ebook img

Tableau 10.0 best practices develop a deep understanding of Tableau 10.0 and get to know tricks to understand your data PDF

291 Pages·2016·26.667 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tableau 10.0 best practices develop a deep understanding of Tableau 10.0 and get to know tricks to understand your data

Tableau 10.0 Best Practices (cid:37)(cid:70)(cid:87)(cid:70)(cid:77)(cid:80)(cid:81)(cid:2)(cid:66)(cid:2)(cid:69)(cid:70)(cid:70)(cid:81)(cid:2)(cid:86)(cid:79)(cid:69)(cid:70)(cid:83)(cid:84)(cid:85)(cid:66)(cid:79)(cid:69)(cid:74)(cid:79)(cid:72)(cid:2)(cid:80)(cid:71)(cid:2)(cid:53)(cid:66)(cid:67)(cid:77)(cid:70)(cid:66)(cid:86)(cid:2)(cid:19)(cid:18)(cid:16)(cid:18)(cid:2)(cid:66)(cid:79)(cid:69)(cid:2)(cid:72)(cid:70)(cid:85)(cid:2)(cid:85)(cid:80) (cid:76)(cid:79)(cid:80)(cid:88)(cid:2)(cid:85)(cid:83)(cid:74)(cid:68)(cid:76)(cid:84)(cid:2)(cid:85)(cid:80)(cid:2)(cid:86)(cid:79)(cid:69)(cid:70)(cid:83)(cid:84)(cid:85)(cid:66)(cid:79)(cid:69)(cid:2)(cid:90)(cid:80)(cid:86)(cid:83)(cid:2)(cid:69)(cid:66)(cid:85)(cid:66) Jenny Zhang BIRMINGHAM - MUMBAI Tableau 10.0 Best Practices Copyright © 2016 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: December 2016 Production reference: 1091216 (cid:49)(cid:86)(cid:67)(cid:77)(cid:74)(cid:84)(cid:73)(cid:70)(cid:69)(cid:2)(cid:67)(cid:90)(cid:2)(cid:49)(cid:66)(cid:68)(cid:76)(cid:85)(cid:2)(cid:49)(cid:86)(cid:67)(cid:77)(cid:74)(cid:84)(cid:73)(cid:74)(cid:79)(cid:72)(cid:2)(cid:45)(cid:85)(cid:69)(cid:16) (cid:45)(cid:74)(cid:87)(cid:70)(cid:83)(cid:90)(cid:2)(cid:49)(cid:77)(cid:66)(cid:68)(cid:70) (cid:21)(cid:23)(cid:2)(cid:45)(cid:74)(cid:87)(cid:70)(cid:83)(cid:90)(cid:2)(cid:52)(cid:85)(cid:83)(cid:70)(cid:70)(cid:85) (cid:35)(cid:74)(cid:83)(cid:78)(cid:74)(cid:79)(cid:72)(cid:73)(cid:66)(cid:78)(cid:2) (cid:35)(cid:21)(cid:2)(cid:20)(cid:49)(cid:35)(cid:14)(cid:2)(cid:54)(cid:44)(cid:16) ISBN 978-1-78646-009-7 (cid:88)(cid:88)(cid:88)(cid:16)(cid:81)(cid:66)(cid:68)(cid:76)(cid:85)(cid:81)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78) Credits Author Copy Editor Jenny Zhang Manisha Sinha Reviewers Project Coordinator Ravi Ratanlal Mistry Nidhi Joshi Sneha Vijay Commissioning Editor Proofreader Veena Pagare Safis Editing Acquisition Editor Indexer Vinay Argekar Mariammal Chettiyar Content Development Editor Graphics Rahul Popat Disha Haria Technical Editor Production Coordinator Danish Shaikh Nilesh Mohite About the Author Jenny Zhang is a technology professional with 6+ years' experience of data and analytics and currently working at JW Plater as Business Analytics Manager. She is a data strategist and technologist, Tableau and Alteryx community advocate, blogger. She had a series of blog posts about Tableau best practices at (cid:73)(cid:85)(cid:85)(cid:81)(cid:28)(cid:17)(cid:17)(cid:75)(cid:70)(cid:79)(cid:79)(cid:90)(cid:89)(cid:74)(cid:66)(cid:80)(cid:91)(cid:73)(cid:66)(cid:79)(cid:72)(cid:16)(cid:68)(cid:80)(cid:78)(cid:17)(cid:85)(cid:66)(cid:72)(cid:17)(cid:85)(cid:66)(cid:67)(cid:77)(cid:70)(cid:66)(cid:86)(cid:17). (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Jenny is also passion about Big data. She had a series of blog posts about Big Data, NoSQL, Spark, Hadoop, and Yarn at (cid:73)(cid:85)(cid:85)(cid:81)(cid:28)(cid:17)(cid:17)(cid:75)(cid:70)(cid:79)(cid:79)(cid:90)(cid:89)(cid:74)(cid:66)(cid:80)(cid:91)(cid:73)(cid:66)(cid:79)(cid:72)(cid:16)(cid:68)(cid:80)(cid:78)(cid:17)(cid:68)(cid:66)(cid:85)(cid:70)(cid:72)(cid:80)(cid:83)(cid:90)(cid:17)(cid:67)(cid:74)(cid:72)(cid:15)(cid:69)(cid:66)(cid:85)(cid:66)(cid:17). (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Personal Site: (cid:88)(cid:88)(cid:88)(cid:16)(cid:75)(cid:70)(cid:79)(cid:79)(cid:90)(cid:89)(cid:74)(cid:66)(cid:80)(cid:91)(cid:73)(cid:66)(cid:79)(cid:72)(cid:16)(cid:68)(cid:80)(cid:78) LinkedIn: (cid:88)(cid:88)(cid:88)(cid:16)(cid:77)(cid:74)(cid:79)(cid:76)(cid:70)(cid:69)(cid:74)(cid:79)(cid:16)(cid:68)(cid:80)(cid:78)(cid:17)(cid:74)(cid:79)(cid:17)(cid:75)(cid:70)(cid:79)(cid:79)(cid:90)(cid:89)(cid:74)(cid:66)(cid:80)(cid:91)(cid:73)(cid:66)(cid:79)(cid:72) I would like to thank you all the people who helped me with this book. Thank you all those who read, offered comments and helped in the editing and design. I would like to show special gratitude to Siddhesh Salvi, Vinay Argekar, Milton Dsouza from Packt publishing for enabling me to publish this book. About the Reviewers Ravi Ratanlal Mistry is an avid technology enthusiast and loves learning new concepts as well as teaching others. He holds a bachelor's degree in Information Technology and is a self-taught programmer. I would like to thank my family and friends for their ongoing support, especially my mother for always believing in me. Sneha Vijay has a well-rounded consulting background in domains of Data and Analytics with specialization in Tableau. Having over 4 years of experience and successful track record in Consulting, Analytics, Building sophisticated reporting technologies, Data Mining and Tableau visualizations, she provide users with the ability to examine information and uncover hidden trends and anomalies. Currently, Sneha works at Deloitte US Consulting based out of Gurgaon, India. Sneha's passions are spending time with his family, swimming and enjoying music to the fullest. She has previously reviewed Tableau 10 Business Intelligence Cookbook with Packt Publishing. www.PacktPub.com For support files and downloads related to your book, please visit (cid:88)(cid:88)(cid:88)(cid:16)(cid:49)(cid:66)(cid:68)(cid:76)(cid:85)(cid:49)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78). Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at (cid:88)(cid:88)(cid:88)(cid:16)(cid:49)(cid:66)(cid:68)(cid:76)(cid:85)(cid:49)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78) and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at (cid:84)(cid:70)(cid:83)(cid:87)(cid:74)(cid:68)(cid:70)(cid:33)(cid:81)(cid:66)(cid:68)(cid:76)(cid:85)(cid:81)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78) for more details. At (cid:88)(cid:88)(cid:88)(cid:16)(cid:49)(cid:66)(cid:68)(cid:76)(cid:85)(cid:49)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78), you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks. (cid:73)(cid:85)(cid:85)(cid:81)(cid:84)(cid:28)(cid:17)(cid:17)(cid:88)(cid:88)(cid:88)(cid:16)(cid:81)(cid:66)(cid:68)(cid:76)(cid:85)(cid:81)(cid:86)(cid:67)(cid:16)(cid:68)(cid:80)(cid:78)(cid:17)(cid:78)(cid:66)(cid:81)(cid:85) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career. Why subscribe? Fully searchable across every book published by Packt Copy and paste, print, and bookmark content On demand and accessible via a web browser Table of Contents Preface 1 Chapter 1: Data Extraction 5 Different ways of creating Tableau data extracts 5 