givingfarmersawidevarietyof options andcombinations for theimplementation of thisstrategy. Emergentecological properties developindiversifiedagroecosystemsthatallowthesystemtofunctioninwaysthatmaintainsoil fertility, crop production, and pest regulation. Most of these systems optimize the application of agroecologicalprinciplesthusincreasingagroecosystemfunctionaldiversityasthefoundationforsoil quality,planthealth,cropproductivityandsystemresilience[29]. Table2.Agroecologicalprinciplesforthedesignofbiodiverse,energyefficient,resource-conserving andresilientfarmingsystems[13,14]. Enhancetherecyclingofbiomass,withaviewtooptimizingorganicmatterdecompositionand 1. nutrientcyclingovertime. Strengthenthe“immunesystem”ofagriculturalsystemsthroughenhancementoffunctional 2. biodiversity—naturalenemies,antagonists,etc.,bycreatingappropriatehabitats. Providethemostfavorablesoilconditionsforplantgrowth,particularlybymanagingorganic 3. matterandbyenhancingsoilbiologicalactivity. Minimizelossesofenergy,water,nutrientsandgeneticresourcesbyenhancingconservationand 4. regenerationofsoilandwaterresourcesandagrobiodiversity. Diversifyspeciesandgeneticresourcesintheagroecosystemovertimeandspaceatthefieldand 5. landscapelevel. Enhancebeneficialbiologicalinteractionsandsynergiesamongthecomponentsof 6. agrobiodiversity,therebypromotingkeyecologicalprocessesandservices.

Description:
Hallmarks of what are termed agroecological farming practices include integrated pest management, In this paper, we argue that what is required, is to rescue agroecology from the confines of academia and Conversion has been conceptualized as a transitional process with three marked:.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.