ebook img

Tau Lepton Reconstruction and Identification at ATLAS PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tau Lepton Reconstruction and Identification at ATLAS

Tau Lepton Reconstruction and Identification at ATLAS FelixFriedricha onbehalfoftheATLASCollaboration Institutfu¨rKern-undTeilchenphysik,TechnicalUniversityofDresden,Dresden,Germany Abstract. TauleptonsplayanimportantroleinthephysicsprogramattheLHC.Theyareusedinsearchesfor 2 newphenomenaliketheHiggsbosonorSupersymmetryandinelectroweakmeasurements.Identifyinghadron- 1 0 icallydecayingtauleptonswithgoodperformanceisanessentialpartoftheseanalyses.Wepresentthecurrent 2 statusof thetaureconstruction and identificationat theLHC withtheATLASdetector. Thetauidentification efficienciesandtheirsystematicuncertaintiesaremeasuredusingW → τνandZ → ττevents,andcompared n withthepredictionsfromMonteCarlosimulations. a J 6 1 Introduction 2 4 ] Tau leptons are important signatures for Standard Model n / 0.00 0.1 2Z0→11ττ d+iWjet→ dτaνta ∫dt L = 130 pb-1 A3 TpLroAnSgs PprTe>li2m0in GareyV x processes and searches for new physics. With a mass of ctio 0.08 a p-e s1h.7o7rt7lGifeeVtim, tehoeft2a.u9i×s1th0e−1h3sea(vcτies=t 8le7pµtomn),atnhdetdauueletoptoitns mple Fr 0.06 e decaysinsidethebeampipeoftheLHC[1].Thetaulepton Sa 0.04 h istheonlyleptonthathasahadronicdecaymode.Whileit 0.02 [ decaysin35%ofthetimeleptonically,thehadronicdecay 1 mode occurs 65% of the time. The majority of hadronic 00 0.020.040.060.08 0.1 0.120.140.160.18 0.2 v tau decays are characterized by one or three charged pi- ∆R max 6 ons usually accompanied by neutral pions. The kinemat- Fig.1.Maximaldistancebetweenatrackandthetauaxis,∆R . 6 ics of QCD jets are similar to that ofhadronicallydecay- max 4 Only tracks inside a cone of ∆R < 0.2 around the tau axis are ing τ leptons, leading to a high potential probability for 5 considered[3]. misidentifyingthemastauleptons.Inaddition,thecross- . 1 section of most of the Standard Model and new physics 0 processeswithtauleptonsinthefinalstatearesmallcom- energyiscalculatedusingallcalorimeterclusterswithina 2 pared to the overwhelming background from QCD pro- core of∆R < 0.2 aroundthe 4-vectorsum of clustersas- 1 cesses at LHC. Therefore well performing tau identifica- sociated with the jet seed. Calibration factors are derived : v tioniscrucial.InATLAS[2],taureconstructionandiden- from response functions using Monte Carlo simulations, i tification[3]concentratesonthehadronicdecaymodesof which comefromthe ratioof reconstructedtau energyto X ataulepton.Theyareclassifiedaccordingtothenumberof true visible tau energy. Response functions are functions ar reconstructedchargeddecayparticles(prongs).Thesede- dependentonthetautransversemomentumpT,andcalcu- cayscanbedifferentiatedfromQCD jetsbytheircharac- latedseparatelyforsingle-andmulti-prongtauleptons,as teristics,suchaslowtrackmultiplicity,collimatedenergy well as for different detector regions. The systematic un- deposits, and in case of 3-prongtau leptonsthe displace- certainties on the tau energy scale are fully derived from mentofthesecondaryvertex. MonteCarloandwerefoundtobe4%–7%[3]. 3 Identification 2 Reconstruction SincethereisnoattempttoseparateQCDjetsandtaulep- Calorimeterjetswithatransverseenergylargerthan10GeV tons in the reconstruction process a dedicated identifica- and within the detector acceptanceare used as a seed for tionstepisneeded.Itisbasedonvariableswhichprovide thereconstructionoftaucandidates.Trackswithinacone discrimination power between QCD jets and tau leptons. of∆R = p(∆φ)2+(∆η)2 < 0.4aroundthetau axispass- Whilethechargedtracksfromtheτleptondecayarecol- ingcertainqualitycriteriaareassociatedtothetaucandi- limated in a narrow cone, tracks from QCD jets are dis- dateandusedtocalculatethediscriminatingvariables.The tributedmorewidely(Figure1).Theenergydepositinthe