Direct connect to original data sources 5 Duplicate of an extract 5 Connecting to a Tableau extract file 9 Technical details of how a Tableau data extract works 9 Tableau data extract's design principle 9 Benefits of using Tableau data extracts 10 Creating extract with large volume of data efficiently 11 Loading a very large Excel file to Tableau 12 Aggregating the values to higher dimension 12 Using data source filter 13 Hiding unused fields 14 Uploading and managing Tableau data extract in Tableau online 14 Creating workbook just for extracts 14 Using default project 14 Making sure Tableau online/server has enough space 15 Refreshing Tableau data extracts 15 Refreshing published extracts locally 15 Schedule data extract refresh in Tableau Online 20 Incremental refresh 20 Using Tableau web connector to create data extract 20 What is Tableau web connector? 20 How to use Tableau web connector? 21 Is the Tableau web connection live? 21 Are there any Tableau web connection available? 21 Summary 21 Chapter 2: Data Blending 22 Primary versus secondary data source in data blending 22 Data blending versus join 27 When to use data blending instead of joining 27 Differences between data blending and join 29 Potential issues of using data blending and quick fix 30 Blend on date 30 Use table calculations to aggregate blended data 31 Use cases of solving different business problems by blending the same data in different ways 33 Performing Blend on single field versus multiple fields 33 Self-blending 35 Domain padding 37 Using Alteryx to blend large volume of data efficiently 39 Getting started with Alteryx 39 Benefit of Alteryx 39 Summary 39 Chapter 3: Calculation/Parameter 40 Table calculations 40 Overview 40 Key concepts 41 Understand addressing and partitioning 41 Understanding At the Level 48 Understanding At the Level options 50 Table calculation functions 56 Understand rank functions 57 LOD calculations 77 Overview 78 Key Concepts 78 LOD Functions 78 LOD Use Cases 79 LOD Remix 79 LOD and Totals 80 LOD nesting 84 LOD limitations 84 Date calculations 85 Using Date Tableau calculation to hide parts of the date 86 String calculations 88 Getting last name from an email 89 Getting street number from address 89 Counting number of words in a string 90 Total for count distinct 90 Alternatives for count distinct 92 Data blending limitation with COUNTD 93 Custom Total 93 Custom Grand Total 93 [ ii ] Another Way of Custom Grand Total 95 Dynamic parameter 97 Summary 98 Chapter 4: Sort and Filter 99 Different types of sorting 100 Sort by calculated field 100 Different types of filters 107 Data source filter 107 Context filter 108 Traditional filter 108 Filter order 108 Filtering by calculated fields 109 Top N Rank 109 Top and bottom percentage 112 Filter without losing context 114 Filter with self-blending 118 Filter, group and set 120 Cascading filter 121 Dynamic set and filter 125 Summary 129 Chapter 5: Formatting 130 Tooltip 130 Custom logo in a tooltip 130 Chart in a tooltip 135 Formatting individual measure 141 Colour code individual measure 141 Fill cell with different color 145 Date formatting 147 Time range 148 Reference line 154 Reference line with 45 degree 155 Sheet selection 163 Dashboard actions 167 Action on blended field 167 Exclude filter action 173 Tips for color blind 176 Summary 177 Chapter 6: Visualization 178 [ iii ]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.