ebook img

Taylor Expansions and Numerical Approximations for Stochastic Partial Differential Equations PDF

212 Pages·2010·3.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Taylor Expansions and Numerical Approximations for Stochastic Partial Differential Equations

TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Taylor Expansionsand Numerical Approximationsfor Stochastic Partial Differential Equations A.Jentzen JointworkswithP.E.KloedenandM.Röckner FacultyofMathematics BielefeldUniversity 12thAugust2010 A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Content 1 TaylorexpansionsforSODEs 2 TaylorexpansionsforSPDEs 3 AnewnumericalmethodforSPDEswithnon-additivenoise 4 AnewnumericalmethodforSPDEswithadditivenoise A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Content 1 TaylorexpansionsforSODEs 2 TaylorexpansionsforSPDEs 3 AnewnumericalmethodforSPDEswithnon-additivenoise 4 AnewnumericalmethodforSPDEswithadditivenoise A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs

Description:
Joint works with P. E. Kloeden and M. Röckner. Faculty of Mathematics. Bielefeld University. 12th August 2010. A. Jentzen. Taylor Expansions for SPDEs
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.