REVIEWARTICLE published:21January2013 doi:10.3389/fphar.2013.00001 Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect ValeriaRachelaVillella1,SperanzaEsposito1,EmanuelaM.Bruscia1,2,MariaChiaraMaiuri3,4,ValeriaRaia5, GuidoKroemer4,6,7,8,9*andLuigiMaiuri1,10* 1EuropeanInstituteforResearchinCysticFibrosis,SanRaffaeleScientificInstitute,Milan,Italy 2DepartmentofPediatrics,YaleUniversitySchoolofMedicine,NewHaven,CT,USA 3DepartmentofExperimentalPharmacology,FedericoIIUniversity,Naples,Italy 4INSERMU848,Villejuif,France 5CysticFibrosisUnit,DepartmentofPediatrics,FedericoIIUniversity,Naples,Italy 6UniversitéParisDescartes,Paris,France 7MetabolomicsPlatform,InstitutGustaveRoussy,Villejuif,France 8CentredeRecherchedesCordeliers,Paris,France 9PôledeBiologie,HôpitalEuropéenGeorgesPompidou,AssistancePublique–HôpitauxdeParis,Paris,France 10InstituteofPediatrics,UniversityofFoggia,Foggia,Italy Editedby: Cysticfibrosis(CF)patientsharboringthemostcommondeletionmutationoftheCFtrans- MarcChanson,UniversityofGeneva, membraneconductanceregulator(CFTR),F508del,arepoorresponderstopotentiatorsof Switzerland CFTRchannelactivitywhichcanbeusedtotreatasmallsubsetofCFpatientswhogenet- Reviewedby: icallycarryplasmamembrane(PM)-residentCFTRmutants.ThemisfoldedF508del-CFTR ValerieChappe,DalhousieUniversity, Canada protein is unstable in the PM even if rescued by pharmacological agents that prevent its Jean-MichelSallenave,Université intracellularretentionanddegradation.CFisaconformationaldiseaseinwhichdefective Paris7DenisDiderot,France CFTRinducesanimpressivederangementofgeneralproteostasisresultingfromdisabled *Correspondence: autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of GuidoKroemer,INSERMU848, autophagosomeformation,eitherbymeansofdirectgenetransferorindirectlybyadminis- InstitutGustaveRoussy,Pavillonde Recherche1,F-94805Villejuif,France. trationofproteostasisregulators,couldstabilizeF508del-CFTRatthePM.Wefocusonthe e-mail:[email protected]; relationship between the improvement of peripheral proteostasis and CFTR PM stability LuigiMaiuri,EuropeanInstitutefor in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article ResearchinCysticFibrosis,San reviewsrecentpre-clinicalevidenceindicatingthattargetingtheintracellularenvironment RaffaeleScientificInstitute,via Olgettina58,Milan20132,Italy. surroundingthemisfoldedmutantCFTRinsteadofproteinitselfcouldconstituteanattrac- e-mail:[email protected] tive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficialactionofCFTRpotentiatorsonlunginflammation. Keywords:cysticfibrosis,CFTR,proteostasisregulators,autophagy,BECN1 INTRODUCTION Althoughmorethan1800differentmutationshavebeenidentified, Theproteostasisnetworkensuresintracellularhomeostasisinspite one single deletion of phenylalanine at position 508 (F508del- ofgeneticorepigeneticchangesinproteinconformation,extracel- CFTR), occurs in about 70–90% of CF patients in Northern lularstress,oraging-associatedperturbations(Balchetal.,2008; EuropeandNorthAmerica(Bobadillaetal.,2002).F508del-CFTR Huttetal.,2009;Powersetal.,2009;Gidalevitzetal.,2010;Hutt proteincanstillretainapartialchloridechannelactivityifrescued and Balch, 2010; Roth and Balch, 2011). The accumulation of at the epithelial surface. However, due to its misfold, F508del- misfolded/modifiedproteinsduetomutationsorduetotheaging- CFTR does not reach the plasma membrane (PM) and is pre- relateddeclineofproteostasiscontributestoseveralhumancon- maturelydegraded,thusprovokinglocalinflammation,increased formational diseases including neurodegenerative disorders and susceptibility to respiratory bacterial infections,and progressive typeIIdiabetes(Balchetal.,2008;Powersetal.,2009;Gidalevitz pulmonaryanddigestiveinsufficiency(O’SullivanandFreedman, etal.,2010;RothandBalch,2011). 2009;Ratjen,2009). Cysticfibrosis(CF),themostcommonlife-threateninggenetic ThebirthprevalenceofCFisestimatedtobeonein3500–4500, diseaseamongCaucasians,constitutesthequintessentialexample with 200-300 new cases each year in Europe. The typical form ofa“conformationaldisease”(Balchetal.,2011;Okiyonedaetal., of CF is diagnosed during early childhood and is characterized 2011).CFiscausedbymutationsoftheCFtransmembranecon- byrecurrentpulmonaryinfections,pancreaticinsufficiency,and ductanceregulator(CFTR)genethatencodesacAMP-regulated elevatedchlorideconcentrationsinsweat.AlthoughCFisasys- chloride channel primarily located at the apical membrane of temicdisease,themaincauseofdeathispersistentanduntreatable epithelialcells(Quinton,1999;Welshetal.,2001;Parketal.,2010). pulmonaryPseudomonasaeruginosainfection.Lossoffunctional www.frontiersin.org January2013|Volume4|Article1|1 Villellaetal. Targetingautophagyincysticfibrosis CFTRexpressionisthoughttodisturbthebalancebetweenfluid (Sharmaetal.,2004;Okiyonedaetal.,2010).Thisseminalobser- secretion and absorption into the epithelial layer,leading to net vation of Lukacs’ group can explain why CF patients carrying volume depletion of mucus, increased viscosity, and ineffective the misfolded F508del-CFTR respond poorly to molecules that bacterialclearance.Bacterialinfectioninturninducesanincreased increasetheactivityofCFTRchannel(CFTRpotentiator)(Davis, inflammatoryresponseandsignaling,thusfuelingaviciouscycle 2011;Ramseyetal.,2011).Indeed,therescuedF508del-CFTRis ofmucusretention,infection,andinflammation. nolongeravailableatthePMfortheactionofCFTRpotentiators. Mounting evidences indicate that a constitutive inflamma- Therefore,combiningCFTRcorrectorsandpotentiatorsmaybe tory condition characterizes CF airways regardless of bacter- asuitableapproachforF508del-CFTRpatients,providedthatthe ial exposure. CFTR dysfunction results in constitutive, elevated correctormoleculesareeffectiveinincreasingF508del-CFTRPM NF-κB activation resulting in increased production of the pro- stabilityafterrescue.Currently,phaseIIclinicalstudiesevaluat- inflammatorychemokine,interleukin-8(Vijetal.,2009;Belcher ingthecombinationofVX-809andthepotentiatorVX-770inCF andVij,2010;BodasandVij,2010;Hunteretal.,2010).Moreover, patientsthatexpressF508del-CFTRareunderway(Elborn,2012). thelackoffunctionalCFTRinmacrophageshasbeenreportedto Restorationofafunctionalproteostasisnetworkbytheadmin- increasetheirresponsivenesstoinflammatorystimuliviauncon- istrationof proteostasisregulators(PRs)hasemergedasanovel trolledTLR4signaling(Brusciaetal.,2009,2011)andtoaffecttheir approachtocorrectproteinmisfoldinginconformationaldiseases capacitytokillPseudomonasaeruginosa(Dietal.,2006;Deriyetal., (Muetal.,2008;Powersetal.,2009;Gidalevitzetal.,2010;Balch 2009;Zhangetal.,2010;DelPortoetal.,2011).Thesefindingssup- etal.,2011).Therefore,strategiesaimingatmanipulatingperiph- porttheroleofCFTRdysfunctioninfavoringbronchopulmonary