ebook img

Technological and Profitable Analysis of Airlifting in Deep Sea Mining Systems PDF

20 Pages·2017·6.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Technological and Profitable Analysis of Airlifting in Deep Sea Mining Systems

minerals Article Technological and Profitable Analysis of Airlifting in Deep Sea Mining Systems WenbinMa*,CeesvanRheeandDingenaSchott DepartmentofMaritimeandTransportTechnology,DelftUniversityofTechnology, 2628CDDelft,TheNetherlands;[email protected](C.v.R.);[email protected](D.S.) * Correspondence:[email protected];Tel.:+31-152-781-728 Received:16June2017;Accepted:4August2017;Published:10August2017 Abstract: Airliftingtechnologyutilizedindeep-seamining(DSM)industrywasproposedinthe70s oflastcentury,whichwastriggeredbythediscoveryofvastamountsofmineralresourcesonthe seabed. Theobjectiveofthispaperistoassessthetechnologicalfeasibilityandprofitabilityanalyses intermsofsolidproductionrate,energyconsumptionpertonnageofmineral,andprofitabilityper tonnageofmineral. Theeffectsofsubmergenceratio,pipediameter,particlediameter,miningdepth, andgasfluxrateareinvestigated. Theanalysisisbasedonanumericalcalculationperformedina Matlabenvironment. Theresearchreportedinthispapercanassisttoselectanoptimaltransport planforDSMprojectsdependingonitssolidproductionrate,energyconsumption,andprofitability. Keywords: energyconsumption;profitability;pipediameter;submergenceratio;solidproduction rate;technologicalfeasibility 1. Introduction IntheDSMindustry,airliftingisoneofthemostwidelyresearchedtechnologiesequippedwith thecorrespondingfacilities,e.g.,collectingmachine(CM)[1]. Airliftingusescompressedgastolift the liquid-gas or solid-liquid-gas multiphase flow [2]. It is also used in other industries, such as in chemical industry to transport toxic substances and sewage treatment plants [3]. Although the airliftingtransportinDSMhasbeenresearchedforalongtime,untilnowthereisnocorresponding commercialscaledDSMprojectinprogress. Technologicalfeasibilityandprofitabilityanalysesaretwo ofthemajorconsiderationsforitsindustrialization[4]. AlotofexperimentalandtheoreticalanalysesofairliftingtechnologyutilizedintheDSMindustry startedinthe70soflastcentury,whichwastriggeredbythediscoveryofvastamountsofmanganese nodulesontheseabedofdepthrangingfrom4000to6000m[5]. YoshinagaandSato[6]proposed anumericalmodelingmethodoftheairliftingpumpdependingonmomentumequationanalysis, which was validated by a vertical pipe lifting system with height of 6.74 m and diameter of 26 and 40 mm, respectively. In Yoshinaga and Sato’s research, the flux rates of solid and gas are givenparameterstocalculatetheliquidfluxrate, whichdoesnotagreewiththerealisticworking condition. Actually,thegasfluxrateisthegivenparameterandthefluxratesofsolidandliquidare calculatedparameters. Additionally,YoshinagaandSato’smodeliscreatedforuniformparticlessize distribution[3]. Kassabetal.[3]innovatedYoshinagaandSato’smodelbytakingtherelationship between the liquid and gas flux rates into consideration, which was validated by a vertical pipe liftingsystemwithheightof3.75manddiameterof25.4mm. Inthenumericalcalculationmodel proposedbyYoshinagaandSato,thecompressibilityofgasisneglectedbecauseofthesmall-scaled experiments.Hattaetal.[5]proposedanairliftingnumericalmodeldependingonthesolid-liquidmass conservationequations,twomomentumequations,andanequationforthesolid-liquidvolumetric fractions. Additionally, Hatta et al. [7] analyzed a special kind of pipe with an abrupt diameter Minerals2017,7,143;doi:10.3390/min7080143 www.mdpi.com/journal/minerals Minerals2017,7,143 2of20 enlargement. Hattaetal.[5,7]utilizedthemultifluidmethodtopredicttheperformancesofairlifting pumps, which can be used to calculate the gas flux rate up to 45 m/s. However, Hatta et al. [5,7] admitted that it is quite difficult to establish the transitional situation of the multiphase flow in a pipesystem. MargarisandPapanikas[8]proposedanairliftingnumericalmethodbyanalyzingthe fundamentalconservationequationsofflowcontinuityandmomentum. Hongetal.[9]analyzedpipe inclinationeffectsofairliftingwaterpumpbyexperiments.Theyinvestigatedtheairliftingperformance asafunctionofthevariationofinclinationangles. Nam-Cheoletal.