ebook img

Takeoff and Landing Performance Optimization Aerospace - Instituto PDF

112 Pages·2011·7.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Takeoff and Landing Performance Optimization Aerospace - Instituto

Takeoff and Landing Performance Optimization Development of a Computional Methodology João Pedro Rodrigues de Lemos Viana Dissertation submitted to obtain the Master’s Degree in Aerospace Engineering Jury Chair: Prof. Fernando José Parracho Lau Supervisor: Prof. António José Nobre Martins Aguiar External examiner: Prof. Pedro da Graça Tavares Alvares Serrão October 2011 Acknowledgments It is a pleasure to thank those who have contributed to the realization of this dissertation: Daniela Vasco, my girlfriend, who has always supported me, especially in the later stages of this work. Thank you for your patience. António Aguiar, Engr., my supervisor, for giving me the chance to take part in such an interesting project and, also, for the amount of time and close attention to detail he has always offered when coordinating this project. Carlos Figueiredo, one of the lead engineers on TAP’s Electronic Flight Bag project, who has played a major role in this work, never hesitating in grating me some of his valuable time. António Messias, Engr., Pedro Faria Pereira, Engr., and Paulo Marques, who provided utmost important feedback during the development of this project. Notwithstanding all the people that made my experience more enjoyable at TAP during the last six months, namely Bruno Moreira, David Afonso, Marília Santos, Ana Maria Sousa, Amélia Santos, Ivo Santos and Belinda Cardoso. i Abstract During the past decades the global aviation industry has been experiencing a precarious balance between revenue and costs. Besides, the modern world is living an economic recession and so crude prices are now higher than ever. Therefore, all over the world, airlines need to adapt and evolve, finding new ways of struggling through the competitive world of commercial aviation. Optimization is currently the key to succeed. Aircraft performance data calculation and optimization reflects through the whole airline operation. Besides having flight safety as its ultimate concern, data availability and easy recalculation makes airlines’ operation more safeguarded to operation disruptions due to external agents. Also, the quality of this data reflects in the airlines’ balance sheets at the end of the year as the result of possible savings in different areas of operation [1]. The present work focuses in the development of a computational application for takeoff and landing performance data generation and optimization. The takeoff performance optimization entails the maximization of the Regulatory TakeOff Weight (RTOW) and the respective operational speeds (V , V and V ). In a similar way, the Regulatory Landing Weight (RLW), the 1 R 2 final approach speed (V ) and the landing distances (actual and required) are computed during FA the landing optimization. The results are to be automatically published in the form of RTOW and RLW charts. The actual calculations are processed by Airbus’ Operational and Certified TakeOff and landing Performance Universal Software (OCTOPUS). The developed application is more than a simple program; it handles a set of TAP’s databases and external programs with the single objective of providing customized aircraft performance optimization capabilities, at the distance of one click, to TAP’s personnel. Keywords: Aircraft Performance; Performance Software; Takeoff Optimization; Landing Optimization; OCTOPUS. ii Resumo Ao longo das últimas décadas, o sector da aviação tem vivido num equilíbrio precário entre receitas e despesas. A economia mundial está actualmente em recessão e os preços do petróleo estão mais altos do que nunca. Tendo isto em conta, as companhias aéreas precisam de se adaptar e evoluir, de modo a encontrar novas formas de vencerem no mundo competitivo da aviação comercial. A optimização é, hoje, a chave para o sucesso. O cálculo e optimização dos dados de desempenho aeronáutico reflectem-se através de toda a cadeia de operação das companhias aéreas. Para além de ter a segurança do voo como derradeiro objectivo, a disponibilização e fácil actualização destes dados torna as companhias aéreas mais protegidas contra agentes externos. A qualidade dos mesmos reflecte-se no final do ano, podendo reduzir as despesas em diversas áreas de operação [1]. O presente trabalho foca-se no desenvolvimento de uma aplicação computacional para produção e optimização de dados de desempenho à descolagem e aterragem. A optimização do desempenho à descolagem pressupõe a maximização do peso regulamentado à descolagem (RTOW – Regulatory TakeOff Weight) e as respectivas velocidades operacionais (V , V e V ). De forma semelhante, o peso máximo regulamentado à aterragem (RLW – 1 R 2 Regulatory Landing Weight), a velocidade final de aproximação (V ) e as distâncias de FA aterragem (concreta e necessária) são calculadas durante a optimização de aterragem. Os resultados devem ser publicados sob a forma de tabelas de RTOW e RLW. Os cálculos por detrás da optimização são efectuados por um programa oficial da Airbus – OCTOPUS (Operational and Certified TakeOff and landing Universal Software). A aplicação desenvolvida é mais do que um simples programa, lidando com diversas bases de dados da TAP e interagindo com programas externos. O objectivo final do projecto é proporcionar capacidades personalizadas de optimização de desempenho aeronáutico a engenheiros e pilotos. Palavras-chave: Desempenho Aeronáutico; Software de Desempenho; Optimização de Descolagem; Optimização de Aterragem; OCTOPUS. iii Table of Contents Acknowledgments ......................................................................................................................... 1 Abstract ......................................................................................................................................... 2 Resumo ......................................................................................................................................... 3 Table of Contents .......................................................................................................................... 4 List of Figures ................................................................................................................................ 