eralproteostasiscouldrepresentapromisingareaof researchin inflammation. CFdrugdiscovery.Understandingthemechanismsunderlyingthe AdvancesinCFtreatmenthaveincreasedthemedianpredicted derangementofproteostasisconsequenttodefectiveCFTRfunc- survival age from less than 5years in the 1940s to over 37years tioncouldhelpimprovingthesearchofnewdrugcandidatesfor presently(Davis,2006).Inadditiontotherapeuticapproachesthat CFpatientscarryingF508del-CFTRmutants. target cellular events downstream of the CFTR defect (Mozzillo et al., 2009; Anderson, 2010; Belcher and Vij, 2010; Ratjen and THREETOTANGOINCYSTICFIBROSIS:CFTR, Grasemann, 2012), other strategies focused on the basic CFTR TRANSGLUTAMINASE2,ANDAUTOPHAGY defecthaveemerged(Riordan,2008;SloaneandRowe,2010;Ama- DEFECTIVECFTRFUNCTIONPERTURBSTHEPOST-TRANSLATIONAL ral,2011;LukacsandVerkman,2012).Todate,genetherapyhas NETWORKOFCFEPITHELIALCELLS failed to demonstrate a clinical benefit for CF (Riordan, 2008; An impressive derangement of cellular homeostasis takes place Amaral,2011).Thus,pharmacologicalstrategiesaimedatcorrect- in CF airways. Tissue transglutaminase (TG2) is upregulated in ing mutation-specific CFTR defects (CFTR-repairing therapies) CF epithelial cells at the transcriptional and even more at the havegainedaprominentroleinCFdrugdiscovery. post-transcriptional levels (Maiuri et al., 2008). TG2 is a versa- ThestillpartiallyfunctionalF508del-CFTRproteincanberes- tilemultifunctionalproteinthatchangesitsfunctiondepending cuedatthePMbymeansofexperimentallowthermalconditions onexternalandinternalsignals(NurminskayaandBelkin,2012). (Denning et al.,1992),as well as by so-called correctors,which In the presence of high Ca2+ levels, TG2 works as a crosslink- aremoleculesthatavoidtheintracellularretentionanddegrada- ingenzyme,catalyzingseveralpost-translationalmodificationsof tionofF508del-CFTRprotein(Pedemonteetal.,2005;Verkman target proteins. At low Ca2+ concentrations,TG2 may function etal.,2006;VerkmanandGalietta,2009),asextensivelyreviewedby as a G-protein or as a protein disulfide isomerase, thus con- Molinskietal.andPedemonteetal.inotherchaptersofthisSpecial tributingtothefunctionalityof mitochondrialrespiratorychain Topic.AnumberofCFTRcorrectormoleculeshavebeenidentified complexes (Nurminskaya and Belkin, 2012). Increased levels of byhigh-throughputscreening(Galiettaetal.,2001;Pedemonte TG2 are observed in several human pathologies including neu- etal.,2005;VanGooretal.,2006,2011).SeveralCFTRcorrectors rodegenerative diseases such as Alzheimer’s, Huntington’s, and haveprovedtheirefficacyinrescuingF508del-CFTRinvitro.How- Parkinson’s diseases, as well as in chronic inflammatory condi- ever,theirefficacyinamelioratingtheCFlungphenotype,either tions(Tayloretal.,2003;Malornietal.,2008;Iismaaetal.,2009; inpre-clinicalmodelsorinCFpatients,hasnotyetestablished. MastrobernardinoandPiacentini,2010).Mostproteinsinvolved A recent clinical trial with the most promising CFTR correc- inthepathogenesisofneurodegenerativediseases,ashuntingtin, tor,VX-809 (Van Goor et al.,2011),in F508del-CFTR homozy- ataxin1,tau,andalpha-synuclein,werereportedtobeTG2sub- gous patients demonstrated modest dose-dependent reductions strates (Mastrobernardino and Piacentini,2010). Increased TG2 in sweat chloride (Clancy et al., 2012). However, beyond this expression has also been reported for glioblastomas, malignant laboratory parameter, no improvement in lung function or CF melanomas, and pancreatic ductal adenocarcinomas. Moreover, complicationswasreported(Clancyetal.,2012;Elborn,2012). TG2 expression is often associated with an increased metastatic Thepoolof F508del-CFTRmoleculesthatcanreachthePM activity or acquisition of drug-resistance (Antonyak et al.,2004; after treatment with currently available corrector molecules is KarinandGreten,2005;Kimetal.,2006;Satpathyetal.,2007). unstable.Thisinstabilitycanbeexplainedbycarboxyl-terminus In CF airway epithelial cells, TG2 undergoes small ubiqui- heat shock cognate 70 (HSP70)–interacting protein (CHIP)- tin like-modifier (SUMO)ylation (Luciani et al., 2009), a post- mediated Ubiquitination of F508del-CFTR (Okiyoneda et al., translationalmodificationthataffectsthestabilityandfunctions 2010), followed by redirection of the protein from endosomal ofproteins.SUMOylationisakeyplayerofthepost-translational recyclingtowardlysosomaldeliveryandsubsequentdegradation networkasitregulatestranscription,nucleartranslocation,stress FrontiersinPharmacology|PharmacologyofIonChannelsandChannelopathies January2013|Volume4|Article1|2 Villellaetal. Targetingautophagyincysticfibrosis responses,andchromatinstructure.Moreover,itinfluencesintra- ubiquitination of IκBα inhibits IκBα SUMOylation and favors cellular localization and stability of modified proteins (Geiss- NF-κBactivationandnucleartranslocation(Lucianietal.,2009). FriedlanderandMelchior,2007;MeulmeesterandMelchior,2008; Both events were reported to favor inflammation in CF air- Tempè et al., 2008). SUMOylation is accomplished by an enzy- ways. Therefore, TG2 can function as a rheostat of the post- maticcascadethatinvolvesE3ligaseswhichorchestrateSUMO- translationalnetworkinresponsetoCF-associatedoxidativestress. modificationsinresponsetostress.Wediscoveredthattheprotein TG2 SUMOylation with sustained TG2 activation switches off inhibitor of activated STAT (PIAS)y, which is induced by reac- the post-translational regulatory mechanisms and perturbs the tive oxygen species (ROS) and participates in the SUMOylation intracellularenvironment(Figure1). of NF-κB essential modulator (NEMO) upon genotoxic stress TG2-mediated protein ubiquitination and crosslinking may (MabbandWuerzberger-Davis,2006),isupregulatedinCFepithe- leadtoproteinaggregationandproteasomeoverload,thusfavor- lia in response to oxidative stress and then mediates SUMOyla- ing aggresome formation (Muma, 2007; Dohm et al., 2008). tion of TG2 (Luciani et al., 2009). Indeed, TG2 contains three Misfolded or post-translationally modified proteins that can- SUMOacceptorsites(consensussequence:ψ_kxE)initssequence. not be degraded by the proteasome machinery can be stocked SUMOylationoflysinesisincompatiblewiththeUbiquitination in the cytoplasm in the form of aggresomes (Kawaguchi et al., oftheseresidues(MullerandHoege,2001).Thus,TG2SUMOy- 2003; Kirkin et al., 2009). Accordingly, ubiquitylated PPARγ lationultimatelyresultsintheinhibitionof TG2ubiquitination, and IκBα aggregates are sequestered within histone-deacetylase therebypreventingitsproteasomaldegradation.Thissustainshigh (HDAC)6+/vimentin+ intracellular aggresomes in CF epithelial intracellularTG2proteinlevels,coupledtoprolongedTG2enzyme cells(Figure2). activation as the result of the elevated Ca2i+ content. Indeed, Therefore,proteostasis of F508del-CFTR epithelia is affected emergingevidencesupporttheroleof elevatedintracellularcal- byacombinationofgeneticdefect(resultingfromthemisfolded ciumconcentrationinmediatingthesignalingeventsthatimpair CFTR protein) and post-translational alterations (through the homeostasisinCFepithelia,asreviewedbyAntignyetal.