Series of Congress Reports G Ot S e r i e s o f C o n g r e s s R e p o r t s e - b tM h h a eo rd rt B Miv ö e c os k le, tiv: H t-Motives: t-Motives: Hodge Structures, Transcendence D io a c d v and Other Motivic Aspects i Ag Hodge Structures, d se G p o S Gebhard Böckle, David Goss, Urs Hartl and Matthew Papanikolas, ss ect Transcendence and Editors , tr U u s rs c H tu Other Motivic Aspects a This volume contains research and survey articles on Drinfeld modules, Anderson rt re t-modules and t-motives. Much material that had not been easily accessible in the l s a literature is presented here, for example the cohomology theories and Pink’s theory n , of Hodge structures attached to Drinfeld modules and t-motives. Also included d T r Gebhard Böckle are survey articles on the function field analogue of Fontaine’s theory of p-adic M a crystalline Galois representations and on transcendence methods over function a n t David Goss fields, encompassing the theories of Frobenius difference equations, automata theory, th s and Mahler’s method. In addition, this volume contains a small number of research e c articles on function field Iwasawa theory, 1-t-motifs, and multizeta values. w e Urs Hartl n P a d This book is a useful source for learning important techniques and an effective p Matthew Papanikolas e reference for all researchers working in or interested in the area of function field a n n arithmetic, from graduate students to established experts. ik c Editors o e la a s , n E d d i t o r s ISBN 978-3-03719-198-9 https://ems.press SCR Böckle et al. | Egyptienne F | Pantone 116, 287 | RB 31 mm EMS Series of Congress Reports EMS Congress Reports publishes volumes originating from conferences or seminars focusing on any field of pure or applied mathematics. The individual volumes include an introduction into their subject and review of the contributions in this context. Articles are required to undergo a refereeing process and are accepted only if they contain a survey or significant results not published elsewhere in the literature. Previously published: Trends in Representation Theory of Algebras and Related Topics, Andrzej Skowron´ski (ed.) K-Theory and Noncommutative Geometry, Guillermo Cortiñas et al. (eds.) Classification of Algebraic Varieties, Carel Faber, Gerard van der Geer and Eduard Looijenga (eds.) Surveys in Stochastic Processes, Jochen Blath, Peter Imkeller and Sylvie Rœlly (eds.) Representations of Algebras and Related Topics, Andrzej Skowron´ski and Kunio Yamagata (eds.) Contributions to Algebraic Geometry. Impanga Lecture Notes, Piotr Pragacz (ed.) Geometry and Arithmetic, Carel Faber, Gavril Farkas and Robin de Jong (eds.) Derived Categories in Algebraic Geometry. Toyko 2011, Yujiro Kawamata (ed.) Advances in Representation Theory of Algebras, David J. Benson, Henning Krause and Andrzej Skowron´ski (eds.) Valuation Theory in Interaction, Antonio Campillo, Franz-Viktor Kuhlmann and Bernard Teissier (eds.) Representation Theory – Current Trends and Perspectives, Henning Krause, Peter Littelmann, Gunter Malle, Karl-Hermann Neeb and Christoph Schweigert (eds.) Functional Analysis and Operator Theory for Quantum Physics. The Pavel Exner Anniversary Volume, Jaroslav Dittrich, Hynek Kovarˇík and Ari Laptev (eds.) Schubert Varieties, Equivariant Cohomology and Characteristic Classes, Jarosław Buczyn´ski, Mateusz Michałek and Elisa Postinghel (eds.) Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, Fritz Gesztesy, Harald Hanche-Olsen, Espen R. Jakobsen, Yurii Lyubarskii, Nils Henrik Risebro and Kristian Seip (eds.) Spectral Structures and Topological Methods in Mathematics, MIchael Baake, Friedrich Götze and Werner Hoffmann (eds.) t-Motives: Hodge Structures, Transcendence and Other Motivic Aspects Gebhard Böckle David Goss Urs Hartl Matthew Papanikolas Editors Editors: Gebhard Böckle Urs Hartl Interdisciplinary Center for Scientific Computing Mathematisches Institut Universität Heidelberg Westfälische Wilhelms-Universität Münster Im Neuenheimer Feld 368 Einsteinstr. 