numberof tracks within ∆R < 0.2 is used to classify the calorimeter is also collimated in a small area around the taucandidateintosingle-ormulti-prongcategories.Vari- tauaxis,whileforQCDjets,alargerareaisaffected(Fig- ablesbasedoncalorimeterinformationarecalculatedfrom ure2). Therearethreeindependentmethodsfortauiden- calorimetercellsin∆R < 0.4aroundthetauaxis.Thetau tification in ATLAS: a cut-based approach, placing rect- a e-mail:[email protected] angular cuts on variables, a projective likelihood (LLH) EPJWebofConferences 8 y mple Fraction / 0.00 0000....00111.82461 Z20→11ττ d+iWjet→ dτaνta ∫dt L = 130 pb-1 A1 TpLroAnSg pPT>re2li0m iGnaerVy ackground Efficienc 110023 CBLiDukteTslihood ATLAtaSu pPerrefolirmmiannacrey Sa 0.06 erse B 10 0.04 v In 2011 dijet data ∫dt L = 130 pb-1 0.02 1-prong, 20 GeV < p ≤ 40 GeV 0 1 T 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 R Signal Efficiency Cal Fig. 2. Energy weighted shower width in the calorimeter, R , Fig.4.Signalefficiencyversusinversebackgroundefficiencyfor Cal for tau signal Monte Carlo (red) and compared to QCD di-jet the different tau identification methods shown for 1-prong tau data(black)[3]. candidateswith20GeV< p <40GeV[3]. T 8 action / 0. 0.01.21 ATLAZ20→S11ττ Pd+irWjeetl→ imdτaiνtnaa ∫rydt L = 130 pb-1 3 prongs pT>20 GeV Efficiency 103 CBLiDukteTslihood ATLAtaSu pPerrefolirmmiannacrey Fr d mple 0.08 groun 102 Sa 0.06 ack B 0.04 erse 10 v 0.02 In 2011 dijet data ∫dt L = 130 pb-1 -020 -15 -10 -5 0 5 10 15 20 1 3-prong, 40 GeV < pT ≤ 100 GeV 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Likelihood Score Signal Efficiency Fig.3.Outputscoreoftheprojectivelikelihoodtauidentification Fig.5.Signalefficiencyversusinversebackgroundefficiencyfor method[3]. the different tau identification methods shown for 3-prong tau candidateswith40GeV< p <100GeV[3]. T method,usingthelog-likelihood-ratioofsignalandback- ground,andboosteddecisiontrees(BDT),tofindtheop- timal separation in a multi-dimensionalphase space. The ency 104 BDT-based electron veto ci Cut-based electron veto amreetsheopdasrautseelydtirffaeinreendtfsoertssinogflied-eanntdifimcautilotin-pvroarnigabtaleuscaannd- nd Effi 103 u o didates.Inaddition,thelikelihoodandBDTaretrainedfor gr differentnumbersofreconstructedverticesinordertotake ack 102 B ewviethntspiiglne-aulpeiffintcoieancccioeusnot.fT∼hre6e0d%ed,i∼cat4e5d%woarnkding∼po3i0n%ts nverse 10 AtaTuL pAerSforPmrealnimcienary I 1-prong, p > 20 GeV, | η| ≤ 1.37 (loose, medium, tight) are provided for all tau identifica- T tionmethods.ThelikelihoodoutputscoreisshowninFig- 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ure 3) for 3-prong tau candidates. For the training of the Signal Efficiency identification algorithms, the QCD background was ob- Fig.6.Signalefficiencyversusinversebackgroundefficiencyfor tainedfromdata,whilethetaudecaysignalwassimulated the different tau electron veto methods shown for 1-prong tau inW →τνandZ →ττMonteCarlosamples.Theinverse candidates with p > 20GeV inthecentral (barrel) part of the T background efficiency [3] versus signal efficiency for all detector[3]. threemethodsisshownfor1-prong(Figure4)low-p and T 3-prong(Figure5)high-p taucandidates. T Electronscanalsobemisidentifiedasataulepton.Due approachusingtheeventselectionfromtheATLASZ → tothesignatureoftheelectroninthedetector,theywillbe ττcross-sectionmeasurement[4].Eventsaretaggedwitha reconstructed mostly as a 1-prong tau-candidate. To dis- muonfromataudecay,andtheothertauleptonintheevent tinguish between electrons and such tau leptons two ve- isrequiredtodecayhadronically,formingtheprobethatis toes–acut-basedandboosteddecisiontree(BDT)-based used to measurethe identificationefficiency.The electro- – are available. The performanceof these electron vetoes weakbackgroundisdominatedbyW → µνandwasesti- isshowninFigure6. matedfromMonteCarlosimulation,whiletheQCDmulti- jetbackgroundwasobtainedbyadata-drivenmethod.The visible mass of the muon and the hadronic tau is shown 4 Identification Efficiency Measurements fordatabefore(Figure7)andafter(Figure8)applyingthe tight BDT tau identification and agrees well with Monte The performance and systematic uncertainties of the tau Carlo predictions. The tau identification efficiency was identificationmethodsareevaluatedondatausingtwodif- alsomeasuredusingW →τνeventscollectedin1.37fb−1 ferentsignalchannels.ThefirstmethodusesZ →ττevents ofATLASdata.Variablesbasedonthemissingtransverse in 800pb−1 ofATLASdata andrelieson a tag-and-probe energywereusedtoselecttheevents.Thenumberofhadronic 2011HadronColliderPhysicssymposium(HCP-2011) nts / 5 GeV 111468000000 Before tau ID ∫Ads tT= L L 7=A T 8eS0V0 Pprbe-l1iminary Events3500 Dτ a(Wta→ 20 τ1ν1) (1.37 fb-1) Eve 1200 DZ→ataττ 2 (0tr1u1th-matched) 3000 e (W→ eν) 1000 Z→ττ (non-truth-matched) Jet background Multijet 2500 800 W → µ ν W → τ ν ATLASPreliminary 600 Z → µ µ 2000 400 tt Before tau ID 200 1500 0 0 20 40 60 80 100 120 140 160 180 200 1000 m (µ,τ) [GeV] vis h 500 Fig.7.Visiblemassoftheselectedmuonandtaucandidatefor data and Monte Carlo simulation after full event selection, but 0 0 2 4 6 8 10 12 14 16 beforeapplyinganytauidentification.TheQCDmulti-jetback- Number of tracks groundwasobtainedbyadata-drivenmethod[3]. Fig. 9. Number of charged tracks for tau candidates after full GeV After tight BDT ID ∫dt L = 800 pb-1 event selection, but before applying any tau identification. The 5 250 s = 7 TeV threedifferenttemplatesareshown[3]. nts / ATLASPreliminary Eve 200 DZ→ataττ 2 (0tr1u1th-matched) 150 MWZ→u →ltτiτj eµ (t nνon-truth-matched) ents1400 Data 2011 (1.37 fb-1) 100 Z → µ µ Ev1200 τ (W→ τν) tWt → τ ν e (W→ eν) 50 1000 Jet background 00 20 40 60 80 100 120 140 160 180 200 800 ATLASPreliminary m (µ,τ) [GeV] vis h 600 After tau ID Fig.8.Visiblemassoftheselectedmuonandtaucandidatefor (Tight BDT working point) dataandMonteCarlosimulationafterfulleventselectionandap- 400 plyingthetightBDTtauidentification.TheQCDmulti-jetback- groundwasobtainedbyadata-drivenmethod[3]. 200 0 0 2 4 6 8 10 12 14 16 tau candidates are derived by a template fit of the track Number of tracks multiplicityofthetaucandidates.Threedifferenttemplates were used: real hadronic tau decays, electrons misidenti- Fig. 10. Number of charged tracks for tau candidates after full fiedastauleptons,andQCDmulti-jetsmisidentifiedastau event selection and applying tight BDT tau identification. The leptons.WhilethefirsttwoareobtainedfromMonteCarlo threedifferenttemplatesareshown[3]. simulation,theQCDmulti-jettemplatewasestimatedfrom a controlregionrich in QCD events.The track multiplic- ity distributionisshownfor dataandMonte Carlobefore 2. ATLASCollaboration,JINST3,(2008)S08003 (Figure9)andafter(Figure10)applyingthetightBDTtau 3. ATLAS Collaboration, Conference identification. Note, ATLAS-CONF-2011-152, 2011, Themeasuredefficienciesinbothmethodsareingood https://cdsweb.cern.ch/record/1398195 agreementwithMonteCarlopredictionswithin5%(8%- 4. ATLASCollaboration,Phys.Rev.D84,(2011)112006, 12%)fortheW →τν(Z →ττ→µτ )method. http://arxiv.org/abs/1108.2016 had 5 Summary and Conclusion ATLAS has a large physics program with tau lepton fi- nal states, and a well performing tau identification is a essential part of these analyses. Different techniques are usedtoseparatetauleptonsfromthequarkandgluonini- tiated jet background. The multivariate methods perform betterthanasimplecut-basedapproach,especiallyfortau leptonswith a transverse momentumlarger than 40 GeV. The corresponding efficiencies and systematic uncertain- tiesofthetauidentificationmethodshavebeenstudiedus- ingStandardModelprocesses. References 1. (ed.)Evansand(ed.)Bryant,JINST3,(2008)S08001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.