[10]studiedtheairliftingpump withairjetnozzleanalyzingitsperformanceinfluencedbysubmergeddepth,liftinghead,andgas flux rate. Researches of both Hong et al. and Nam-Cheol et al. focused on the experiments and didnotconsiderthecorrespondingtheoreticalexplanationandanalysisfortheirexperimentaldata. Fanetal.[11]researchedairliftingpumpperformancesutilizedinanartificialupwelling. Almostall ofthesetheoreticalandexperimentalinvestigationsarefarawayfromtheindustrialscaledworking conditionsofDSM.Theserealisticconditionsneedtobeconsideredconcerningthescaleeffectsbetween theup-scaledmodelanditsindustrialscaledprototype. Additionally,noresearchhasconsideredall relatedparametersthatcaninfluencetheairliftingperformancesinDSMprojects. Basedontheliteraturereview,airliftingtechnologicalconsiderationinDSMindustryfocuses on the transport performances influenced by the submergence ratio which is defined as the ratio betweensubmergenceandthetotallengthofthepipe,miningdepth,pipediameter,gasfluxrate,and particlediameter[5–11]. ForthetechnologicalanalysisofverticaltransportinDSMindustry,energy consumptionliftingpertonnageofmineralandsolidproductionratewereintroducedbyMaetal.[12]. These parameters will also be introduced for the technological analysis of airlifting in this paper. Additionally,profitabilityisanotherinfluencingfactorforairliftingtechnologyutilizedinDSM,which is mainly reflected by a high initial capital expenditure to purchase the related facilities and high operatingcostonthesefacilities,e.g.,productionsupportvessel(PSV),seafloorvehicles,transhipment vessels, mineral processing plants, and even the tailings treatment facilities in a later stage [4,12]. FortheprofitableanalysisofairliftingtechnologyutilizedinDSM,profitabilityliftingpertonnageof mineralisresearchedinthispaper. Thenumericalcalculationmethodusedinthispaperisbasedon theoriginalmodelsofYoshinagaandSato,andKassabetal.,andconsidersthecompressibilityofthe gas,whichisimportantbecauseofthelargeminingdepthinengineeringconditions. Additionally,the numericalcalculationmethodconsidersthecompleteparameters,whichconsistsofthesubmergence ratio,miningdepth,pipediameter,particlediameter,andgasfluxrate. Theobjectiveofthispaperistoassessthetechnologicalfeasibilityandprofitabilityintermsof solidproductionrate,energyconsumptionpertonnageofmineral,andprofitabilitypertonnageof mineral. Theeffectsofsubmergenceratio,pipediameter,particlediameter,miningdepth,andgasflux rateareinvestigated. ThispaperincombinationwithpaperwrittenbyMaetal.[12]canbeusedasa referencetoselectapropertransportplanforDSMprojects. Thepaperisarrangedasfollows. The Section2isthetheoreticalanalysisincludingtheoreticalmodelsofairliftingmomentum,airlifting energyconsumptionpertonnageofminerals,andprofitabilityofairliftingutilizedinDSMsystems. IntheSection3,thevalidationsofthenumericalcalculationmethodandcalculationresultsofthesolid productionrate,airliftingenergyconsumptionpertonnageofminerals,andprofitabilitypertonnage ofmineralareanalyzedanddiscussed. Finally,inSection4conclusionsoftheconductedresearch aregiven. 2. TheoreticalAnalysis 2.1. AirliftingMomentumModelling TheschematicdiagramofairliftingisshowninFigure1[6].Theairliftingpipesystemconsistsofa solid-liquidtwo-phaseflowhappenedbetweengasinletandseabed,andasolid-liquid-gasthree-phase flowhappenedbetweenpipeoutletandgasinletasshowninFigure1. InFigure1,thelettersofE, I, Orepresenttwo-phaseflowentrance,gasinlet,andoutletofmineralmixtures. Minerals2017,7,143 3of20 Minerals 2017, 7, 143 3 of 20 FigFuigrue r1e. 1T.hTeh sechscehmeamtiact diciadgiaragmra mof oafna aniraliirftliinftgin sgyssytesmte m[6][.6 ]. The momentum equation for airlifting can be written as Equation (1) [3,6]. ThemomentumequationforairliftingcanbewrittenasEquation(1)[3,6].  