(2011a) ROS/TG2axis). in another chapter of this Special Topic. Although the mecha- TG2islocalizedinmultiplecellularcompartmentsincluding nismsunderlyingthedisturbedcalciumhomeostasisobservedin cellsurfaceandextracellularmatrix.Besidesitscrosslinkingactiv- CF remain incompletely understood,recent studies suggest that ity on ECM substrates, extracellular TG2 is also endowed with impairedcalciumsignalingmaybetheresultof eitherincreased PDI,orGTPasefunctions(NurminskayaandBelkin,2012).How- agonist-mediated activation of G-protein-coupled receptors or ever,thepotentialrelevanceoftheextracellularTG2inCFisstill abnormalregulationofcalciumstoragecompartments(Eganetal., unknown. 2002,2004;Ribeiroetal.,2005a,b;Norezetal.,2006a,b;Martino etal.,2009).Moreover,theabnormalCa2+ responseobservedin DEFECTIVECFTRDISABLESAUTOPHAGY CFcellsdependsonthepresenceofCFTRatthecellsurfaceand GiventheoverproductionofROStogetherwiththeendoplasmic this reciprocal regulation of CFTR and Ca2+ channels has been reticulum (ER) stress induced by the mutant CFTR,one would describedintheliterature(Antignyetal.,2011b). expect an activation of autophagy in F508del-CFTR homozy- Therefore,inCF,increasedintracellularlevelsofROS,induced gous epithelial cells. Autophagy is pivotal in promoting cellular bydefectiveCFTRfunction,leadtotheupregulationoftheSUMO clearance of protein aggregates and removal of ROS sources, E3-ligase PIASy, which facilitates TG2 SUMOylation, persistent such as damaged mitochondria (Mizushima et al., 2008; Kirkin high TG2 protein levels, and sustained TG2 activation as the etal.,2009;Korolchuketal.,2009;Kroemeretal.,2010;Moreau resultof“permissive”elevatedCa2+ levels.Thepresenceof high et al., 2010). Surprisingly, however, human and mouse CF air- TG2 levels might in turn sustain ROS, as it is known that TG2 ways exhibit a pronounced defect in autophagy, as indicated maystimulatetheactivityofthemitochondrialrespiratorychains byreducedautophagosomeformation,andtheaccumulationof (Malornietal.,2008).Remarkably,inhibitingCFTR,eitherbygene sequestosome 1 (SQSTM1), a major autophagic substrate also silencingorbymeansofpharmacologicalinhibitors,recapitulates known as p62. This occurs in spite of the normal expression of these post-translational modifications of TG2 through upregu- major autophagy genes (Luciani et al., 2010, 2011). A defective lating ROS levels in cell lines expressing wild-type (wt)-CFTR autophagicresponsetobacterialinfectionhasalsobeenreported (Lucianietal.,2009). inmurineCFmacrophages.Reducedautophagosomeformation These post-translational changes of TG2 protein,induced by in CF macrophages promotes Burkholderia cenocepacia survival defective CFTR, may have functional implications in epithe- andhypersecretionofIL-1β(Abdulrahmanetal.,2011). lial homeostasis. Sustained TG2 activation leads to crosslinking, Autophagy results in the lysosomal degradation of cytoplas- increasedubiquitination,andfunctionalsequestrationoftheTG2 micorganellesorcytosoliccomponentsaftertheirsequestration substrates peroxisome proliferator-activated receptor (PPAR)γ intwo-membranedvesicles(Kroemeretal.,2010;YangandKlion- andIκBα(DaynesandJones,2002;Kimetal.,2006;Maiurietal., sky,2010;Codognoetal.,2011;Mizushimaetal.,2011).Inthelast 2008). Indeed, the anti-inflammatory molecule PPARγ under- few years,autophagy has emerged not just as a simply degrada- goes SUMOylation in response to its agonists, thus interacting tive process, but also as a cellular mechanism essential for the withtheN-CoR-histonedeacetylase(HDAC)3co-repressorcom- maintenanceofcellularhomeostasisandoftheenergeticbalance plex to maintain a repressor condition (Pascual et al., 2005). (Kroemeretal.,2010).Thus,disabledautophagyisassociatedwith TG2-mediated ubiquitination of PPARγ inhibits its SUMOyla- andisrelevanttoseveralhumandiseasesincludingcancer,viral tion and interaction with N-CoR. Similarly, crosslinking and infection,neurodegenerativediseases,respiratorypathologies,and www.frontiersin.org January2013|Volume4|Article1|3 Villellaetal. Targetingautophagyincysticfibrosis FIGURE1|DefectiveCFTR-inducedperturbationofthe proteosomaldegradation,thussustainingincreasedTG2proteinlevels. post-translationalnetworkinCFepithelialcells.DefectiveCFTR SustainedTG2activationmediatescrosslinkingofPPARγandIκBα, leadstoincreasedlevelsofreactiveoxygenspecies(ROS)that whichundergoubiquitinationandproteasomedegradation.Thisinhibits increasethelevelsoftheSUMOE3-ligasePIASy,causingTG2 nucleartranslocationofPPARγandfavorsnucleartranslocationof SUMOylation,that,inturn,inhibitsTG2ubiquitination,andavoidsits NF-κB,stimulatinginflammation. chronic inflammatory disease (Levine et al., 2011; Rubinsztein autophagyinduction.Moreover,BECN1interactswiththeessen- etal.,2011;Sridharetal.,2012;Pateletal.,2013). tialcomponentsofthePI3KcomplexIIIhVps34,hVps15,Ambra1, Through which mechanisms is autophagy inhibited in CF? aswellaswithAtg14L,aBECN1interactorthatdivertshVps/Class We have demonstrated that the inhibition of autophagy in CF III PI3K into an autophagic role (Liang et al.,2008; Matsunaga epithelial cells is part of the complex perturbation of the post- etal.,2009).However,inCFepithelialcells,theBECN1interac- translational network consequent to defective CFTR function. tomeisdislodgedawayfromtheERasaconsequenceofBECN1 DisabledautophagyinCFepithelialcellsisaconsequenceofTG2- crosslinkingandissequesteredwithinHDAC6+aggresomes.This mediatedcrosslinkingandfunctionalsequestrationofBECN1,a impairs autophagosome formation in CF cells (Luciani et al., majorplayerofautophagosomeformation,whichexhibitstarget 2010). sites(QP,QxxP)forcrosslinkingbyTG2(Lucianietal.,2010). Autophagy deficient CF cells accumulate SQSTM1 (p62), an BECN1 is a haploinsufficient tumor suppressor protein that ubiquitin-binding (and LC3-binding) protein (Bjørkøy et al., is essential for autophagy (Sinha and Levine, 2008; He and 2005; Kirkin et al., 2009; Mathew et al., 2009; Duran et al., Levine, 2010; Maiuri et al., 2010). Accumulating evidence indi- 2011) that is selectively degraded by autophagy. Autophagy catethatBECN1dissociatesfromBcl-2duringstressconditions, upregulation has been reported as a compensatory response to such