6 List of Tables ................................................................................................................................. 8 List of Acronyms ............................................................................................................................ 9 1. Introduction ............................................................................................................................ 1 1.1 Economic Scenario........................................................................................................ 1 1.2 Relevance ...................................................................................................................... 2 1.3 Airlines’ Operational Context ......................................................................................... 2 1.4 Objectives ...................................................................................................................... 2 1.5 Dissertation Structure .................................................................................................... 3 2. TAP’s Case Study ................................................................................................................. 4 2.1 Flight Dispatch ............................................................................................................... 4 2.2 Flight Operations Engineering Department ................................................................... 4 2.3 Remarks ........................................................................................................................ 5 3. Aircraft Performance.............................................................................................................. 6 3.1. Aircraft Settings ............................................................................................................. 6 3.2. Aircraft Limitations ......................................................................................................... 9 4. Takeoff Performance ........................................................................................................... 16 4.1. Operational Speeds ..................................................................................................... 16 4.2. Runway ........................................................................................................................ 19 4.3. Obstacles and Takeoff Trajectory ............................................................................... 22 4.4. Outside Elements ........................................................................................................ 26 4.5. Limitation Summary ..................................................................................................... 28 5. Takeoff Optimization............................................................................................................ 30 5.1. Optimization Range ..................................................................................................... 30 5.2. Free Parameters Influence .......................................................................................... 31 5.3. Optimization Process................................................................................................... 34 5.4. Flexible Takeoff ........................................................................................................... 36 6. Landing Performance .......................................................................................................... 38 6.1. Operational Speeds ..................................................................................................... 38 6.2. Runway ........................................................................................................................ 39 6.3. Go-Around Requirements ........................................................................................... 42 iv 6.4. Outside Elements ........................................................................................................ 43 6.5. Limitation Summary ..................................................................................................... 44 7. Takeoff and Landing Performance Application (TLP) ......................................................... 45 7.1. Structure ...................................................................................................................... 45 7.2. User Interface Overview .............................................................................................. 47 7.3. Databases and Internal Classes ................................................................................. 50 7.4. Relevant Routines ....................................................................................................... 50 7.5. OCTOPUS ................................................................................................................... 52 7.6. Testing and Validation ................................................................................................. 54 8. Conclusion ........................................................................................................................... 58 9. References ......................................................................................................................... 59 APPENDIX A – Regulation Transcripts ....................................................................................... 61 APPENDIX B – Performance on Wet and Contaminated Runways ........................................... 66 APPENDIX C – TLP .................................................................................................................... 70 APPENDIX D – FAJS-21R .......................................................................................................... 86 APPENDIX E – FM Page - A330-202 ......................................................................................... 90 APPENDIX F – Obstacles Limitation Verification ........................................................................ 91 APPENDIX G – PEP-FM Files .................................................................................................... 95 v List of Figures Figure 1 - (a) Jet Fuel costs in the US. ......................................................................................... 1 Figure 1 - (b) Overall Airline Costs Mirroring Fuel Price Changes. ............................................... 