Taylor Approximations for Stochastic Partial Differential Equations cB83_Jentzen_fM.indd 1 9/28/2011 3:28:57 PM This page intentionally left blank CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. Garrett Birkhoff, The Numerical Solution of Elliptic Equations D. V. Lindley, Bayesian Statistics, A Review R. S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis R. R. Bahadur, Some Limit Theorems in Statistics Patrick Billingsley, Weak Convergence of Measures: Applications in Probability J. L. Lions, Some Aspects of the Optimal Control of Distributed Parameter Systems Roger Penrose, Techniques of Differential Topology in Relativity Herman Chernoff, Sequential Analysis and Optimal Design J. Durbin, Distribution Theory for Tests Based on the Sample Distribution Function Sol I. Rubinow, Mathematical Problems in the Biological Sciences P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. Schoenberg, Cardinal Spline Interpolation Ivan Singer, The Theory of Best Approximation and Functional Analysis Werner C. Rheinboldt, Methods of Solving Systems of Nonlinear Equations Hans F. Weinberger, Variational Methods for Eigenvalue Approximation R. Tyrrell Rockafellar, Conjugate Duality and Optimization Sir James Lighthill, Mathematical Biofluiddynamics Gerard Salton, Theory of Indexing Cathleen S. Morawetz, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics Richard Askey, Orthogonal Polynomials and Special Functions L. E. Payne, Improperly Posed Problems in Partial Differential Equations S. Rosen, Lectures on the Measurement and Evaluation of the Performance of Computing Systems Herbert B. Keller, Numerical Solution of Two Point Boundary Value Problems J. P. LaSalle, The Stability of Dynamical Systems D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications Peter J. Huber, Robust Statistical Procedures Herbert Solomon, Geometric Probability Fred S. Roberts, Graph Theory and Its Applications to Problems of Society Juris Hartmanis, Feasible Computations and Provable Complexity Properties Zohar Manna, Lectures on the Logic of Computer Programming Ellis L. Johnson, Integer Programming: Facets, Subadditivity, and Duality for Group and Semi-Group Problems Shmuel Winograd, Arithmetic Complexity of Computations J. F. C. Kingman, Mathematics of Genetic Diversity Morton E. Gurtin, Topics in Finite Elasticity Thomas G. Kurtz, Approximation of Population Processes Jerrold E. Marsden, Lectures on Geometric Methods in Mathematical Physics Bradley Efron, The Jackknife, the Bootstrap, and Other Resampling Plans M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis D. H. Sattinger, Branching in the Presence of Symmetry R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis cB83_Jentzen_fM.indd 2 9/28/2011 3:28:57 PM Miklós Csörgo, Quantile Processes with Statistical Applications J. D. Buckmaster and G. S. S. Ludford, Lectures on Mathematical Combustion R. E. Tarjan, Data Structures and Network Algorithms Paul Waltman, Competition Models in Population Biology S. R. S. Varadhan, Large Deviations and Applications Kiyosi Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces Alan C. Newell, Solitons in Mathematics and Physics Pranab Kumar Sen, Theory and Applications of Sequential Nonparametrics László Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity E. W. Cheney, Multivariate Approximation Theory: Selected Topics Joel Spencer, Ten Lectures on the Probabilistic Method Paul C. Fife, Dynamics of Internal Layers and Diffusive Interfaces Charles K. Chui, Multivariate Splines Herbert S. Wilf, Combinatorial Algorithms: An Update Henry C. Tuckwell, Stochastic Processes in the Neurosciences Frank H. Clarke, Methods of Dynamic and Nonsmooth Optimization Robert B. Gardner, The Method of Equivalence and Its Applications Grace Wahba, Spline Models for Observational Data Richard S. Varga, Scientific Computation on Mathematical Problems and Conjectures Ingrid Daubechies, Ten Lectures on Wavelets Stephen F. McCormick, Multilevel Projection Methods for Partial Differential Equations Harald Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods Joel Spencer, Ten Lectures on the Probabilistic Method, Second Edition Charles A. Micchelli, Mathematical Aspects of Geometric Modeling Roger Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, Second