as starvation, thus promoting autophagy (Pattingre et al., proteasome inhibition, thus revealing a crosstalk between the 2005;Maiurietal.,2007,2010;Axeetal.,2008;Hayashi-Nishino proteasome-based and the autophagy-based degradation path- et al., 2009). Subsequently, BECN1 interacts with the class III ways (Komatsu et al., 2007; Kirkin et al., 2009; Korolchuk phosphatidyl-inositol 3 kinase (PI3K), human vacuolar protein et al., 2009; Lamark and Johansen, 2010). SQSTM1 accumu- sorting (hVps)34 (Matsunaga et al., 2009; Zhong et al., 2009), lation resulting from autophagy inhibition contributes to pro- facilitatingitsactivation.TheER-associatedclassIIIPI3Kactiv- teasome overload and favors aggresome formation, while dis- ityiscrucialfortheinitiationofautophagosomeformation(Axe abledautophagyinhibitstheclearanceofsuchproteinaggregates. etal.,2008;Hayashi-Nishinoetal.,2009). Altogether, the combined inhibition of protein and aggresome ReducedBECN1/Bcl-2interactionuponstarvationisobserved turnovermayalsoinfluencethefateofmisfoldedCFTR.Indeed, inCFcells,suggestinganintracellularenvironmentfavorableto the enforced expression of F508del-CFTR in CF epithelial cell FrontiersinPharmacology|PharmacologyofIonChannelsandChannelopathies January2013|Volume4|Article1|4 Villellaetal. Targetingautophagyincysticfibrosis FIGURE2|TG2-mediatedinhibitionofautophagyinCFepithelial sequestrationofcross-linkedTG2substrates(PPARγ,IκBα,BECN1)within cells.DefectiveCFTR-mediatedTG2activationleadstoBECN1 HDAC6+aggresomes.Thecombinedinhibitionofproteinandaggresome crosslinkinganddisplacesBECN1interactomeawayfromthe turnovermayalsofavortheaccumulationofF508del-CFTR(togetherwith endoplasmicreticulum(ER).Thismislocalizationinhibitsautophagosome SQSTM1)withinHDAC6+/ubiquitin+intracellularaggregates.Defective formation,disablesautophagy,andinducesaccumulationofSQSTM1 autophagyinhibitstheclearanceofdamagedmitochondriathatcontribute (p62).SQSTM1accumulationleadstoproteasomeoverloadandfavors tothegenerationofpro-inflammatoryROS. linesfavorstheaccumulationof misfoldedCFTR(togetherwith inflammationinCftrF508delmice(Lucianietal.,2010,2012).Simi- SQSTM1) within HDAC6+/ubiquitin+ intracellular aggregates larly,cysteaminehasalreadybeensuccessfullyusedinmousemod- (Lucianietal.,2010). elsofHuntington’sdiseasetoimprovedisease-relatedphenotype We suggest that this cascade of events can generate a vicious (Karpujetal.,2002). feed-forwardloop,asitimpairstheclearanceof damagedmito- Importantly, we demonstrated that amelioration of lung chondria,thusincreasingROSgenerationthatinturnenhances inflammation in CftrF508del mice secondary to cystamine treat- TG2 activation and BECN1 sequestration, further sustaining mentpersistsupto10daysbeyondcystaminewithdrawal,unless airwayinflammation(Figure2). therescueofBECN1andautophagyareinhibitedbytheadmin- istration of 3-MA during washout (Luciani et al., 2012). These RESTORINGPROTEOSTASISAMELIORATESLUNGINFLAMMATION data suggest the provocative hypothesis that, once the cellular THROUGHRESCUINGAUTOPHAGYINCF environment has been re-directed toward a physiological status, InhibitingTG2activitybycystamine(anditsreducedformcys- a driving force is re-established within the cell, so as to pro- teamine)ortargetingROScanreduceinflammationinF508del- long these beneficial effects. Could this “newly re-established” CFTRairways,bothinvivo inF508del-CFTRhomozygousmice player be the functional CFTR itself at the epithelial surface? (CftrF508del mice) and in ex vivo using explanted human polyp Indeed, manipulating proteostasis might actually improve the biopsiesfromCFpatients(Raiaetal.,2005;Lucianietal.,2010). functionofmisfoldedproteins(Balchetal.,2008;RothandBalch, The effects of cystamine on airway inflammation are medi- 2011). ated by its ability to rescue BECN1 and autophagy, as either BECN1 depletion used in vitro or administration of the PI3K TARGETINGAUTOPHAGYASANEWSTRATEGYTOENABLE complex III inhibitor 3-methyl-adenine (3-MA) used in vivo in THEACTIONOFCFTRPOTENTIATORSONF508del-CFTR CftrF508del mice,abrogated these beneficial effects of cystamine. F508del-CFTRrescuedatthePMbymeansofcorrectorstrategies Either enforced BECN1 overexpression or SQSTM1 depletion is rapidly dismissed and re-directed to lysosomes for degrada- invivorecapitulatedtheeffectsofcystamineinamelioratinglung tion (Sharma et al., 2004; Okiyoneda et al., 2010, 2011; Lukacs www.frontiersin.org January2013|Volume4|Article1|5 Villellaetal. Targetingautophagyincysticfibrosis andVerkman,2012).Accordingly,thebiochemicalhalf-lifeofPM TARGETINGAUTOPHAGYENABLESTHEBENEFICIALACTIONOF F508del-CFTRislowerthan4h(Lukacsetal.,1993;Hedaetal., POTENTIATORSONF508del-CFTR 2001). Therefore,F508del-CFTR is no longer present at the PM ThesefindingsindicatethatPRsmaybeusedtorescueandstabilize andcannotinteractwithCFTRpotentiatorsafterrescue. F508del-CFTRatthePMof CFepithelialcells.Inprinciple,this Recently, we have reported that overexpression of BECN1, strategycouldlowertheERqualitycontrol(QC)thresholdofall administration of cystamine, or depletion of SQSTM1 by RNA misfoldedproteins,thusinterferingwiththeQCfidelity.However, interference, can favor the trafficking of F508del-CFTR pro- besidesitseffectsonF508del-CFTRrescueatthePM,cystamine tein to the epithelial cell surface in vitro in CF epithelial can also delay the disposal of PM resident F508del-CFTR pro- cell lines (CFBE41o- or IB3-1, carrying F508del/F508del or tein.Theevidencediscussedinthisreviewsupportsthatdefective F508del/W1282XCFTR,respectively),exvivoinnasalpolypbiop- CFTRsuppressesautophagywithintheCFepithelialenvironment siesfromCFpatients,andinvivoinCftrF508delmice.Interestingly, (though the ROS/TG2 pathway), and, conversely, that rescuing these treatments can restore a functional CFTR in CF cell lines autophagycanrestoreafunctionalCFTRatthePM.Altogether, andinprimarybrushednasalepithelialcellsfromF508del-CFTR these insights suggest the existence of a vicious cycle in which homozygouspatients(Lucianietal.,2012). defectiveCFTRfunctionsdestabilizestheCFTRproteinandthat Therefore,PR-basedstrategiesinCF(asadministrationofcys- canbeinterruptedbycystamine. tamineorgeneticrestorationofBECN1)mayhaveadualeffect,as Considering these factors, one would expect that sustaining theyreducelunginflammationwhilerescuingafunctionalmutant PMresidenceofF508del-CFTRbyPRs,couldallowpotentiators CFTRtotheepithelialsurface. toimproveCl− transportthoughPMresidentCFTRmolecules. Indeed,ourrecentdataindicatethat,ifproteostasishasbeenpre- TARGETINGAUTOPHAGYIMPROVESF508del-CFTRPMSTABILITYIN viouslyrestoredbycystamine,potentiatorscanbecomeeffective AIRWAYCFEPITHELIAWELLBEYONDDRUGWASHOUT in sustaining the