n   n  A(cid:26)J ρ v +AJ∑nlρlvJl,E(+i)i=ρ1J(s(ii))vρs(i)v(si,E)((cid:27)i)−−AA(cid:26)Jg,JOρg,Oρvg,O+vJlρlvl++i=J1ρJs(vi)ρ+s(i)v∑ns(i)J (i)ρ (i)v (i)(cid:27) l l l,E s s s,E g,O g,O g,O l l l s s s −πDi=1Iτdz−πDOτdz−AIρ(cid:26)C +n ρ(i)C (i)gdz (cid:27) i=1 (1) −−πAD(cid:82)Oi(cid:82)(cid:26)EIτρls−CdAzIO−i+EρπglsCρDg,C3i(cid:82)+IOρlCi+τlI3,3d+∑3nzi=n−1ρρsA((iiE))(cid:82)CCEsI,3l(i)l,(ρ2ilg)Cd(cid:27)iz=l1,+g2Ads+{zρi+l∑=ngs,21(ALρ2{s+(ρLi3)g)C}(=sL,20(+i) Lg)d}z=0 (1) I g g,3 l l,3 s s,3 l 2 3 in which A is the pipe cross sectionai=l 1area (m2), J is the volumetric flux (m/s), ρ is the density (kign/mw3h),i chv Ais isthteh evpeliopceitcyr o[sms/sse]c, ttihone asluabrsecar(ipmt2s) ,ofJ iss,t hle,v oglu mreeptrreicseflnutx s(omlid/ sp),aρrtiisclteh,e lidqeunisdi,t yan(kdg g/ams3 ), resvpiesctthiveevleyl,o cτity i[sm t/hse], tshheesaur bsstcrreipssts (oNfs/m,l2,)g, reDpr eisse nthteso lpidippea rdtiicalme,eltiqeru id(m,a)n, dCga sisr esthpee ctvivoelulym,τe is i cotnhceenshtreaatriosntr e(-s)s, 2(N, 3/ rmep2)r,eDseinist ttwheo-ppiphaesdei aflmowet earn(dm t)h,rCeei-spthhaesve ofllouwm erecsopneccetnivteralyti,o ni (r-)e,p2r,e3serneptsr ethseen t tytpwe oo-fp dhiafsfeerflenotw paanrtdictlhesre. e-phaseflowrespectively,irepresentsthetypeofdifferentparticles. FoFro trhteh seosloidli-dli-qluiqiudi dtwtow-op-hpahsae sfeloflwo,w s,osloidli danadn dliqliuqiudi daraer erergeagradredde dasa sinicnocmomprpersessisbilbel.e F.oFro trhteh e sosliodli-dli-qliuqiudi-dg-agsa sththrreeee-p-phhaassee flflooww,, asasd ednesintysitayn daflnudx frlautxe orfagtea soafr egeaass ilyarien fleuaesnilcye dinbfyluseunrcroedu ndbyin g suprrreosusnudrein,gY opsrheisnsaugrae,a nYdosShaitnoapgrao panodse dSattoo dpivroidpeosthede utop -driisveirdpe iptheei nutpo-rNiseelre mpiepnet sin[t6o]. TNh eetlhemirdentetsrm [6]o.f TEhqeu tahtiirodn t(e1r)mis owf rEiqttuenataiosnE (q1u) aisti ownri(t2te)n[3 a,6s] E. quation (2) [3,6]. ππDD(cid:90)IIττddzz==AAΔ(cid:26)P∆f.lPsfL.ls+LΔ+P ∆P (cid:27) (2) (2) iiEE llss  Δz∆z2 2 E E ini wnhwichhic hΔ∆PP /Δ/z∆ zisi sththe efrfircitcitoinon pprersessusruer egrgardaideinetn itni nsosloidli-dli-qliuqiudi dfloflwo w(P(aP/ma/),m Δ),P∆P is itshteh perpersessusruer e f.lsf.ls E E dedcerecraesaes aet atthteh eenetnratrnacnec peopsoitsiiotino n(P(aP)a. ) . ThTeh feofuoruthrt thertemrm ini EnqEuqautaiotino n(1()1 c)acna nbeb reerwewritrtiettne nasa EsqEuqautaiotino n(3()3 [)1[31]3. ]. πDπD(cid:90)IIττddzz==AA(cid:40)N∑NΔP∆f.3P(kf.3)(Δkz)(∆k)z+(kΔ)P+∆ P (cid:41) (3) (3) i iEE 33 k=k1=1Δz(∆kz)(k) I I ini wnhwichhic hΔ∆PfP.3f(.k3()k/)Δ/z∆(kz)(k )isi sthteh efrfircitciotino nprpersessusruer gergardaidenietn itni nsosloidli-dli-qluiqiudi-dga-gsa fsloflwo w(Pa(P/ma/),m Δ),P∆I PiIs itshteh e prpersessusruer deedcerceraesaes aeta tthteh geagsa isnilnelte ptopsoistiiotino n(P(aP)a. ). In the airlifting numerical calculation process, the velocity relationship of solid particles needs to be considered. For three-phase flow, the velocity of particles can be calculated as Equation (4) [14]. Minerals2017,7,143 4of20 Intheairliftingnumericalcalculationprocess,thevelocityrelationshipofsolidparticlesneedsto beconsidered. Forthree-phaseflow,thevelocityofparticlescanbecalculatedasEquation(4)[14]. m v (i) = c +v (i) (4) s sw ρ A inwhichcisthedistributioncoefficient(-),misthemassfluxofthethree-phaseflow(kg/m2·s),ρ is A theapparentdensityofthethree-phasemixture(kg/m3),v isthewallaffectedsettlingvelocityina sw three-phaseflow(m/s). For solid-liquid two-phase flow, the volume concentration of solid, liquid can be calculated throughsolvingEquation(5)[15]. (cid:18)−v −J −J (cid:19) J C2+ sl l s C + l =0 (5) l v l v sl sl inwhichv istheslipvelocity,whichisrelatedtotheparticlediameter,pipediameter,settlingvelocity, sl andsolidvolumeconcentration(m/s). ThevolumeconcentrationofthegascanbecalculatedasEquation(6)[6]. Cg = 1+0.4ρρlsg,3(cid:18)ρmgJg −1(cid:19)+0.6ρρlsg,3(cid:18)ρmgJg −1(cid:19)ρρl1sg,3++0.04.(cid:16)4(cid:16)mρgmJg−−1(cid:17)1(cid:17)0.5−1 (6) ρgJg inwhichρ isthemeandensityoftheslurry(kg/m3). ls,3 ComparedtotheoriginalmodelofYoshinagaandSato,thesignificantdifferenceofgasdensity andfluxrate,whicharecausedbythelargeminingdepthinengineeringconditions,aretakeninto consideration,seeEquation(7)[15]. (cid:40) J = Jg_0·P0 g_z Pz (7) ρ = ρg_0·Pz g_z P0 inwhichP istheinitialgaspressure(Pa),P isthegaspressureattheverticalpositionofz(Pa),ρ is 0 z g_0 theinitialgasdensity(kg/m3),ρ isthegasdensityattheverticalpositionofz(kg/m3). g_z BasedonEquations(1)–(7),theairliftingprocessintheverticalpipesystemcanbecalculated. After the establishment of airlifting numerical model, the next section will focus on the energy consumptioncalculation. 