Edition Glenn Shafer, Probabilistic Expert Systems Peter J. Huber, Robust Statistical Procedures, Second Edition J. Michael Steele, Probability Theory and Combinatorial Optimization Werner C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, Second Edition J. M. Cushing, An Introduction to Structured Population Dynamics Tai-Ping Liu, Hyperbolic and Viscous Conservation Laws Michael Renardy, Mathematical Analysis of Viscoelastic Flows Gérard Cornuéjols, Combinatorial Optimization: Packing and Covering Irena Lasiecka, Mathematical Control Theory of Coupled PDEs J. K. Shaw, Mathematical Principles of Optical Fiber Communications Zhangxin Chen, Reservoir Simulation: Mathematical Techniques in Oil Recovery Athanassios S. Fokas, A Unified Approach to Boundary Value Problems Margaret Cheney and Brett Borden, Fundamentals of Radar Imaging Fioralba Cakoni, David Colton, and Peter Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering Adrian Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis Wei-Ming Ni, The Mathematics of Diffusion Arnulf Jentzen and Peter E. Kloeden, Taylor Approximations for Stochastic Partial Differential Equations cB83_Jentzen_fM.indd 3 9/28/2011 3:28:57 PM Arnulf J EnTzEn Princeton university Princeton, new Jersey PETEr E. Klo EDEn Goethe university f rankfurt am Main, Germany Taylor Approximations for Stochastic Partial Differential Equations Soci ETy for inDuSTri Al AnD APPli ED MAThEMATicS Phil ADEl PhiA cB83_Jentzen_fM.indd 5 9/28/2011 3:28:58 PM Copyright © 2011 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Maple is a trademark of Waterloo Maple, Inc. Mathematica is a registered trademark of Wolfram Research, Inc. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Figure 3.1 and 6.1 used with permission from Springer. Figure 4.1 used with permission from Cambridge University Press. Figures 8.1-8.10 used with permission from the American Institute of Mathematical Sciences. Library of Congress Cataloging-in-Publication Data Jentzen, Arnulf. Taylor approximations for stochastic partial differential equations / Arnulf Jentzen, Peter E. Kloeden. p. cm. -- (CBMS-NSF regional conference series in applied mathematics ; 83) Includes bibliographical references and index. ISBN 978-1-611972-00-9 1. Stochastic partial differential equations. 2. Approximation theory. I. Kloeden, Peter E. II. Title. QA274.25.J46 2011 515'.353--dc23 2011029546 is a registered trademark. cB83_Jentzen_fM.indd 6 9/28/2011 3:28:58 PM Contents Preface xi ListofFigures xiii 1 Introduction 1 1.1 TaylorexpansionsforODEs . . . . . . . . . . . . . . . . . . . 1 1.1.1 TaylorschemesforODEs . . . . . . . . . . . . . 3 1.1.2 IntegralrepresentationofTaylorexpansions . . . 4 I RandomandStochasticOrdinaryDifferentialEquations 7 2 TaylorExpansionsandNumericalSchemesforRODEs 9 2.1 RODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 EquivalenceofRODEsandSODEs . . . . . . . . 10 2.1.2 SimplenumericalschemesforRODEs . . . . . . 12 2.2 Taylor-likeexpansionsforRODEs . . . . . . . . . . . . . . . 13 2.2.1 Multi-indexnotation . . . . . . . . . . . . . . . . 14 2.2.2 Taylorexpansionsofthevectorfield . . . . . . . 14 2.3 RODE–Taylorschemes . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Discretizationerror . . . . . . . . . . . . . . . . 17 2.3.2 ExamplesofRODE–Taylorschemes . . . . . . . 22 3 SODEs 25 3.1 ItôSODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Existence and uniqueness of strong solutions of SODEs . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.2 SimplenumericalschemesforSODEs . . . . . . 27 3.2 Itô–Taylorexpansions . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 IteratedapplicationoftheItôformula . . . . . . . 29 3.2.2 GeneralstochasticTaylorexpansions . . . . . . . 31 3.3 Itô–TaylornumericalschemesforSODEs . . . . . . . . . . . 32 vii viii Contents 3.4 Pathwiseconvergence . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1 NumericalschemesforRODEsappliedtoSODEs 36 3.5 Restrictivenessofthestandardassumptions. . . . . . . . . . . 37 3.5.1 CounterexamplesfortheEuler–Maruyamascheme 37 4 NumericalMethodsforSODEswithNonstandardAssumptions 43 4.1 SODEswithoutuniformlyboundedcoefficients . . . . . . . . 43 4.2 SODEsonrestrictedregions. . . . . . . . . . . . . . . . . . . 44 4.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . 46 4.3 Anothertypeofweakconvergence . . . . . . . . . . . . . . . 47 II StochasticPartialDifferentialEquations 51 5 StochasticPartialDifferentialEquations 53 5.1 RandomandstochasticPDEs . . . . . . . . . . . . . . . . . . 53 5.1.1 MildsolutionsofSPDEs. . . . . . . . . . . . . . 54 5.2 Functionalanalyticalpreliminaries . . . . . . . . . . . . . . . 55 5.2.1 Hilbert–Schmidtandtrace-classoperators . . . . 55 5.2.2 Hilbertspacevaluedrandomvariables . . . . . . 56 5.2.3 Hilbertspacevaluedstochasticprocesses . . . . . 56 5.2.4 InfinitedimensionalWienerprocesses. . . . . . . 56 5.3 Settingandassumptions . . . . . . . . . . . . . . . . . . . . . 57 5.4 Existence,uniqueness,andregularityofsolutionsofSPDEs . . 58 5.5 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.5.1 FinitedimensionalSODEs. . . . . . . . . . . . . 60 5.5.2 SecondorderSPDEs . . . . . . . . . . . . . . . . 60 5.5.3 FourthorderSPDEs . . . . . . . . . . . . . . . . 65 5.5.4 SPDEswithtime-dependentcoefficients . . . . . 67 6 NumericalMethodsforSPDEs 69 6.1 Anearlyresult . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2 Otherresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 TheexponentialEulerscheme . . . . . . . . . . . . . . . . . . 73 6.3.1 Convergence . . . . . . . . . . . . . . . . . . . . 74 6.3.2 Numericalresults . . . . . . . . . . . . . . . . . 75 6.3.3 Restrictivenessoftheassumptions . . . . . . . . 76 7 TaylorApproximationsforSPDEswithAdditiveNoise 79 7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.1 Propertiesofthesolutions . . . . . . . . . . . . . 83 7.2 Autonomization . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.3 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.1 SemigroupgeneratedbytheLaplacian . . . . . . 91 Contents ix 7.3.2 ThedriftasaNemytskiioperator . . . . . . . . . 92 7.3.3 Stochasticprocessasstochasticconvolution . . . 93 7.3.4 ConcreteexamplesofSPDEswithadditivenoise . 94 7.4 Taylorexpansions . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4.1 Integraloperators . . . . . . . . . . . . . . . . . 98 7.5 AbstractexamplesofTaylorexpansions . . . . . . . . . . . . 104 7.6 ExamplesofTaylorapproximations . . . . . . . . . . . . . . . 114 7.6.1 Space–timewhitenoise . . . . . . . . . . . . . . 114 7.6.2 TaylorapproximationsforanonlinearSPDE . . . 116 7.6.3 Smoothernoise . . . . . . . . . . . . . . . . . . 121 7.7 NumericalschemesfromTaylorexpansions . . . . . . . . . . 121 7.7.1 TheexponentialEulerscheme . . . . . . . . . . . 123 7.7.2 ARunge–KuttaschemeforSPDEs . . . . . . . . 124 8 TaylorApproximationsforSPDEswithMultiplicativeNoise 127 8.1 HeuristicderivationofTaylorexpansions . . . . . . . . . . . . 127 8.2 Settingandassumptions . . . . . . . . . . . . . . . . . . . . . 130 8.2.1 Stochasticheatequation . . . . . . . . . . . . . . 133 8.3 TaylorexpansionsforSPDEs . . . . . . . . . . . . . . . . . . 135 8.3.1 Integraloperators . . . . . . . . . . . . . . . . . 136 8.3.2 DerivationofsimpleTaylorexpansions . . . . . . 138 8.3.3 HigherorderTaylorexpansions . . . . . . . . . . 139 8.4 Stochastictreesandwoods . . . . . . . . . . . . . . . . . . . 140 8.4.1 Stochastictreesandwoods . . . . . . . . . . . . 140 8.4.2 Constructionofstochastictreesandwoods . . . . 142 8.4.3 Subtrees . . . . . . . . . . . . . . . . . . . . . . 145 8.4.4 Orderofstochastictreesandwoods . . . . . . . . 146 8.4.5 StochasticwoodsandTaylorexpansions . . . . . 147 8.5 ExamplesofTaylorapproximations . . . . . . . . . . . . . . . 149 8.5.1 AbstractexamplesofTaylorapproximations . . . 149 8.5.2 Applicationtothestochasticheatequation . . . . 151 8.5.3 FinitedimensionalSODEs. . . . . . . . . . . . . 152 8.6 NumericalschemesforSPDEs . . . . . . . . . . . . . . . . . 154 8.6.1 TheexponentialEulerscheme . . . . . . . . . . . 155 8.6.2 AninfinitedimensionalanalogueofMilstein’s scheme . . . . . . . . . . . . . . . . . . . . . . . 156 8.6.3 Linear-implicitEulerandCrank–Nicolson schemes . . . . . . . . . . . . . . . . . . . . . . 157 8.6.4 Globalandlocalconvergenceorders . . . . . . . 157 8.6.5 Numericalsimulations . . . . . . . . . . . . . . . 158 8.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.7.1 ProofofLemma8.3 . . . . . . . . . . . . . . . . 160 8.7.2 ProofofLemma8.5 . . . . . . . . . . . . . . . . 163
Description: