ebook img

techno economic analysis of stand-alone hybrid renewable energy system hanieh borhanazad ... PDF

100 Pages·2013·2.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview techno economic analysis of stand-alone hybrid renewable energy system hanieh borhanazad ...

TECHNO ECONOMIC ANALYSIS OF STAND-ALONE HYBRID RENEWABLE ENERGY SYSTEM HANIEH BORHANAZAD RESEARCH PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR 2013 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: HANIEH BORHANAZAD (I.C/Passport No: Registration/Matric No: KGI100003 Name of Degree: Master of Engineering (Electro-Manufacturing) Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): TECHNO ECONOMIC ANALYSIS OF STAND-ALONE HYBRID RENEWABLE ENERGY SYSTEM Field of Study: Electrical I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. Candidate’s Signature Date Subscribed and solemnly declared before, Witness’s Signature Date Name: Designation: ii ABSTRACT Decentralized electricity generation by renewable energy sources is considered as a solution for remote area’s electrification. However, intermittent nature of these sources leads to develop sizing rules and use hybrid systems to exploit them. This study proposes an integrated PV/wind hybrid system, with battery storage and diesel generator as a backup. Optimization method utilizes the iterative optimization technique following the loss of power probability and the cost of electricity for power reliability and system costs. The optimal size of hybrid energy conversion system founded in this study can be performed technically and economically according to the system reliability requirements. In addition, a sensitivity analysis was carried out on the PV contribution as the most important parameters influencing the economic performances of the hybrid system. This investigation is executed as a techno-economic analysis to design an optimum autonomous hybrid PV-wind-diesel-battery system to meet the load in remote areas of Malaysia The hybrid system with 56-61% of photovoltaic energy penetration combined with wind turbines, diesel generator with a rated power, and storage batteries was found to be an optimal system and economically feasible one. iii ABSTRAK Kuasa penjanaan elektrik oleh sumber tenaga boleh baharu dianggap sebagai penyelesaian kepada elektrifikasi kawasan pedalaman. Walau bagaimanapun, sifat berkala sumber-sumber ini mewujudkan peraturan ukuran dan menggunakan sistem hibrid untuk mengeksploitasi mereka. Kajian ini mencadangkan sistem hibrid bersepadu PV / angin, dengan penyimpanan bateri dan penjana diesel sebagai sokongan. Kaedah optimum menggunakan teknik lelaran optimum adalah berikutan kebarangkalian kehilangan kuasa dan kos elektrik terhadap kebolehpercayaan kuasa dan kos sistem. Sistem penukaran tenaga hibrid yang diasaskan dalam kajian ini dipercayai baik secara teknikal dan ekonomi. Di samping itu, analisis kepekaan telah dijalankan dan sumbangan PV sebagai parameter penting dalam mempengaruhi prestasi ekonomi sistem hibrid. Kajian mengkaji teknologi dan eknomi analisis terhadap system hybrid. Ini kerana kami ingin mengoptimkan sebaik mungkin sistem hibrid yang mampu memenuhi keperluan dan harga yang rendah dengan tenaga yang boleh dipercayai Sistem hibrid dengan 66% penembusan tenaga fotovoltaik yang digabungkan dengan turbin angin, penjana diesel dengan kuasa tertinggi, dan bateri penyimpanan telah ditemui sebagai sistem yang optimum dan ekonomi tersaur iv ACKNOWLEDGEMENT This research project would not have been possible without the support of many people. First of all I would like to take this opportunity to express my deepest gratitude to my supervisors, Prof. Dr. Saad Mekhilef and Prof. Dr. Velappa Gounder Ganapathy who were abundantly helpful and offered invaluable assistance, support and guidance. I wish to express my deep sense of gratitude to the officials and other staff members of University of Malaya for their able guidance and useful suggestions, which helped me in completing the project work, in time. I would also like to convey thanks to the Ali Mirtaheri for his kind co-operation, and Prof. Dr. Saidur Rahman Abdul Hakim for his help in gathering the necessary data and information needed for this compilation. I would like to express my eternal gratitude to my parents and family for their everlasting love and support. Special thanks also go to my friends. To others who have helped me either directly or indirectly, your help will always be remembered. Last but not least, thank you all. v CONTENTS Contents CHAPTER 1 ......................................................................................................... 1 INTRODUCTION .......................................................................................... 1 1.1 Introduction ............................................................................................. 1 1.2 Problem Statement .................................................................................. 2 1.3 Motivation ............................................................................................... 3 1.4 Project Objective ..................................................................................... 4 1.5 Thesis Outline .......................................................................................... 4 CHAPTER 2 ......................................................................................................... 5 LITERATURE REVIEW ............................................................................... 5 2.1 Introduction ............................................................................................. 5 2.2 Modeling ................................................................................................. 6 2.2.1 Photo Voltaic (PV) Technology and Modeling ................................. 7 2.2.2 Wind turbine technology and Modeling .......................................... 12 2.3 Battery technology and modeling .......................................................... 18 2.4 Diesel generator ..................................................................................... 21 2.5 DC/AC Converter (Inverter) ................................................................. 22 2.6 Criteria for optimization of hybrid renewable energy systems ............. 23 2.6.1 Economic criteria of hybrid renewable energy systems .................. 23 vi 2.6.2 Net present cost (NPC) .................................................................... 23 2.6.3 Cost of energy (COE) ...................................................................... 23 2.7 Technical criteria of hybrid renewable energy systems ........................ 25 2.7.1 Reliability ........................................................................................ 25 2.8 Design of hybrid systems ...................................................................... 26 2.9 Sizing and optimization methods .......................................................... 