2.2. EnergyConsumptionperTonnageofMineralModelling The energy consumption of airlifting system is closely related to the compressor’s expansion type,whichisdefinedasanisothermalexpansioninthispaper[11]. Theairliftingefficiencycanbe calculatedasEquation(8)[15,16]. ρ E η = (1− l) u (8) a ρ E s t in which E is the useful energy consumption of the airlifting system (J), E is the total energy u t consumptionoftheairliftingsystem(J). The useful energy consumption of the airlifting system is defined as the anti-gravitational energy consumption of lifting mineral solids from seabed to pipe outlet. It can be calculated as Equation(9)[11,15,16]. E = ρ ·A·J ·g·(L +L ) (9) u s s 2 1 inwhichL andL arelengthsofdifferentsegmentsoftheverticalpipe(m),seeFigure1. 1 2 Minerals2017,7,143 5of20 Thetotalenergyconsumptionoftheairliftingsystemistheisothermalenergyconsumptionofthe compressor. ItcanbecalculatedasEquation(10)[11,15,16]. P E = J ·A·ln I (10) t g_atm P atm inwhich J isthegasfluxunderatmosphericpressure(m/s),P isthepressureattheinlet(Pa), g_atm I P istheatmosphericpressure(Pa). atm Additionally,theenergyconsumptionpertonnageofmineralsisalsoanimportantparameter, whichcanbecalculatedasEquation(11)[12]. E E = t (11) ton Q s inwhichQ isthemineralsolidsproductionrate(ton). s 2.3. ProfitabilityperTonnageofMineralModelling TheprofitabilityanalysisofairliftingutilizedinDSMsystemsfocusesonthedifferencebetween gross income and total expenditure derived from minerals. The total expenditure of an airlifting systemisdividedintocapitalexpenditure(CAPEX)andoperationalexpenditure(OPEX)[12,17]. M = M +M (12) t c o in which M represents the cost ($), c, o represent the initial capital expenditure and operationexpenditure. TheM andM inEquation(12)canbecalculatedasEquation(13)[12,18]. c o (cid:40) M = M +M +M c c_m c_t c_p (13) M = M +M +M o o_m o_t o_p inwhichm,t, prepresenttheminingsystem,transportsystem,andprocessingplantrespectively. The initialcapitalexpenditureoftheminingsystemisspentondifferentkindsofseafloorvehicles. ThepipesystemofairliftingtechnologyinDSMprojectsconsistsofamajorup-riserpipeandan auxiliaryair-injectionpipe,whichisrequiredtocalculateinitialcapitalcostofpipesystems[12].   nr = (L1l+prL2) (14)  nI = lLp1I inwhichn andn aretheup-riserandair-injectionpipeelementsnumber(-),l andl arethepipe r I pr pI elementlengthoftheup-riserpipeandair-injectionpiperespectively(m). Therefore,theinitialcapital costofthetransportsystemcanbecalculatedasEquation(15)[12]. (cid:110) (cid:16) (cid:17) (cid:16) (cid:17) (cid:111) M = M +π·ρ ·M ·(1+ε )· l · r2 −r2 ·n +l · r2 −r2 ·n +M (15) c_t sv p m_p 1 pr r_1 r_2 r pI I_1 I_2 I _ot inwhich M istheinitialcapitalcostontheshippingvesselincludingproductionsupportvesseland sv trans-shipmentvessels($),M isthemanufacturingcostofthepipelinesystem($),ρ isthematerial m_p p densityofthepipe(kg/m3),ε isthepipemanufacturingpricefactorwhichmeanstheaddedvalueof 1 materials(-),ristheradiusofpipelines(m),1,2representtheexternalandinternalradiusofpipelines (m), M istheothertransportcost($). _ot Minerals2017,7,143 6of20 Theoperationexpenditureoftheminingsystem,transportsystem,andprocessingsystemcanbe calculatedasEquation(16)[12].   Mo_m = Mm_ma+Mm_pe M = M +M (16) o_t t_ma t_pe  M = M +M +M o_p p_la p_ma p_pe in which ma, pe, and la represent the maintenance, power and energy consumption, and laborexpenditures. The M inEquation(16)canbecalculatedasEquation(17)[12]. p_la M = ∑N ∑ns W ·(1+a)N (17) p_la i j=1i=1 inwhichW isthesalaryforthestaffi($/year),n isthestaffnumber(-),Nistheminingperiod(year), i s aistheinflationrate(-). The maintenance, power, and energy consumption expenditures can be calculated as Equation(18)[12].  N  Mj_ma = ∑ 24·s·Qs·Kj_k·(1+a)N i=1 (18) N  Mj_pe = ∑ 24·s·Ek·R·(1+a)N i=1 inwhich jrepresentstheminingsystem,transportsystem,andtheprocessingsystemrespectively, Kisthemaintenancefeeeveryyear($/ton),Risthepowerandenergyconsumptionprice($/kWh), E istheenergyconsumption(kWh/h),sisthemeanworkingdaysperyear. k TheincomederivedfrommineralscanbecalculatedasEquation(19)[12]. N (cid:16) (cid:17) M = ∑ 24·s·Q ·M ·(1+a)N (19) in s i,mm i=1 inwhich M isthemineralorepricewhichissettobe95$/ton. i,mm TheprofitabilitypertonnageofmineralcanbecalculatedasEquation(20)[12]. M M −M +M M = be = in t re (20) ton N N ∑(24·s·Q ) ∑(24·s·Q ) s s i=1 i=1 inwhich M