1 Figure 2 - High-lift devices on an Airbus A340. ............................................................................. 6 Figure 3 - Simple (a) and fowler (b) trailing edge flaps. ................................................................ 6 Figure 4 - Slat. ............................................................................................................................... 7 Figure 5 - Flaps lever. ................................................................................................................... 7 Figure 6 - Environmental Control Systems for the A320 family. ................................................... 8 Figure 7 - CL versus angle of attack. .......................................................................................... 10 Figure 8 - V . ........................................................................................................................... 10 MCG Figure 9 - (a) Sideslip angle. ....................................................................................................... 11 Figure 9 - (b) in a one-engine-inoperative condition. .................................................................. 11 Figure 10 - V determination. .................................................................................................... 12 MU Figure 11 - Aircraft Weights. ........................................................................................................ 13 Figure 12 - A319-111 Environmental Envelope. ......................................................................... 14 Figure 13 - TOGA thrust versus OAT and PA for a given engine type. ...................................... 15 Figure 14 - Takeoff Profile. .......................................................................................................... 16 Figure 15 - Decision Speed. ........................................................................................................ 17 Figure 16 - Takeoff Speed Summary and Limitations related to V , V , V and V . ................ 18 1 R LOF 2 Figure 17 - Stopway. ................................................................................................................... 19 Figure 18 - Clearway. .................................................................................................................. 19 Figure 19 - Available Takeoff Lengths. ....................................................................................... 20 Figure 20 - Lineup Adjustment, Top. ........................................................................................... 20 Figure 21 - Lineup Adjustment, Side. .......................................................................................... 20 Figure 22 - Runway slope effect on takeoff performance. .......................................................... 22 Figure 23 - Takeoff Path and Definition of Various Segments. ................................................... 23 Figure 24 - Gross and net takeoff paths. ..................................................................................... 24 Figure 25 - Departure Sector for track changes under 15°. ........................................................ 25 Figure 26 - Departure Sector for track changes over 15°. .......................................................... 25 Figure 27 - Headwind determination. .......................................................................................... 26 Figure 28 - Headwind effect on ground speed. ........................................................................... 27 Figure 29 - Pressure altitude effect on takeoff performance. ...................................................... 27 Figure 30 - Takeoff Performance Limitations. ............................................................................. 29 Figure 31 - Takeoff configurations performance.. ....................................................................... 32 Figure 32 - Runway Limited MTOW. ........................................................................................... 32 Figure 33 - (a) Effect of V /V in the obstacles, takeoff segments. ............................................. 33 2 S Figure 33 - (b) Effect of V /V in the brake energy and tire speed limitations. ............................ 33 2 S Figure 34 - Optimum V /V . ......................................................................................................... 33 1 R Figure 35 - MTOW as function of V /V and V /V ...................................................................... 35 1 R 2 S Figure 36 - Range of soultions that maximize MTOW. ............................................................... 35 Figure 37 - Takeoff speeds calculation. ...................................................................................... 35 Figure 38 - Flexible temperature principle. .................................................................................. 36 Figure 39 - Obstacle influence on LDA. ...................................................................................... 39 Figure 40 - Actual Landing Distance. .......................................................................................... 39 Figure 41 - Airborne phase for an automatic landing. ................................................................. 40 Figure 42 - Ground role phase for an automatic landing. ........................................................... 40 Figure 43 - Go-around procedure................................................................................................ 43 Figure 44 - Pressure altitude influence in the landing performance............................................ 43 Figure 45 - TLP structure. ........................................................................................................... 45 vi Figure 46 - “Please Wait” animated message running in an additional thread. .......................... 46 Figure 47 - TLP on startup. ......................................................................................................... 46 Figure 48 - Aircraft page for the Takeoff Optimization mode. ..................................................... 47 Figure 49 - Aircraft Failures form................................................................................................. 47 Figure 50 - Runway page for the Takeoff Optimization mode. ................................................... 