anti-inflammatory effects of cystamine in vivo In addition to its ability to rescue F508del-CFTR, cystamine is in CftrF508del mice. Importantly, genistein, which has no effects effective in delaying the disposal of PM resident F508del-CFTR onitsowninCftrF508del mice,synergisticallyinteractswithcys- proteinandgeneratespermissiveconditionstoprolongF508del- tamine to reduce lung inflammation triggered by the challenge CFTRPMresidencewellbeyondcystaminewashout.Theseeffects withlipopolysaccharide(LPS)fromPseudomonasaeruginosa.The are mediated by the ability to restore BECN1 and autophagy,as same effects are observed if proteostasis has been previously re- bothBECN1depletionand3-MAabrogatethebeneficialeffectsof established in CftrF508del mice by means of genetic manipula- cystamine.PMresidentmutantF508del-CFTRisstillfunctional tions,suchaslentiviralexpressionofBECN1orshRNA-mediated after cystamine withdrawal, as it retains the ability to respond depletionofSQSTM1(Lucianietal.,2012). to forskolin added together with CFTR potentiators (as genis- These observations indicate that pharmacological measures teinorVX-532orVX-770)wellbeyondthewashoutperiod.This thatamelioratethecellularenvironmentinwhichmutantCFTR prolonged function of F508del-CFTR was observed in CF cell traffics,insteadofspecificallytargetingthemisfoldedproteinitself, lines, as well as in primary brushed nasal epithelial cells from canresultinimproveddiseaseoutcome. F508del-CFTR homozygous patients. Moreover, cystamine sus- tainsF508del-CFTRre-locationatthelungepithelialsurfaceafter PERSPECTIVES 10daysfollowingwashoutinvivoinCftrF508del mice,unlessthat CFTR-REPAIRINGSTRATEGIESANDANTI-INFLAMMATORYTHERAPIES: cystaminewascombinedwith3-MA(Lucianietal.,2012). TWOSIDESOFTHESAMECOIN? These effects of cystamine can explain how the anti- Thedatadiscussedinthisreviewsuggestthatdifferentapproaches inflammatory effects as a result of the restoration of autophagy couldbeenvisagedtocontrolCFlunginflammation.Somether- (eitherviapharmacologicalintervention,ascystamine,orbythe apiesfocusonconventionaloremerginganti-inflammatorymol- enforcedexpressionofBECN1)persistwellbeyonditswithdrawal ecules, downstream of CFTR. Others, as cystamine and other inCftrF508delmice.TheyprobablyrelyonCFTRitself.Indeed,the yet-to-be-developed PRs,rely on the rescue and stabilization of pro-autophagiceffectsofcystaminepersistafter10daysfollowing functionalCFTRatthePM.Apparently,cystaminecaninterrupt cystaminewithdrawalunlessCFTRwasdepletedduringwashout, thedangerouscycleleadingtolunginflammation,thusopeninga suggesting that these anti-inflammatory effects are mediated by newscenariointhesearchofthemostappropriateCFTR-repairing theabilitytosustainafunctionalCFTRatthecellsurface(Luciani strategy. etal.,2012).Therefore,sustainedCFTRfunctionatthePMcan SearchingtheappropriateCFTRcorrectorisachallengingissue interruptthecascadeofROSgeneration,TG2activation,BECN1 indrugdevelopment.Anidealdrugcandidateforthetreatmentof sequestration, and autophagy inhibition, and ultimately reduce F508del-CFTRpatientsshouldnotonlyaimatrescuingtrafficking lunginflammation. ofmutantCFTR,beitthroughtheconventionalGolgi-mediated Thesefindingscouldalsoexplainhowcystamine,whichisnot exocyticpathway(Wardetal.,1995;Quinton,1999;Amaral,2004, an autophagy inducer,is highly effective in restoring autophagy 2011) or the unconventional GRASP-dependent secretory path- withina“CFenvironment.”Thefactthatcystaminecanregulate way(Geeetal.,2011),butalsoatsustainingtherescuedmutant peripheralproteostasisisalsosupportedbytheobservationthat CFTRatthePM,toallowthecombinedactionofpotentiatorson cystamine (but not CFTR correctors as VX-325 or Corr-4a) is PMresidentF508del-CFTR.Ideally,onesinglemoleculeshouldbe effectiveinsustainingPMstabilityofF508del-CFTRevenifithas endowedwithallthesepropertiestominimizeundesirableeffects. previouslybeenrescuedatthePMbylowtemperature. OurrecentobservationssuggestthatF508del-CFTRpatientscould FrontiersinPharmacology|PharmacologyofIonChannelsandChannelopathies January2013|Volume4|Article1|6 Villellaetal. Targetingautophagyincysticfibrosis be sequentially treated with two single pharmacological agents, Maiuri), the Programma di Ricerca Scientifica di Rilevante firstwithcystamineandthenwithCFTRpotentiators. Interesse Nazionale (2008RMJB3A_004, 2008) of the Minis- Thefindingsdiscussedinthisreviewalsohighlighttheimpor- terodell’Istruzione,dell’UniversitàedellaRicerca(LuigiMaiuri, tanceoftestingF508del-CFTRcorrectorsfortheircapacitytoexert Valeria Raia), RO1 HL093004 (Emanuela M. Bruscia), Telethon a prolonged control of lung inflammation in pre-clinical mod- Grant # GGP12128 (Luigi Maiuri, Emanuela M. Bruscia, Vale- els, before initiating clinical trials. So far, our strategy has been ria Raia, Maria Chiara Maiuri), Ligue Nationale contre le successfully tested in nasal polyp biopsies from F508del-CFTR Cancer (Equipe labellisée; Guido Kroemer), AXA Chair for homozygouspatientsaswellasinvivoinF508del-CFTRhomozy- Longevity Research,Agence Nationale pour la Recherche (ANR; gousmice(Lucianietal.,2012).Atthisstage,clinicaltrialsonCF Guido Kroemer), European Commission (Active p53, Apo- patientsarejustified. Sys, ChemoRes, ApopTrain; Guido Kroemer), Foundation pour la Recherche Médicale (FRM), Institute National du Cancer ACKNOWLEDGMENTS (INCa),CancéropôleIle-de-France(GuidoKroemer),Fondation This was supported by the European Institute for Research in Bettencourt-Schueller,andtheLabExOnco-Immunology(Guido Cystic Fibrosis and Italian Cystic Fibrosis Association (Luigi Kroemer). REFERENCES dynamicallyconnectedtotheendo- Clancy,J.P.,Rowe,S.M.,Accurso,F.J., CFTR regulates phagosome acidi- Abdulrahman, B. A., Khweek, A. plasmicreticulum.J.CellBiol.182, Aitken,M.L.,Amin,R.S.,Ashlock, fication in macrophages and alters A., Akhter, A., Caution, K., 685–701. M.A.,etal.(2012).Resultsofaphase bactericidalactivity.Nat.CellBiol.8, Kotrange, S., Abdelaziz, D. H., Balch,W. E., Morimoto, R. I., Dillin, IIastudyofVX-809,aninvestiga- 933–944. et al. (2011). Autophagy stimu- A.,andKelly,J.W.(2008).Adapting tionalCFTRcorrectorcompound,in Dohm,C.P.,Kermer,P.,andBahr,M. lation by rapamycin suppresses proteostasisfordiseaseintervention. subjectswithcysticfibrosishomozy- (2008). Aggregopathy in neurode- lung inflammation and infection Science319,916–919. gous for the F508del-CFTR muta- generativediseases:mechanismsand by Burkholderia cenocepacia in a Balch, W. E., Roth, D. M., and Hutt, tion.Thorax67,12–18. therapeutic implication. Neurode- modelofcysticfibrosis.Autophagy D.M.(2011).Emergentproperties Codogno, P., Mehrpour, M., and gener.Dis.5,321–338. 7,1359–1370. of proteostasisin managing cystic Proikas-Cezanne,T.