Teaching Mathematical Knowledge for Teaching: Curriculum and Challenges by Yeon Kim A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Education) in The University of Michigan 2013 Doctoral Committee: Professor Deborah Loewenberg Ball, Chair Professor Hyman Bass Professor Edward A. Silver Research Scientist Mark Hoover Thames © Yeon Kim 2013 ACKNOWLEDGEMENTS I enjoyed every step of the way, but the work was not easy. Without amazing guidance and encouragement, I could not have finished it at all. First and foremost, I would like to express my gratitude to my committee members. My advisor, Deborah Loewenberg Ball, has given me guidance, support, and motivation throughout my doctoral studies and this dissertation. Without her encouragement, it would not have been possible. I thank Mark Thames for his detailed feedback and helpful suggestions at each stage of my research and on all my drafts. The quality of my research has greatly improved through his valuable and endless comments and guidance. I would also like to thank Ed Silver for his insightful questions and comments. His guidance was influential in clarifying the process of my research and helping me always keep in mind the contribution of my work to the field of mathematics education. I also thank Hy Bass for his fundamental perspective of both mathematics and teaching practice. He has shaped my thinking with his comments. I also have had the opportunities to work with him and learned a lot his care in thinking as a researcher. All of their advice and comments were invaluable to the success of this dissertation. I gratefully acknowledge the kind and warm support from courses and projects in which I participated at the University of Michigan. Thank you to Vilma Mesa for her warm and kind concerns for me and to Kara Suzuka for her IRB help and for beginning this research through the mod4 project. I also thank everyone in suite 1600, which was always full of kind people. I was fortunate to have the financial support of several organizations: the mod4 project, the Mathematics Teaching and Learning to Teach project, Rackham Graduate School, and the School of Education. I am grateful to have had this support. In addition, I would like to thank the nine participants in this research. Without them, this research could not have been conducted. I would never have survived graduate school and finalized my writing without the support of my colleagues and friends, particularly, Yvonne, Shweta, Yaa, Jenny, Hyun- Ju, Shanta, Cathy, Lok-Sze, and Anita. They have been a crucial part of my life at Ann Arbor. Many thanks to all of them for unforgettable years. ii Finally, I would like to express my loving appreciation to my husband, Changsun Ahn, my parents, and my younger brother. Their sustained love and support made this work possible. I have just turned one corner of my life; the next has already begun. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ............................................................................................................ x LIST OF APPENDICES .................................................................................................. xiii ABSTRACT ..................................................................................................................... xiv CHAPTER 1 THE RESEARCH PROBLEM ..................................................................... 1 1.1 Introduction .............................................................................................................. 1 1.1.1 Purpose of the study ........................................................................................ 3 1.2 Overview of Study ................................................................................................... 5 1.2.1 Premise of the study ........................................................................................ 5 1.2.2 Research questions .......................................................................................... 8 1.2.3 MKT in teacher education ............................................................................. 11 1.2.4 Contribution to the field ................................................................................ 12 1.3 Organization of the Dissertation ............................................................................ 13 CHAPTER 2 FOUNDATIONS IN LITERATURE ......................................................... 14 2.1 Introduction ............................................................................................................ 14 2.2 Dynamics in Teaching Phenomena and Attention ................................................. 15 2.2.1 What instructors attend to in the classroom .................................................. 15 2.2.2 Instruction and its components ..................................................................... 17 2.2.3 Dynamics of teaching in mathematics teacher education ............................. 19 2.3 Curriculum in Mathematics Teacher Education .................................................... 25 2.3.1 Content for mathematics teacher education .................................................. 26 2.3.2 Mathematical knowledge for teaching (MKT) ............................................. 28 2.4 Attributes of Mathematical Definitions ................................................................. 32 2.4.1 Mathematical definitions in teaching practice .............................................. 32 2.4.2 Attributes of mathematical definitions in disciplinary mathematics ............ 34 iv 2.5 Mathematical Work in Teaching ............................................................................ 42 2.5.1 Work of teaching in educational research ..................................................... 43 2.5.2 Work of teaching related to mathematical definitions .................................. 46 CHAPTER 3 METHODS OF DATA COLLECTION AND ANALYSIS ...................... 48 3.1 Introduction ............................................................................................................ 48 3.2 Data Collection....................................................................................................... 49 3.2.1 Curriculum materials ..................................................................................... 49 3.2.2 Video recordings ........................................................................................... 53 3.3 Data Analysis ......................................................................................................... 60 3.3.1 Investigating research question: Developing a framework for mathematical work of teaching ..................................................................... 60 3.3.2 Investigating research question: Developing a framework for knowledge about mathematics ...................................................................... 69 3.3.3 Investigating research question: Conceptualizing what challenges teacher educators face and what teacher educators need to pay attention to in teaching MKT ........................................................................ 70 3.4 Limitations of Study ............................................................................................... 71 CHAPTER 4 THE COMPLEXITY OF TEACHING MATHEMATICAL KNOWLEDGE FOR TEACHING .................................................................. 74 4.1 Introduction ............................................................................................................ 74 4.2 Lesson from Curriculum Materials on Hearing Definitions in Children’s Talk ......................................................................................................................... 75 4.3 Matthew’s Lesson on Evaluating Definitions ........................................................ 94 4.4 Emily’s Lesson on Explaining Why the Units Digit Rule Works ....................... 114 CHAPTER 5 CHALLENGES OF TEACHING MATHEMATICAL KNOWLEDGE FOR TEACHING ................................................................ 127 5.1 Introduction .......................................................................................................... 127 5.2 Establishing the Focus of an Activity .................................................................. 