48 Figure 51 - Options page for the Takeoff Optimization mode. .................................................... 48 Figure 52 - Calculation page for the Takeoff Optimization mode. ............................................... 49 Figure 53 - Temperature vector. .................................................................................................. 49 Figure 54 - TLP’s Output for the Takeoff Optimization mode. .................................................... 50 Figure 55 - Pressure Altitude function of Pressure. .................................................................... 51 Figure 56 - OCTOPUS Structure. ................................................................................................ 52 Figure 57 - OCTOPUS Functions................................................................................................ 53 Figure 58 - Aircraft braking coefficient for a 200 psi tire pressure on a wet runway. .................. 67 Figure 59 - Aircraft braking coefficient on a wet runway. ............................................................ 67 Figure 60 - Physics of contaminant drag. .................................................................................... 68 Figure 61 - Displacement Drag. .................................................................................................. 68 Figure 62 - Impingment Drag. ..................................................................................................... 68 Figure 63 - Hydroplaning effect. .................................................................................................. 69 Figure 64 - Effect of contaminants on takeoff distances. ............................................................ 69 vii List of Tables Table 1 - A320 family Flap and Slat configurations....................................................................... 7 Table 2 - A319-111 CDL. .............................................................................................................. 9 Table 3 - Thrust Setting and EGT Limit for an A340-312 (CFM56-5C3 engine). ........................ 15 Table 4 - Lineup Adjustments for 90° Runway Entry. ................................................................. 21 Table 5 - Takeoff Segments Characteristics. .............................................................................. 23 Table 6 - Minimum height to start a track change according to wingspan. ................................. 24 Table 7 - Semi-width ( E ) at the Start of the Departure Sector. ............................................ 26 0 Table 8 - Wet and contaminated runways. .................................................................................. 28 Table 9 - TAP’s takeoff limitations. .............................................................................................. 29 Table 10 - Influencing Parameters. ............................................................................................. 30 Table 11 - V /V maximum values for the Airbus family. ............................................................ 31 2 S Table 12 - Influence of V /V ratio on takeoff limitations. ............................................................ 34 2 S Table 13 - Minimum climb gradients during approach climb (OEI). ............................................ 42 Table 14 - Landing limitations. .................................................................................................... 44 Table 15 - Aircraft models and respective databases. ................................................................ 53 Table 16- TLP’s takeoff optimization results. .............................................................................. 55 Table 17 - Selected runways’ lengths. ........................................................................................ 55 Table 18 - AFM’s takeoff results.................................................................................................. 55 Table 19 - Optimum weights and ratios obtained by PEP’s TLO module. .................................. 56 Table 20 - TLP landing optimization results. ............................................................................... 56 Table 21 - Required Landing Distance calculated by FM’s Landing Distance function. ............. 57 Table 22 - ALD calculated by FM’s Operational Landing Distance function. .............................. 57 Table 23 - Maximum weight calculated by FM’s Landing Climb Gradient function. ................... 57 Table 24 - Maximum weight calculated by FM’s Approach Climb Gradient function. ................. 57 viii List of Acronyms ACARS – Aircraft Communication and Reporting System ACG – Approach Climb Gradient AEO – All Engines Operating AFM – Aircraft Flight Manual ALD – Actual Landing Distance API – Application Interface ASD – Accelerate-Stop Distance ASDA – Accelerate Stop Distance Available ATA – Air Transport Association of America ATOW – Actual Takeoff Weight CDL – Configuration Deviation List CL – Climb – Lift coefficient CWY – Clearway Da – Airborne Phase DB – Database Dg – Ground Phase DOW – Dry Operating Weight EASA – European Aviation Safety Agency ECS – Environmental Control System EFB – Electronic Flight Bag EGT – Exhaust Gas Temperature FAA – Federal Aviation Administration FBW – Fly-By-Wire FCOM – Flight Crew Operating Manual HW – Headwind component ICAO – International Civil Aviation Organization ISA – International Standard Atmosphere JAA – Joint Aviation Authority LD – Landing Distance LW – Landing Weight MCT – Maximum Continuous Thrust MEL – Minimum Equipment List MEW – Manufacturer’s Empty Weight MLW – Maximum Structural Landing Weight MSL – Mean Sea Level MTOW – Maximum Structural Takeoff Weight OAT – Outside Air Temperature OCTOPUS – Operational and Certified TakeOff and landing Performance Universal Software OEI – One Engine Inoperative OEW – Operational Empty Weight OLE – Object Linking and Embedding PEP – Performance Engineer’s Programs QNH – Local mean sea level atmospheric pressure setting (Q-code system) RLD – Required Landing Distance RLW – Regulatory Landing Weight RTO – Rejected Takeoff RTOW – Regulatory Takeoff Weight ix

Description:
Takeoff and Landing Performance Optimization. Development of a Computional Methodology. João Pedro Rodrigues de Lemos Viana. Dissertation submitted to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.