62 69120 Heidelberg 48149 Münster Germany Germany http://www.iwr.uni-heidelberg.de/~Gebhard.Boeckle/ https://www.uni-muenster.de/Arithm/hartl/ Matthew Papanikolas Department of Mathematics Texas A&M University College Station, TX 77843-3368 USA E-mail: [email protected] 2010 Mathematics Subject Classification (primary; secondary): 11G09; 11J93, 11R58, 13A35 Key words: Drinfeld modules, t-motives, Anderson t-modules, transcendence, Hodge–Pink-structures ISBN 978-3-03719-198-9 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © European Mathematical Society 2020 Contact address: European Mathematical Society Publishing House TU Berlin Mathematikgebäude, Room MA266 Straße des 17. Juni 136 10623 Berlin, Germany Homepage: https://ems.press Typeset using the authors’ TeX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface In1974Drinfeldrevolutionizedthefieldofarithmeticoverglobalfunctionfields. He introduceda functionfield analogueof elliptic curvesovernumberfields, which he calledellipticmodulesbutarenoweponymouslynamedDrinfeldmodules. Forhim andformanysubsequentdevelopmentstheirmain usewas in the explorationofthe globalLanglands conjecture for automorphic forms overfunction fields. One of its predictions is a correspondencebetween automorphic forms and Galois representa- tions. The deepinsightofDrinfeld was that the modulispacesofDrinfeld modules canbeassembledinacertaintowersuchthatthecorrespondingdirectlimitoftheas- sociated `-adic cohomologieswould be an automorphicrepresentationwhich at the sametimecarriesaGaloisaction.Thiswouldallowhimtorealizethecorrespondence conjecturedbyLanglandsingeometry. Buildingonthis,Drinfeldhimselfprovedthe globalLanglands’correspondenceforfunctionfieldsforGL andlaterL.Lafforgue 2 obtainedtheresultforallGL . n In a second direction, the analogyof Drinfeld modules with elliptic curves over number fields made them interesting objects to be studied on their own right. One couldstudytorsionpointsandGaloisrepresentations,onecoulddefinecohomology theories such as de Rham or Betti cohomologyand thus investigatetheir periods as well as transcendence questions. A main advance in this direction is the introduc- tionoft-motivesbyAnderson. PassingfromDrinfeldmodulestot-motivesmaybe compared to the passage from elliptic curves to abelian varieties. But more is true. Thecategoryoft-motivesisalsoasimplefunctionfieldanalogueofGrothendieck’s conjecturedcategoryofmotivesovernumberfields. Itisthisseconddirectionwhich constitutesamainthemeofthepresentvolume,includingadvancesonGaloisrepre- sentations,L-functions,transcendenceresults,Hodgestructuresandperioddomains. Manyexcitingdevelopmentsinthearithmeticoffunctionsfieldsinrecentdecades havecenteredaroundthenotionofat-motive. Someofthemostimportantonesare: • New developments in the transcendence theory over function fields: For in- stance, it has been shown that the period matrix of a t-motive has transcen- dencedegreeequalto thedimensionofits motivicGalois group,muchin the same way that Grothendieck’s conjecture predicts the transcendence degree of the period matrix of an abelian variety to be equal to the dimension of its Mumford–Tategroup. • Hodgestructuresforfunctionfields: DefinedbyPinkin1997,theyallowhim to define the analogue of the Mumford–Tate group of a t-motive and to for- mulateaMumford–Tateconjectureforcertaint-motivesandtoprovethecon- jecture for Drinfeld modules. Also Pink proved the Hodge-conjecturein this theory, stating, that the Mumford–Tate group is equal to the motivic Galois group. • Perioddomains:MorerecentlyPink’sHodgestructureshavebeenusedexten- sively to lay foundationsfor period domainsoverfunction fields and state an analogueofFontaine’stheoryofcrystallineGaloisrepresentations. vi Preface • Galoisrepresentations:WhiletheTate-conjectureforat-motiveoverafinitely generatedfieldhasbeenprovedalreadyintheearly90’s,onlyrecentlyresults on the openness of the image of Galois (l-adically and adelically) have been obtained. • Tannakianformalisms:Suchhaverecentlybeendescribedfort-motivesinvar- ious contexts. They