isthepurebenefitofDSMproject($), M istheresidualvalue($). be re 3. ResultsandDiscussions 3.1. Validations 3.1.1. ModelValidatedbyExperimentalDataofYoshinagaandSato ThenumericalcalculationmodelofEquations(1)–(7)proposedbyYoshinagaandSato[6]isused inthissection. Additionally,theexperimentaldatafoundinYoshinagaandSato’spapercanbeusedas thevalidationdata. InYoshinagaandSato’sexperiment[6],sphericalanduniformparticlesareused, asfollows: C1-Sp-06,whichdensityanddiameterare2540kg/m3and6.1mmrespectively,C1-Sp-10, whichdensityanddiameterare2540kg/m3 and9.9mmrespectively,andC2-Sp-06,whichdensity anddiameterare3630kg/m3and9.5mmrespectively. InFigure2,ninetypesofairliftingconditions areshownwithsolidfluxraterangingfrom0.014to0.095m/s. Axisxrepresentstheexperimental dataofliquidfluxratefrom0to1m/s. Axisyrepresentsthecalculationdataofliquidfluxratefrom0 Minerals2017,7,143 7of20 Minerals 2017, 7, 143 7 of 20 tofl1umx /ras.teT hfreocmlo s0e rtoth 1e dma/tsa. pTohien tcslaorseert oththee ddaiatag opnoailn,ttsh earme otroe tahcec udraiatgeothnealc, atlhcue lamtioorne raecscuultrsa.tTe htehe mcaajolcruitlyatoiofnd aretasuplotsin. tTshaer emlaojcoartietyd oinf tdhaetaa rpeoaiwntist hairne 1l0o%catdeedv iinat itohne oafretha ewdiitahgino n1a0l%,w dheivchiatiniodni coaft etshe thdaitatghoenmalo, dwehliicshs uinfdfiicciaentetsly thaactc uthrae tme.odel is sufficiently accurate. FiFgiugruere2 .2V. Valaidliadtaiotinonre rseuslutsltbs ybyex epxepreimrimenetnatladl adtaatfar ofrmomY oYsohsinhaingaagaan adnSda Stoat[o6 ][.6]. 3.1.2. Model Validated by Experimental Data of Kassab et al. 3.1.2. ModelValidatedbyExperimentalDataofKassabetal. In Yoshinaga and Sato’s model of simulating a solid-liquid-gas airlifting system, the flux rates InYoshinagaandSato’smodelofsimulatingasolid-liquid-gasairliftingsystem,thefluxratesof of gas and solid are designated as a pair of original values. Then based on momentum balance gasandsolidaredesignatedasapairoforiginalvalues. Thenbasedonmomentumbalanceequation, equation, the flux rate of liquid is determined [6]. Kassab et al. utilize the Stenning and Martin thefluxrateofliquidisdetermined[6]. Kassabetal. utilizetheStenningandMartinequation,see equation, see Equation (21), combining with momentum method to solve the flux rates of solid and Equation(21),combiningwithmomentummethodtosolvethefluxratesofsolidandliquiddirectly liquid directly from gas flux rate [19]. fromgasfluxrate[19]. LL3 − 1LL+13 −(cid:0)1V+/(1V(gs/1·(Vsl⋅)V(cid:1)l)=) =2g2Jg·Jl2Ll⋅2L1(cid:20)((KKcc++11))++(K(Kc +c+2)2VV)glVVg (cid:21) ((2211)) 1 g l l 1 l in which V , V are the volume flow rate of gas and liquid (m3/s), s is the slip factor (-), K is the in which V ,gV alre the volume flow rate of gas and liquid (m3/s), slis the slip factor (-), K cis the g l l c friction factor (-). frictionfactor(-). ThTehes isnl Einqu Eaqtuioanti(o2n1 )(2c1a)n cbaen cbael ccuallactueldatwedit hwEitqhu Eaqtiuoanti(o2n2 )(2[220) ][.20]. l V 0.35(cid:112)⋅ g⋅D sl =s1l.=21+.20+.20VV.2glV+gl +0.35· JJllg·Dii ((2222)) The K in Equation (21) can be calculated with Equation (23) [19]. TheKc inc Equation(21)canbecalculatedwithEquation(23)[19]. 4⋅ f ⋅L KcK=c 4=· f ·DL11 ((2233)) Di i in which f is the friction coefficient calculated by Colebrook-White equation, which can be inwhich f isthefrictioncoefficientcalculatedbyColebrook-Whiteequation,whichcanbecalculated ascaElqcuualatitoedn (a2s4 E)q[2u1a]t.ion (24) [21]. f =0.25·(cid:34)log(cid:32) Dεiε+ 5.74 (cid:33)(cid:35)−−22 (24) f =0.25⋅log3.7 DiR+e50..974  (24)   3.7 Re0.9  inwhichεisthepipewallroughness(m),ReistheliquidReynoldsnumber(-). in which ε is the pipe wall roughness (m), Re is the liquid Reynolds number (-). Based on Equations (21)–(24), the innovated numerical method of airlifting by Kassab et al. is validated in Figure 3. Kassab et al. investigated airlifting performances influenced by submergence Minerals2017,7,143 8of20 BasedonEquations(21)–(24),theinnovatednumericalmethodofairliftingbyKassabetal. is Minerals 2017, 7, 143 8 of 20 validatedinFigure3. Kassabetal. investigatedairliftingperformancesinfluencedbysubmergence rartaiotioa ndanpda rtipcalertidcilaem edtiearm[3e]te.r In[3F]i.g uIrne 3,Fipgaurrteic le3,d iapmarettiecrles ofdi4a.m75e,te7r.1s 0,oafn