130 5.2.1 Giving and specifying an activity ............................................................... 131 5.2.2 Helping teachers understand an intended activity ....................................... 135 5.2.3 Identifying purposes of an activity .............................................................. 139 v 5.3 Recognizing Mathematical Issues ........................................................................ 140 5.3.1 Identifying and acknowledging teachers’ ideas .......................................... 141 5.3.2 Responding to help teachers have appropriate ideas................................... 142 5.3.3 Identifying mathematical features of teachers’ statements ......................... 143 5.4 Focusing on Mathematical Articulation and Interpretation ................................. 144 5.4.1 Specifying mathematical terms, facts, and relations ................................... 145 5.4.2 Identifying mathematical objects ................................................................ 146 5.4.3 Identifying mathematically appropriate ideas and interpretation................ 147 5.4.4 Using examples for mathematical investigation ......................................... 148 5.5 Emphasizing Ways of Mathematical Thinking .................................................... 150 5.5.1 Asking key questions repeatedly and intentionally ..................................... 151 5.5.2 Explaining mathematical practice ............................................................... 152 5.5.3 Giving comments for teaching practice ...................................................... 153 5.6 Managing Mathematical Ideas ............................................................................. 154 5.6.1 Situating teachers on or away from the context of K-9 classrooms ............ 155 5.6.2 Staying on a mathematical topic ................................................................. 156 5.6.3 Giving mathematical assistance .................................................................. 158 5.6.4 Engineering engagement in mathematical practice..................................... 159 5.6.5 Having mathematical consistency ............................................................... 161 5.6.6 Doing manipulative preparation .................................................................. 162 5.7 Conclusion ........................................................................................................... 164 CHAPTER 6 FRAMEWORK FOR CURRICULUM TO TEACH MATHEMATICAL KNOWLEDGE FOR TEACHING .............................. 165 6.1 Introduction .......................................................................................................... 165 6.2 Conceptualization of Mathematical Work of Teaching as Content in Mathematics Teacher Education .......................................................................... 168 6.2.1 Zoomed-out mathematical work of teaching .............................................. 170 6.2.2 Zoomed-in mathematical work of teaching ................................................ 188 6.3 Conceptualization of Knowledge about Mathematics as Content in Mathematics Teacher Education .......................................................................... 230 6.3.1 Disciplinary facts and structures ................................................................. 231 vi 6.3.2 Mathematical awareness ............................................................................. 234 6.3.3 Mathematical value ..................................................................................... 239 6.4 Conclusion ........................................................................................................... 242 6.4.1 Potential contributions and uses .................................................................. 244 6.4.2 Limitations .................................................................................................. 246 CHAPTER 7 MATHEMATICAL KNOWLEDGE FOR TEACHING IN TEACHER EDUCATION: CONCLUSIONS AND THE NEXT STEP .............................................................................................................. 248 7.1 Summary of Dissertation ..................................................................................... 248 7.2 Potential Contributions to Research in Education ............................................... 252 7.2.1 Talking about MKT in terms of mathematics teacher education ................ 252 7.2.2 Managing MKT in mathematics teacher education .................................... 253 7.2.3 Having a foundation to set up a curriculum to teach MKT......................... 254 7.3 Next Steps: Beginning this Line of Work ............................................................ 255 7.3.1 Using the framework to analyze the curriculum materials and teacher educators’ lessons to teach MKT .................................................... 255 7.3.2 Using the framework to analyze different curriculum materials and diverse teacher educators’ lessons to teach MKT ....................................... 256 7.3.3 Studying both MKT in terms of teacher education and MKT in the practice of teaching ..................................................................................... 257 7.3.4 Developing a tool for teacher educators’ reflection .................................... 258 BIBLIOGRAPHY ........................................................................................................... 273 vii LIST OF TABLES Table 3.1 Lessons in the Curriculum Material, Using Definitions in Learning and Teaching Mathematics ............................................................................ 51 Table 3.2 Teacher Educators’ Major and Teaching Experience ...................................... 54 Table 3.3 Teacher Educators’ Classes ............................................................................. 54 Table 3.4 Teacher Educators’ Experience of Teaching MKT .......................................... 55 Table 3.5 Participants and Lessons that were Observed for This Research .................... 56 Table 3.6 Participants and Video Recordings .................................................................. 58 Table 5.1 Summary of the Establishing of the Focus of an Activity ............................... 140 Table 5.2 Summary of the Recognizing Mathematical Issues......................................... 144 Table 5.3 Summary of the Focusing on Mathematical Articulation and Interpretation ............................................................................................... 150 Table 5.4 Summary of the Emphasizing Ways of Mathematical Thinking ..................... 154 Table 5.5 Summary of the Managing Mathematical Ideas ............................................. 163 Table 6.1 The Basic Structure of Zoomed-Out Mathematical Work of Teaching .......... 171 Table 6.2 Specification of Making Decisions regarding One Lesson ............................. 174 Table 6.3 Specification of Making Decisions regarding a Long Period ........................ 178 Table 6.4 Specification of Unpacking Mathematics ideas .............................................. 181 Table 6.5 Specification of Situating in Mathematics ...................................................... 184 Table 6.6 Specification of Using Language Mathematically .......................................... 187 Table 6.7 The Basic Structure of Zoomed-In Mathematical Work of Teaching ............ 189 Table 6.8 Specification of Recognizing and Articulating Mathematical Objects in Teaching and Its Examples ...................................................................... 196 Table 6.9 Specification of Probing, Interpreting and Comparing Mathematical Objects in Teaching and Its Examples ......................................................... 205 Table 6.10 Specification of Evaluating and Judging Mathematical Objects in teaching ........................................................................................................ 214 viii Table 6.11 Specification of Selecting and Modifying Mathematical Objects in teaching ........................................................................................................ 220 Table 6.12 Specification of Constructing Mathematical Objects in Teaching ............... 227 ix