(2011).Canon- Duran,A.,Amanchy,R.,Linares,J.F., Amaral,M.D.(2004).CFTRandchap- fibrosis.ColdSpringHarb.Perspect. ical and non-canonical autophagy: Joshi,J.,Abu-Baker,S.,Porollo,A., erones:processinganddegradation. Biol.3,pii:a004499. variationsonacommonthemeof etal.(2011).p62isakeyregulator J.Mol.Neurosci.23,41–48. Belcher, C. N., and Vij, N. (2010). self-eating?Nat.Rev.Mol.CellBiol. ofnutrientsensinginthemTORC1 Amaral,M.D.(2011).TargetingCFTR: Protein processing and inflamma- 13,7–12. pathway.Mol.Cell44,134–146. howtotreatcysticfibrosisbyCFTR- torysignalingincysticfibrosis:chal- Davis,P.B.(2006).Cysticfibrosissince Egan, M. E., Glockner-Pagel, J., repairingtherapies.Curr.DrugTar- lenges and therapeutic strategies. 1938.Am.J.Respir.Crit.CareMed. Ambrose,C.,Cahill,P.A.,Pappoe, gets12,683–693. Curr.Mol.Med.10,82–94. 173,475–482. L., Balamuth, N., et al. (2002). Anderson, P. (2010). Emerging ther- Bjørkøy, G., Lamark, T., Brech, A., Davis,P.B.(2011).Therapyforcystic Calcium-pump inhibitors induce apies in cystic fibrosis. Ther. Adv. Outzen, H., Perander, M., Over- fibrosis–theendofthebeginning? functional surface expression of Respir.Dis.4,177–185. vatn,A.,etal.(2005).p62/SQSTM1 N.Engl.J.Med.365,1734–1735. DeltaF508-CFTRproteinincystic Antigny, F., Norez, C., Becq, F., and forms protein aggregates degraded Daynes,R.A.,andJones,D.C.(2002). fibrosisepithelialcells.Nat.Med.8, Vandebrouck, C. (2011a). CFTR byautophagy andhas aprotective EmergingrolesofPPARsininflam- 485–492. and Ca2+ signaling in cystic effect on huntingtin-induced cell mation and immunity. Nat. Rev. Egan,M.E.,Pearson,M.,Weiner,S.A., fibrosis. Front. Pharmacol. 2:67. death.J.CellBiol.171,603–614. Immunol.2,748–759. Rajendran,V.,Rubin,D.,Glockner- doi:10.3389/fphar.2011.00067 Bobadilla,J.L.,MacEk,M.Jr.,Fine,J. Del Porto, P., Cifani, N., Guarnieri, Pagel,J.,etal.(2004).Curcumin,a Antigny,F.,Norez,C.,Dannhoffer,L., P., and Farrell, P. M. (2002). Cys- S., Di Domenico, E. G., Marig- majorconstituentofturmeric,cor- Bertrand, J., Raveau, D., Corbi, P., ticfibrosis:aworldwideanalysisof giò, M. A., Spadaro, F., et al. rects cystic fibrosis defects. Science et al. (2011b). Transient receptor CFTR mutations–correlation with (2011). Dysfunctional CFTR alters 304,600–602. potentialcanonicalchannel6links incidence data and application to the bactericidal activity of human Elborn,J.S.(2012).Fixingcysticfibrosis Ca2+mishandlingtocysticfibrosis screening.Hum.Mutat.19,575–606. macrophages against Pseudomonas CFTRwithcorrectorsandpotentia- transmembrane conductance regu- Bodas,M.,andVij,N.(2010).TheNF- aeruginosa. PLoS ONE 6:e19970. tors.Offtoagoodstart.Thorax67, latorchanneldysfunctionincystic kappaB signaling in cystic fibrosis doi:10.1371/journal.pone.0019970 4–5. fibrosis.Am.J.Respir.CellMol.Biol. lung disease: pathophysiology and Denning, G. M., Anderson, M. P., Galietta,L.J.,Springsteel,M.F.,Eda,M., 44,83–90. therapeuticpotential.Discov.Med.9, Amara,J.F.,Marshall,J.,Smith,A. Niedzinski,E.J.,By,K.,Haddadin, Antonyak, M. A., Miller, A. M., 346–356. E.,andWelsh,M.J.(1992).Process- M.J.,etal.(2001).NovelCFTRchlo- Jansen, J. M., Boehm, J. E., Balk- Bruscia,E. M.,Zhang,P. X.,Ferreira, ingofmutantcysticfibrosistrans- ridechannelactivatorsidentifiedby man, C. E., Wakshlag, J. J., et E., Caputo, C., Emerson, J. W., membraneconductanceregulatoris screeningofcombinatoriallibraries al. (2004). Augmentation of tis- Tuck,D.,etal.(2009).Macrophages temperature-sensitive. Nature 358, basedonflavoneandbenzoquino- suetransglutaminaseexpressionand directly contribute to the exagger- 761–764. lizinium lead compounds. J. Biol. activation by epidermal growth atedinflammatoryresponseincys- Deriy, L. V., Gomez, E. A., Zhang, Chem.276,19723–19728. factor inhibit doxorubicin-induced ticfibrosistransmembraneconduc- G., Beacham, D. W., Hopson, J. Gee, H. Y., Noh, S. H., Tang, B. L., apoptosis in human breast can- tance regulator−/− mice. Am. J. A., Gallan, A. J., et al. (2009). Kim,K.H.,andLee,M.G.(2011). cer cells. J. Biol. Chem. 279, Respir.CellMol.Biol.40,295–304. Disease-causing mutations in the RescueofDF508-CFTR.Trafficking 41461–41467. Bruscia,E.M.,Zhang,P.X.,Satoh,A., cysticfibrosistransmembranecon- viaaGRASP-dependentunconven- Axe,E.L.,Walker,S.A.,Manifava,M., Caputo,C.,Medzhitov,R.,Shenoy, ductance regulator determine the tional secretion pathway. Cell 146, Chandra,P.,Roderick,H.L.,Haber- A., et al. (2011). Abnormal traf- functional responses of alveolar 746–760. mann,A.,etal.(2008).Autophago- ficking and degradation of TLR4 macrophages. J. Biol. Chem. 284, Geiss-Friedlander,R.,andMelchior,F. some formation from membrane underlie the elevated inflamma- 35926–35938. (2007).Conceptsinsumoylation:a compartments enrichedin phos- tory response in cystic fibrosis. J. Di,A.,Brown,M.E.,Deriy,L.V.,Li,C., decadeon.Nat.Rev.Mol.CellBiol.8, phatidylinositol 3-phosphate and Immunol.186,6990–6998. Szeto,F.L.,Chen,Y.,etal.(2006). 947–956. www.frontiersin.org January2013|Volume4|Article1|7 Villellaetal. Targetingautophagyincysticfibrosis Gidalevitz,T.,Kikis,E.A.,and Mori- Kirkin,V.,McEwan,D.G.,Novak,I.,and conductanceregulatorintheplasma Autophagy fights disease through moto,R. I. (2010).A cellular per- Dikic,I.(2009).Aroleforubiquitin membrane.Determinationoffunc- cellular self-digestion. Nature 28, spectiveonconformationaldisease: inselectiveautophagy.Mol.Cell34, tionalhalf-livesontransfectedcells. 1069–1075. theroleofgeneticbackgroundand 259–269. J.Biol.Chem.268,21592–21598. Mizushima, N., Yoshimori, T., and proteostasis networks. Curr. Opin. Komatsu,M.,Waguri,S.,Koike,M.,Sou, Lukacs,G.L.,andVerkman,A.S.(2012). Ohsumi,Y.(2011).TheroleofAtg Struct.Biol.20,23–32. Y.S.,Ueno,T.,Hara,T.,etal.(2007). CFTR:folding,misfoldingandcor- proteinsinautophagosomeforma- Hayashi-Nishino,M.,Fujita,N.,Noda, Homeostatic levels of p62 control recting the DeltaF508 conforma- tion.Annu.Rev.CellDev.Biol.27, T.,Yamaguchi,A.,Yoshimori,T.,and cytoplasmicinclusionbodyforma- tionaldefect.Trends.Mol.Med.18, 107–132. Yamamoto,A.(2009).Asubdomain tion in autophagy-deficient mice. 81–91. Moreau,K.,Luo,S.,andRubinsztein,D. oftheendoplasmicreticulumforms Cell131,1149–1163. Mabb,A.M.,andWuerzberger-Davis,S. C. (2010). Cytoprotective roles for acradleforautophagosomeforma- Korolchuk, V. I., Mansilla, A., Men- M.(2006).PIASymediatesNEMO- autophagy.Curr.Opin.CellBiol.22, tion.Nat.CellBiol.11,1433–1437. zies, F. M., and Rubinsztein, D. sumoylationandNF-Bactivationin 206–211. He,C.,andLevine,B.(2010).TheBeclin C. (2009). Autophagy inhibition response to genotoxic stress. Nat. Mozzillo, E., Franzese,A.,Valerio, G., 1interactome.Curr.Opin.CellBiol. compromises degradation of CellBiol.8,986–993. Sepe,A.,DeSimone,I.,Mazzarella, 22,140–149. ubiquitin–proteasome pathway Maiuri,L.,Luciani,A.,Giardino,I.,Raia, G.,etal.