d49.7.550, m7.m10,, anadnd su9b.5m0e mrgmen, caendra stuiobmofe0rg.5e0n,c0e. 7r2a,tiaon odf 00..5708,, 0a.r7e2,c aanlcdu l0a.7te8d, .arAe lciaklecuthlaetevda.l iAdlaiktieo nthpe rvinalciidpaletiodne spcrriinbceidple indFeisgcurirbee2d, tihn eFciglousreer 2th, ethdea ctlaopseori nthtse tdoatthae pdoiiangtos ntaol ,ththee dmiaogroenaacl,c uthrea tmetohree caaclccuurlaatteio tnher ecsaullctuslaartieo.n Asremsuolstts oafred. aAtas pmooinstt soaf rdealtoac aptoeidntisn atrhee laorceaatewd iitnh itnhe1 0a%read ewviitahtiino n10o%ft hdeevdiiaatgioonn aolf, tthhee dcaialcguolnaatilo, nthe sycsatelcmuluatsieodn isnytshteismp uapseedr iisns tuhfifis cpieanptelry iasc scuufrfaicteie.ntly accurate. FiFgiugruer3e. 3V. aVliadliadtiaotniorne sruesltusltbsy beyx epxepriemriemnetanltadla dtaatfaro fmromKa Kssaasbsaebt eatl a[3l ][.3]. 3.1.3. Scale Effect 3.1.3. ScaleEffect Scale effect arises due to differences between an up-scaled model and its industrial scaled Scale effect arises due to differences between an up-scaled model and its industrial scaled prototype, which leads to some deviations between the simulation results [22]. The scale ratio prototype,whichleadstosomedeviationsbetweenthesimulationresults[22]. Thescaleratiobetween between the general up-scaled model and industrial scaled prototype of airlifting model in DSM thegeneralup-scaledmodelandindustrialscaledprototypeofairliftingmodelinDSMprojectscanbe projects can be up to 500~600, which is much larger than that in normal mechanical and hydraulic upto500~600,whichismuchlargerthanthatinnormalmechanicalandhydraulicsimulations[3,6,23]. simulations [3,6,23]. Additionally, most parameters of the experimental and theoretical airlifting Additionally,mostparametersoftheexperimentalandtheoreticalairliftingmodelingresearchesare modeling researches are smaller than the industrial scaled airlifting parameters in DSM projects smallerthantheindustrialscaledairliftingparametersinDSMprojects[3,6]. Themostfrequently [3,6]. The most frequently used method to compensate scale effect is to distort model geometry by usedmethodtocompensatescaleeffectistodistortmodelgeometrybygivingupexactgeometric giving up exact geometric similarities or change the related parameter appropriately, e.g., model similaritiesorchangetherelatedparameterappropriately,e.g.,modelroughness[22]. Inthissection, roughness [22]. In this section, flow regime conditions both in the experiments of Yoshinaga and flow regime conditions both in the experiments of Yoshinaga and Sato and Kassab et al., and the Sato and Kassab et al., and the following large-scale calculation case are taken into consideration. followinglarge-scalecalculationcasearetakenintoconsideration. Becauseofthelackoftheoretical Because of the lack of theoretical research on solid-liquid-gas three-phase flow regimes in a vertical researchonsolid-liquid-gasthree-phaseflowregimesinaverticalpipesystem,theflowregimeof pipe system, the flow regime of gas-liquid flow in a vertical pipe system is used. In the airlifting gas-liquid flow in a vertical pipe system is used. In the airlifting vertical pipe system, there exist vertical pipe system, there exist five different type flow regimes including bubble, slug, froth, fivedifferenttypeflowregimesincludingbubble,slug,froth,annular,andfinelydispersedbubbles annular, and finely dispersed bubbles depending on the velocity and geometry of the lifting dependingonthevelocityandgeometryoftheliftingcomponents[15,24]. Thisthoughthasalready components [15,24]. This thought has already been used by the other researchers in the DSM field beenusedbytheotherresearchersintheDSMfield[25]. Theflowregimetransitionsarecalculatedas [25]. The flow regime transitions are calculated as Equations (25)–(29) [15,24]. Equations(25)–(29)[15,24]. J =J3l.0=·3J.0⋅−Jg1.