31 2.9.1 Software for optimization ................................................................ 33 2.9.2 Computational optimization ............................................................ 34 2.10 Conclusion ......................................................................................... 38 CHAPTER 3 ....................................................................................................... 39 METHODOLOGY ....................................................................................... 39 3.1 Introduction ........................................................................................... 39 3.2 Simulation Approach ............................................................................. 39 3.2.1 Load profile ..................................................................................... 40 3.2.2 Power management strategies ......................................................... 41 3.3 Particle swarm optimization .................................................................. 46 3.4 Reliability and economic analysis ......................................................... 49 3.4.1 Reliability ........................................................................................ 49 3.4.2 Economic analysis ........................................................................... 50 3.5 Optimization programming ................................................................... 50 3.6 Summary ............................................................................................... 53 CHAPTER 4 ....................................................................................................... 54 vii RESULTS ..................................................................................................... 54 4.1 Introduction ........................................................................................... 54 4.2 Renewable energy outputs ..................................................................... 54 4.2.1 Wind output ..................................................................................... 54 4.2.2 PV output ......................................................................................... 57 4.3 Economic analysis ................................................................................. 59 4.3.1 Techno-economic analysis of HRES ............................................... 61 4.3.2 Output power of PV versus increasing the load demand ................ 63 4.4 Particle swarm optimization (PSO) ....................................................... 67 4.5 Conclusion ............................................................................................. 69 CHAPTER 5 ....................................................................................................... 71 DISCUSSIONS ............................................................................................. 71 5.1 Introduction ........................................................................................... 71 5.2 Design considerations of the HRES for one house ............................... 71 5.2.1 Design of battery bank .................................................................... 71 5.2.2 Bidirectional inverter ....................................................................... 71 5.2.3 Charge controller ............................................................................. 72 5.2.4 Design of stand-alone hybrid system .............................................. 72 5.3 Design considerations of the HRESs in micro-grid configuration ........ 73 5.3.1 Design of battery bank .................................................................... 74 5.3.2 Design of micro-grid hybrid system ................................................ 75 5.4 Optimum configuration in literatures .................................................... 75 viii 5.5 Conclusion ............................................................................................. 76 CHAPTER 6 ....................................................................................................... 77 CONCLUSION ............................................................................................. 77 6.1 Conclusion ............................................................................................. 77 6.2 Recommendation for Future Work ........................................................ 78 ix LIST OF FIGURES Figure 2-1:Classification of PV systems ............................................................... 8 Figure 2-2: Calculating the fill factor (FF) from the I-V curve .......................... 10 Figure 2-3: PV module ........................................................................................ 10 Figure 2-4: Power curve for typical wind turbine ............................................... 17 Figure 2-5. Block diagram of hybrid Wind -Micro turbine system .................... 28 Figure 2-6: Pv-micro turbine-battery hybrid system schematic .......................... 29 Figure 2-7: Block diagram of a hybrid wind/photovoltaic generation unit. ....... 30 Figure 2-8: System configuration of multisource alternative hybrid energy system. ................................................................................................................. 30 Figure 2-9: Architecture of HOMER software. .................................................. 34 Figure 2-10: Optimization of hybrid systems. .................................................... 35 Figure 3-1: Hourly typical rural household load profile (kW) ............................ 40 Figure 3-2: Main flowchart of the hybrid system ............................................... 43 Figure 3-3: Flowchart of charging mode of operation ........................................ 44 Figure 3-4: Flowchart of the discharging mode of operation ............................. 45 Figure 3-5: Flowchart of the diesel mode of operation ....................................... 46 Figure 3-6: PSO flowchart .................................................................................. 48 Figure 3-7: General model of hybrid system programming................................ 51 Figure 4-1: Hourly wind speed data in Malaysia ................................................ 56 Figure 4-2:Average daily output power from wind turbine in Malaysia ............ 57 Figure 4-3: Average monthly ambient temperature. ........................................... 58 Figure 4-4: Average daily output power from PV in Malaysia .......................... 59 Figure 4-5: Price of electricity for one house ($/kW) ......................................... 62 x

Description:
system. This investigation is executed as a techno-economic analysis to design an optimum autonomous hybrid PV-wind-diesel-battery system to The hybrid system with 56-61% of photovoltaic energy penetration combined I wish to express my deep sense of gratitude to the officials and other staff.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.