(2009).One-yearglargine Heda,G.D.,Tanwani,M.,andMarino, substrates.Mol.Cell33,517–527. V.,Villella,V. R.,D’Apolito,M.,et treatmentcanimprovethecourseof C.R.(2001).TheDeltaF508muta- Kroemer,G.,Mariño,G.,and Levine, al.(2008).Tissuetransglutaminase lungdiseaseinchildrenandadoles- tionshortensthebiochemicalhalf- B. (2010). Autophagy and inte- activationmodulatesinflammation cents with cystic fibrosis and early life of plasmamembrane CFTR in gratedstressresponse.Mol.Cell40, in cystic fibrosis via PPAR gamma glucosederangements.Pediatr.Dia- polarizedepithelialcells.Am.J.Phys- 280–293. down-regulation. J. Immunol. 180, betes10,162–167. iol.CellPhysiol.280,C166–C174. Lamark, T., and Johansen, T. (2010). 7697–7705. Mu,T.W.,Ong,D.S.,Wang,Y.J.,Balch, Hunter,M. J.,Treharne,K. J.,Winter, Autophagy: links with the protea- Maiuri, M. C., Criollo,A., and Kroe- W. E.,Yates, J. R. III, Segatori, L., A. K., Cassidy, D. M., Land, S., some. Curr. Opin. Cell Biol. 22, mer, G. (2010). Crosstalk between etal.(2008).Chemicalandbiolog- and Mehta, A. (2010). Expression 192–198. apoptosisandautophagywithinthe ical approaches synergize to ame- of wild-type CFTR suppresses Levine,B.,Mizushima,N.,andVirgin, Beclin1interactome.EMBOJ.29, liorateprotein-foldingdiseases.Cell NF-kappaB-driven inflammatory H.W.(2011).Autophagyinimmu- 515–516. 134,769–781. signalling. PLoS ONE 5:e11598. nityandinflammation.Nature469, Maiuri,M.C.,LeToumelin,G.,Criollo, Muma,N.A.(2007).Transglutaminase doi:10.1371/journal.pone.0011598 323–335. A.,Rain,J.C.,Gautier,F.,Juin,P., islinkedtoneurodegenerativedis- Hutt,D.,andBalch,W.E.(2010).Cell Liang,C.,Lee,J. S.,Inn,K. S.,Gack, etal.(2007).Functionalandphysi- ease.J.Neuropathol.Exp.Neurol.66, biology. The proteome in balance. M. U., Li, Q., Roberts, E. A., et calinteractionbetweenBcl-XLanda 258–263. Science329,766–770. al.(2008).Beclin1-bindingUVRAG BH3-likedomaininBeclin-1.EMBO Muller, S., and Hoege, C. (2001). Hutt,D.M.,Powers,E.T.,andBalch, targetstheclassCVpscomplexto J.26,2527–2539. SUMO-1, ubiquitin’s mysterious W. E. (2009). The proteostasis coordinateautophagosome matura- Malorni,W.,Farrace,M. G.,Rodolfo, cousin. Nat. Rev. Mol. Cell Biol. 2, boundaryinmisfoldingdiseasesof tionandendocytictrafficking.Nat. C.,andPiacentini,M.(2008).Type 202–210. membrane traffic. FEBS Lett. 583, CellBiol.10,776–787. 2 transglutaminasein neurodegen- Norez, C., Antigny, F., Becq, F., and 2639–2646. Luciani,A.,Villella,V.R.,Esposito,S., erative diseases: the mitochondrial Vandebrouck,C.(2006a).Maintain- Iismaa,S.E.,Mearns,B.M.,Lorand,L., Brunetti-Pierri,N.,Medina,D.,Set- connection. Curr. Pharm. Des. 14, ing low Ca2+ level in the endo- andGraham,R.M.(2009).Trans- tembre, C., et al. (2010). Defec- 278–288. plasmicreticulumrestoresabnormal glutaminases and disease: lessons tive CFTR induces aggresome for- Martino,M.E.,Olsen,J.C.,Fulcher,N. endogenousF508del-CFTRtraffick- fromgeneticallyengineeredmouse mation and lung inflammation in B.,Wolfgang,M.C.,O’Neal,W.K., inginairwayepithelialcells.Traffic models and inherited disorders. cysticfibrosisthroughROS-medi- andRibeiro,C.M.(2009).Airway 7,562–573. Physiol.Rev.89,991–1023. atedautophagyinhibition.Nat.Cell epithelial inflammation-induced Norez,C.,Noel,S.,Wilke,M.,Bijvelds, Karin,M.,andGreten,F.R.(2005).NF- Biol.12,863–875. endoplasmic reticulum Ca2+ store M., Jorna, H., Melin, P., et al. B:linkinginflammationandimmu- Luciani,A.,Villella,V.R.,Esposito,S., expansion is mediated by X-box (2006b). Rescue of functional nity to cancer development and Brunetti-Pierri, N., Medina, D. L., binding protein-1. J. Biol. Chem. delF508-CFTR channels in cystic progression. Nat. Rev. Immunol. 5, Settembre, C., et al. (2011). Cys- 284,14904–14913. fibrosisepithelialcellsbythealpha- 749–759. ticfibrosis:adisorderwithdefective Mastrobernardino,P.G.,andPiacentini, glucosidase inhibitor miglustat. Karpuj,M.V.,Becherm,M.W.,Springer, autophagy.Autophagy7,104–106. M.(2010).Type2transglutaminase FEBSLett.580,2081–2086. J.E.,Chabas,D.,Youssef,S.,Pedotti, Luciani,A.,Villella,V.R.,Esposito,S., in Huntington’s disease: a double- Nurminskaya,M.V.,andBelkin,A.M. R.,etal.(2002).Prolongedsurvival Gavina,M.,Russo,I.,Silano,M.,et edgedswordwithclinicalpotential. (2012).Cellularfunctionsoftissue anddecreasedabnormalmovements al. (2012). Targeting autophagy as J.Intern.Med.268,419–431. transglutaminase.Int.Rev.Cell.Mol. in transgenic model of Hunting- anovelstrategyforfacilitatingthe Mathew,R.,Karp,C.M.,Beaudoin,B., Biol.294,1–97. tondisease,withadministrationof therapeuticactionofpotentiatorson Vuong, N., Chen, G., Chen, H.Y., Okiyoneda,T.,Apaja,P.M.,andLukacs, thetransglutaminaseinhibitorcyst- δF508cysticfibrosistransmembrane etal.(2009).Autophagysuppresses G.L.(2011).Proteinqualitycontrol amine.Nat.Med.8,143–149. conductanceregulator.Autophagy8, tumorigenesis through elimination attheplasmamembrane.Curr.Opin. Kawaguchi, Y., Kovacs, J. J., McLau- 1657–1672. ofp62.Cell137,1062–1075. CellBiol.23,483–491. rin, A., Vance, J. M., Ito, A., and Luciani, A., Villella, V. R., Vasaturo, Matsunaga, K., Saitoh, T., Tabata, K., Okiyoneda, T., Barriere, H., Bagdany, Yao, T. P. (2003). The deacetylase A.,Giardino,I.,Raia,V.,Pettoello- Omori,H.,Satoh,T.,Kurotori,N., M.,Rabeh,W.M.,Du,K.,Hohfeld, HDAC6regulatesaggresomeforma- Mantovani, M., et al. (2009). etal.(2009).TwoBeclin1-binding J.,et al. (2010). Peripheral protein tionandcellviabilityinresponseto SUMOylationoftissuetransglutam- proteins,Atg14LandRubicon,rec- quality control removes unfolded misfolded protein stress. Cell 115, inaseaslinkbetweenoxidativestress iprocallyregulateautophagyatdif- CFTRfromtheplasmamembrane. 727–738. andinflammation.J.Immunol.183, ferent stages. Nat. Cell Biol. 11, Science329,805–810. Kim,D.S.,Park,S.S.,Nam,B.H.,Kim, 2775–2784. 385–396. O’Sullivan,B.P.,andFreedman,S.D. I.H.,andKim,S.Y.(2006).Reversal Lukacs,G. L.,Chang,X. B.,Bear,C., Meulmeester, E., and Melchior, F. (2009).Cysticfibrosis.Lancet 373, of drugresistanceinbreastcancer Kartner, N., Mohamed, A., Rior- (2008).Cellbiology:SUMO.Nature 1891–1904. cells by transglutaminase 2 inhibi- dan,J. R.,et al. (1993). The delta 45,709–711. Park, H. W., Nam, J. H., Kim, J. Y., tionandnuclearfactor-Binactiva- F508mutationdecreasesthestabil- Mizushima, N., Levine, B., Cuervo, Namkung,W.,Yoon,J.S.,Lee,J.S., tion.CancerRes.6,10936–10943. ityofcysticfibrosistransmembrane A. M., and Klionsky, D. J. (2008). etal.(2010).Dynamicregulationof FrontiersinPharmacology|PharmacologyofIonChannelsandChannelopathies January2013|Volume4|Article1|8 Villellaetal. Targetingautophagyincysticfibrosis CFTR bicarbonate permeability by fibrosis. Curr. Pharm. Des. 18, Sridhar,S.,Botbol,Y.,MacIan,F.,and W.S.Sly,andD.Valle(NewYork: [Cl-]ianditsroleinpancreaticbicar- 614–627. Cuervo, A. M. (2012). Autophagy McGraw-Hill),5121–5188. bonate secretion. Gastroenterology Ratjen, F. A. (2009). Cystic fibrosis: and disease: always two sides to a Yang, Z., and Klionsky, D. J. (2010). 139,620–631. pathogenesis and future treatment problem.J.Pathol.226,255–273. Eaten alive: a history of macroau- Pascual, G., Fong, A. L., Ogawa, S., strategies.Respir.Care54,595–605. Taylor,J.P.,Tanaka,F.,Robitschek,J., tophagy.Nat.CellBiol.12,814–822. Gamliel, A., Li, A. C., Perissi, V., Ribeiro,C.M.,Paradiso,A.M.,Carew, Sandoval,C.M.,Taye,A.,Markovic- Zhang,Y.,Li,X.,Grassmé,H.,Döring, et al. (2005). A SUMOylation- M. A., Shears, S. B., and Boucher, Plese,S.,etal.(2003).Aggresomes G., and Gulbins, E. (2010). Alter- dependentpathway mediates R. C. (2005a). Cystic fibrosis air- protectcellsbyenhancingthedegra- ations in ceramide concentration transrepression of inflammatory wayepithelialCa2+ i-signaling:the dationoftoxicpolyglutaminecon- and pH determine the release of response genes byPPAR-γ. Nature mechanism for the larger agonist- taining protein. Hum. Mol. Genet. reactive oxygen species by Cftr- 437,759–763. mediated Ca2+ i signals in human 12,749–757. deficientmacrophagesoninfection. Patel,A.S.,Morse,D.,andChoi,A.M. cystic fibrosis airway epithelia. J. Tempè,D.,Piechaczyk,M.,andBossis, J.Immunol.184,5104–5111. (2013). Regulation and functional Biol.Chem.280,10202–10209. G. (2008). SUMO under stress. Zhong, Y., Wang, Q. J., Li, X., significanceof autophagyinrespi- Ribeiro,C.M.,Paradiso,A.M.,Schwab, Biochem.Soc.Trans.36,874–878. Yan, Y., Backer, J. M., Chait, B. ratorycellbiologyanddisease.Am. U.,Perez-Vilar,J.,Jones,L.,O’Neal, VanGoor,F.,Hadida,S.,Grootenhuis, T., et al. (2009). Distinct regu- J.Respir.CellMol.Biol.48,1–9. W., et al. (2005b). Chronic air- P.D.,Burton,B.,Stack,J.H.,Stra- lation of autophagic activity by Pattingre,S.,Tassa,A.,Qu,X.,Garuti, wayinfection/inflammationinduces ley,K.S.,etal.(2011).Correctionof Atg14LandRubiconassociatedwith R., Liang, X. H., Mizushima, N., aCa2+i-dependenthyperinflamma- theF508del-CFTRproteinprocess- Beclin 1 phosphatidylinositol-3- et al. (2005). Bcl-2 antiapoptotic toryresponseinhumancysticfibro- ingdefectinvitrobytheinvestiga- kinase complex. Nat. Cell Biol. 11, proteinsinhibitBeclin1-dependent sis airway epithelia. J. Biol. Chem. tionaldrugVX-809.Proc.Natl.Acad. 468–476. autophagy.Cell23,927–939. 280,17798–17806. Sci.U.S.A.108,18843–18848. Pedemonte, N., Lukacs, G. L., Du, Riordan,J. R. (2008). CFTR function VanGoor,F.,Straley,K.S.,Cao,D.,Gon- Conflict of Interest Statement: The K., Caci, E., Zegarra-Moran, O., and prospects for therapy. Annu. zalez,J.,Hadida,S.,Hazlewood,A., authors declare that the research was Galietta,L.J.,etal.(2005).Small- Rev.Biochem.77,701–726. etal.(2006).RescueofDeltaF508- conductedintheabsenceofanycom- molecule correctors of defective Roth,D.M.,andBalch,W.E.(2011). CFTR trafficking and gating in mercial or financial relationships that [Delta]F508-CFTRcellularprocess- Modelinggeneralproteostasis:pro- human cystic fibrosis airway pri- couldbeconstruedasapotentialcon- ing identified by high-throughput teomebalanceinhealthanddisease. mary cultures by small molecules. flictofinterest. screening. J. Clin. Invest. 115, Curr.Opin.CellBiol.23,126–134. Am.J.Physiol.LungCellMol.Physiol. 2564–2571. Rubinsztein, D. C., Mariño, G., and 290,L1117–L1130. Received:10October2012;accepted:01 Powers,E.T.,Morimoto,R.I.,Dillin,A., Kroemer,G.(2011).Autophagyand Verkman, A. S., and Galietta, L. J. January2013;publishedonline:21Janu- Kelly,J.W.,andBalch,W.E.(2009). aging.Cell146,682–695. (2009). Chloride channels as drug ary2013. Biologicalandchemicalapproaches Satpathy, M., Cao, L., Pincheira, R., targets. Nat. Rev. Drug Discov. 8, Citation:Villella VR,Esposito S,Brus- to diseases of proteostasis defi- Emerson,R.,Bigsby,R.,Nakshatri, 153–171. cia EM, Maiuri MC, Raia V, Kroe- ciency. Annu. Rev. Biochem. 78, H., et al. (2007). Enhanced peri- Verkman, A. S., Lukacs, G. L., and mer G and Maiuri L (2013) Target- 959–991. tonealovariantumordissemination Galietta,L.J.(2006).CFTRchloride ing the intracellular environment in Quinton, P. M. (1999). Physiological by tissue transglutaminase. Cancer channel drug discovery–inhibitors cystic fibrosis: restoring autophagy as basis of cystic fibrosis: a historical Res.67,7194–7202. asantidiarrhealsandactivatorsfor a novel strategy to circumvent the perspective.Physiol.Rev.79(Suppl. Sharma,M.,Pampinella,F.,Nemes,C., therapy of cystic fibrosis. Curr. CFTRdefect.Front.Pharmacol.4:1.doi: 1),S3–S22. Benharouga, M., So, J., Du, K., et Pharm.Des.12,2235–2247. 10.3389/fphar.2013.00001 Raia,V.,Maiuri,L.,Ciacci,C.,Riccia- al.(2004).MisfoldingdivertsCFTR Vij, N., Mazur, S., and Zeitlin, P. This article was submitted to Frontiers rdelli,I.,Vacca,L.,Auricchio,S.,et fromrecyclingtodegradation:qual- L. (2009). CFTR is a negative in Pharmacology of Ion Channels and al.(2005).Inhibitionofp38mitogen itycontrolatearlyendosomes.J.Cell regulator of NFkappa B medi- Channelopathies,aspecialtyofFrontiers activatedproteinkinasecontrolsair- Biol.164,923–933. ated innate immune response. inPharmacology. wayinflammationincysticfibrosis. Sinha, S., and Levine, B. (2008). PLoS ONE 4:e4664. doi:10.1371/ Copyright©2013Villella,Esposito,Brus- Thorax60,773–780. The autophagy effector Beclin 1: journal.pone.0004664 cia,Maiuri,Raia,KroemerandMaiuri. Ramsey,B.W.,Davies,J.,McElvaney,N. anovelBH3-onlyprotein.Oncogene Ward,C.L.,Omura,S.,andKopito,R.R. Thisisanopen-accessarticledistributed G.,Tullis,E.,Bell,S.C.,Drevínek,P., 27(Suppl.1),S137–S148. (1995).DegradationofCFTRbythe under the terms of the Creative Com- etal.(2011).ACFTRpotentiatorin Sloane,P.A.,andRowe,S.M.(2010). ubiquitinproteasomepathway.Cell mons Attribution License, which per- patientswithcysticfibrosisandthe Cysticfibrosistransmembranecon- 83,121–127. mitsuse,distributionandreproduction G551D mutation. N. Engl. J. Med. ductance regulator protein repair Welsh,M.J.,Ramsey,B.W.,andAccurso, in other forums, provided the original 365,1663–1672. as a therapeutic strategy in cystic F.J.(2001).“Themetabolicbasisof authorsandsourcearecreditedandsub- Ratjen, F., and Grasemann, H. fibrosis.Curr.Opin.Pulm.Med.16, inheriteddisease,”inCysticFibrosis, jecttoanycopyrightnoticesconcerning (2012). New therapies in cystic 591–597. eds C. R. Scriver, A. L. Beaudet, anythird-partygraphicsetc. www.frontiersin.org January2013|Volume4|Article1|9