−115.1·5(cid:104)σ⋅σ·g⋅·g(cid:0)⋅ρ(ρ−l −ρρg(cid:1))//ρρ2(cid:105)l20.02.525 ((2255)) l g l g l Jl+JgJ=l +4J.0g·=(cid:40)4(cid:34).0D⋅i0.42D9i0·.4(cid:18)29⋅ρσ(cid:19)ρσl0.008.098/9 /Jl0J.0l07.0272(cid:35)·⋅(cid:2)gg⋅·((cid:0)ρρll−−ρρgg)(cid:1)//ρρll(cid:3)00.4.44646(cid:41) ((2266)) l J = J (27) g l J =−J +α ⋅ g⋅D (28) g l sf i Minerals2017,7,143 9of20 J = J (27) Minerals 2017, 7, 143 g l 9 of 20 (cid:112) J = −J +α · g·D (28) g l sf i J ⋅ρ0.5 =3.1⋅σ⋅g⋅(ρ−ρ)0.25 (29) J ·ρ0g.5 =g3.1·(cid:2)σ·g·(cid:0)ρ −l ρ (cid:1)g(cid:3)0.25 (29) g g l g ininw hwihchichσ iσs t hise tshuer fsaucrefatceen steionnsioonf tohfe thlieq uliiqdu(idN /(Nm/2m),2)α, sαf sifs ais faa cftaocrtowr hwichhicihs iisn flinufelunecnedcedby btyh tehe airaliirfltiifntigngg egoemometreitersie.s.E Eququataitoinon( 2(52)5)d edpeipcitcstst hteher ergeigmimeetr atrnasnitsiiotinonfr ofrmomb ubbubblbeleto tosl usgluflg ofwlo.wT. hTehe folfloolwloiwnginEgq uEaqtuioantiso(n2s6 )–(2(269)–)(a2r9e) coarrere scpoornredsipnogntdoibnugb btoly btoubdbislpy ertose ddibsupbebrslyedfl obwu,bfbrolyth ftloowdi,s pfreorsthed to budbibsplyerflsoewd, bsulubgbltyo ffrloowth, flslouwg, taon dfrofrtoht hflotowa, nannudl afrroflthow to. Faingnuurela4r dfleopwic. tFsitghuercea 4lc duelaptiicotns trheseu clatslcouflathtieon florwesureltgsi mofe t.he flow regime. Figure 4. Flow regime figure combining the experimental results of Yoshinaga and Sato and Kassab Figure 4. Flow regime figure combining the experimental results of Yoshinaga and Sato and et al. [3,6]. Kassabetal.[3,6]. Analyzing Figure 4, most of the flow regimes in Yoshinaga and Sato, and Kassab’s experiments AnalyzingFigure4,mostoftheflowregimesinYoshinagaandSato,andKassab’sexperiments are froth flows, which is limited by the small-scaled gas flux rate. However, for the case studies in arefrothflows,whichislimitedbythesmall-scaledgasfluxrate. However,forthecasestudiesinthis this paper, as the gas flux rates change from 30 to 180 m/s, all the flow regimes in the following paper,asthegasfluxrateschangefrom30to180m/s,alltheflowregimesinthefollowingcalculation calculation system are annular flows. Therefore, besides the scale effects between the up-scaled systemareannularflows. Therefore,besidesthescaleeffectsbetweentheup-scaledmodelandan model and an industrial scaled prototype of airlifting model, flow pattern differences should also be industrialscaledprototypeofairliftingmodel,flowpatterndifferencesshouldalsobeconsideredin considered in the future research. thefutureresearch. 3.2. Solid Production Rate Analysis 3.2. SolidProductionRateAnalysis Solid production rate is an important parameter in DSM, which determines the gross income SolidproductionrateisanimportantparameterinDSM,whichdeterminesthegrossincome directly; see Equation (19). In this section, the relationships between solid production rate and directly; see Equation (19). In this section, the relationships between solid production rate and submergence ratio, mining depth, pipe diameter, particle diameter, and gas flux rate are researched. submergenceratio,miningdepth,pipediameter,particlediameter,andgasfluxrateareresearched. The parameter changing ranges of airlifting in DSM systems are given as Table 1. TheparameterchangingrangesofairliftinginDSMsystemsaregivenasTable1. Table 1. The parameters of the airlifting system in DSM. Table1.TheparametersoftheairliftingsysteminDSM. Parameters S (-) d (mm) D (m) Jg (m/s) H (m) r s i Parameters RSanrg(-e) 0.985–1d.0s0(0m m)1.0–50.0 0D.2i5(m–0).40 30–18J0g (m/5s0)0–6000 H(m) Range 0.985–1.000 1.0–50.0 0.25–0.40 30–180 500–6000 Figure 5 depicts the relationship between the solid production rate and submergence ratio at different mining depth and gas flux rate with pipe diameter of 0.40 m and particle diameter of 5.0 mm. Analyzing Figure 5a–d, it is obvious that with the same gas flux rate the solid production rate of airlifting decreases with the increase of mining depth on the whole. Additionally, when the submergence ratio is set to be 1.000, 0.995, 0.990, and 0.985 respectively, there are not so many differences between these calculating conditions. Although with a small changing amplitude, by Minerals2017,7,143 10of20 Figure 5 depicts the relationship between the solid production rate and submergence ratio at different mining depth and gas flux rate with pipe diameter of 0.40 m and particle diameter of 5.0mm. AnalyzingFigure5a–d,itisobviousthatwiththesamegasfluxratethesolidproduction rate of airlifting decreases with the increase of mining depth on the whole. Additionally, when Minerals 2017, 7, 143 10 of 20 thesubmergenceratioissettobe1.000, 0.995, 0.990, and0.985respectively, therearenotsomany dainffaelryeznincegs tbheet wdeaetna, thite spercoavlceus lathtiantg lcaorngderi tisounbsm. Aerlgthenocueg hrawtiiot hmaasym aallsloc hraenpgriensgenatm lparligteurd es,obliyd apnraoldyuzicntigotnh eradtea twa,iitthp trhoev essamthea tglaasr gfelurxs urabtme.e Irtg ecnance brea teioxpmlaaiyneadls oasr etpharet sae nlatrlgaregr esrusbomliderpgreondcue crtaiotino raaltseo wmiethanths elifstainmge ag raeslafltuivxe rsamtea.llIetrc vanerbtiecaelx dpilsatiannecde awshtehna tthael amrgineirnsgu dbempethrg iesn tchee rsaatmioea. lTsohemreefaonres, laifnti naigrlaifrtienlagt isvyestsemma lclaenr vlieftr tmicaolred imstiannecrealws hweintht hae lamrgineirn sgudbempetrhgiesntchee rsaatmioe. .ATsh seurbefmoreer,gaenncaei rrlaifttiion gis sayns tiemmpcoarntalniftt pmaorarmemetienre irna lasiwrliiftthinagl asrygsetermsu, bthmee crgalecnucleatriaotnio h.eAres sisu bcomnedrguecntecde troa thioavisea anni minpsiogrhtat notf pitasr aimnfeluteernicninagi rloinft iningdsuyssttreiaml ,stchaelecda lcDuSlaMti ownohrekriengis ccoonnddiuticotends. toHhoawveevaenr, intaskiginhgt oifnittos iancflcouuenntc itnhge oanctuinadl uwstorrikailnsgc acloenddDitSioMnsw, tohrek ivnagluceosn odfi tsiuonbms.eHrgoewnceev erar,titoa ksihnogulidn tonoatc bcoe utnoto tshmeaalcl,t uwahliwcho rrkainngge cforonmdi t0io.9n8s5, tthoe 1v.0a0l0u.e Fsuorftshuebrmmoerreg,e wncheerna ttihoes mhoinuilndgn dotepbteht oiso ssemt tahlle, wsahmiceh, ara lnarggeefrr ogmas 0f.l9u8x5 rtaote1 .m00a0y. Fnuortt hperormduocree ,aw lharegnetrh seomlidin pinrogdduecptitohni srasteet. tFhoers ianmstea,nacela, rigne Friggausrefl u5xa rwahteenm tahyen motinpirnogd duecpetah laisr g5e0r0 saonlidd 1p0r0o0d umct iroenspraetcet.ivFeolry,i ntshtea nacier,liifntinFgig usyrest5eamw wheitnht hgeasm filnuixn gradteep othf i7s05 0a0ndan 9d01 m00/0s mtrarnessppeocrttisv ethlye, tmheaxaiimrliuftmin mgsinyesrteamls owf i4t9h7g.9a sanfldu 4x2r8a.t0e toofn7/h0 raensdpe9c0timve/lys. tHraonwspeovretrs, ath learmgearx gimasu fmluxm rianteer malasyo fal4w97a.y9s arnedpr4e2s8e.n0t toan l/ahrgreers preacntgivee loyf. Hapopwliecvaebrl,ea mlairngienrgg adseflptuhx. rFaoter minasytaanlcwea, yisn reFpigruesreen 5tca, lathrge emrraaxnigmeuomf aapppplliiccaabblelem mininininggd depeptht.hFs oorf ignastsa fnlcuex, irnatFei gouf r3e05, c5,0t,h 9e0m aanxdim 1u50m map/sp alircea b1l0e0m0, i2n0in0g0,d 3e5p0t0h sanofdg 4a5s0fl0u mx rraetsepoefct3i0v,e5ly0., F9o0ra tnhde a1i5r0lifmti/ngs asryest1e0m00 w,2it0h0 g0,a3s 5fl0u0xa rnadte4 o5f0 108m0 mre/ssp aetc mtivineilny.g Fdoerptthhe oaf i1rl0i0ft0i nmg, styhsetreem is wa itshudgdasenfl udxercarteeasoef 1o8f0 smol/ids aptrmodinuicntgiodne rpatthe.o fIt1 0co00ulmd ,bthe eerxepislaainseudd daesn tdhaect rseoalsiedo pfrsoodliudcptiroond uracttieo nis riantfelu. Ietnccoeudl dbyb eboexthp ltahien eindcaresatsheadt saoirlildiftpinrogd euffcitciioenncrya taenisd itnhfleu meninceindgb dyebpotthh wthheicihn chreaavsee dthaei rcloifntfinligct eefffifecicetn ocny tahned ptehrefomrminainngcedse opft haiwrlihfitcinhgh sayvsetethme. c onflicteffectontheperformancesofairliftingsystem. Figure 5. Figure of solid production rate Qs influenced by submergence ratio S at different Figure5. FigureofsolidproductionrateQsinfluencedbysubmergenceratioSratdiffrerentmining dmepinthinHg daenpdthg asHfl uaxnrda tgeaJsg f.luTxh erastuebJmge. rTghene cseurbamtioerogfe(nac–ed r)aatrieo 1o.f0 0(a0–,d0.)9 a9r5e, 01..909000,, 00..998955,,r 0e.s9p9e0c,t i0v.9e8ly5., respectively. Figure 6 depicts the relationship between the solid production rate and pipe diameter at different mining depths and gas flux rate with the submergence ratio of 0.990 and particle diameter of 5.0 mm. Analyzing Figure 6a–d, a larger pipe diameter can increase the solid production rate significantly. For instance, when the mining depth is 500 m and gas flux rate is 70 m/s, the solid production rate is 487.6 ton/h in Figure 6a with a pipe diameter of 0.40 m and 143.8 ton/h in Figure 6d with a pipe diameter of 0.25 m. Additionally, a larger pipe diameter may also represent a larger

Description:
and gas flux rate are investigated. The analysis is based on a numerical calculation performed in a. Matlab environment. The research reported in this
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.