should ultimately link transcendence, Hodge structures andimagesofGaloisrepresentations. • L-series: There are now cohomological approaches to L-series attached to t-motives. Moreover,recentlynewresultsonthezeroesoftheseL-serieshave emerged. The above topics are tightly interwoven. The Tannakian formalism is used in transcendencetheoryaswellasinaformulationofaMumford–Tateconjecturebased on function field Hodge structures (which is proved for Drinfeld modules). This in turn spurs the interest in Galois representations over function fields. All of the abovetopicshavecloserelationstosimilarquestionsinnumbertheory. Thefunction fieldHodgestructuresandanaloguesofFontaine’stheoryhaveinfluencedquestions on period spaces for number fields. Other developments such as the transcendence theoryhavegonefarbeyondcomparableresultsinnumbertheory. The first part of this volume consists of survey articles on central topics in the arithmeticoffunctionfields,thefirstthreeofwhichfocusonpropertiesoft-motives and Andersont-modules. There is a briefintroductoryarticle on Drinfeld modules, t-modules, andt-motivesby BrownawellandPapanikolas. The article byHartland JuschkaonPink’stheoryofHodgestructuresprovidesanextensiveviewoftheinter- connectednessbetweencohomologytheories,Hodge–Pinkstructures,t-motives,and Anderson t-modules. The article by Hartl and Kim investigates local shtukas con- nectedtoHodge–PinkstructuresandGaloisrepresentationsandprovidesa function field analogue of Fontaine’s theory of p-adic crystalline Galois representations and Kisin’stheoryofcrystallineGaloisdeformationrings. There are three further survey articles on transcendence methods over function fields. Changhasprovidedanoverviewoftechniquesintranscendencetheoryarising from solutionsofFrobeniusdifferenceequationsandtheirt-motivicinterpretations. Pellarin’s article gives an overviewof Mahler’s method for deducingtranscendence and algebraic independence in the context of function fields. Finally, Thakur has writtenasurveyofhowautomatatheorycanbeappliedtotranscendenceproblems. The remaining three articles of the volume are research articles. The article by Bandini, Bars, and Longhi focuses on Iwasawa theory over function fields, and in particulartheyformulateaMainConjectureforabelianvarietiesinZN-extensionsof p function fields. Taelman constructs and proves fundamental results for 1-t-motifs, which can be viewed as function field analogues of 1-motives over number fields. ThearticlebyThakurreviewsthetheoryofmultizetavaluesoverfunctionfieldsand presentsrecentresultsonlinearrelationsamongthemandtheirperiodinterpretations. The present volume grew out of the workshop, “t-motives: Hodge structures, transcendence and other motivic aspects,” held at the Banff International Research StationonSeptember27–October2,2009,whichbroughttogetherresearchersfrom Preface vii acrosstheglobetodiscussprogressinfunctionfieldarithmeticandrelatedtopics.The workshoppagehttps://www.birs.ca/workshops/2009/09w5094/files/containsfurther materialfordownloadthatisnotcoveredinthepresentvolume. Duetothelongtimeittookforthiscollectiontoappear,italsoseemsappropriate todiscusssomeimportantfurtherdevelopmentssincethetimeoftheworkshop. • Having introduced good notions of class module and unit group shortly be- forethe Banffmeeting, thesearchofTaelmanfora classnumberformulafor special values of L-functions proved to be successful. We refer to [3] for a first decisive theorem by Taelman in this direction, where some crucial steps are inspired by a trace formula of V. Lafforgue. This spurred much research afterwardsbyTaelmanandmanyothers. RecentlyM.Mornevhasgivenaco- homological reformulation of some of Taelman’s work. There is also recent workonspecialL-valuesbyB.Anglès,C.-Y.Chang,C.Debry,F. Demeslay, A.El-Guindy,J.Fang,T.NgoDac,M.Papanikolas,F.Pellarin,andF.Tavares Ribeiro. • In[1],F.PellarinintroducedanewkindofDrinfeldmodularformalongwith anewkindofL-function. TheformsarenowcalledvectorialDrinfeldmodu- larforms overthe Tate algebra, andthe L-functionsare namedafterPellarin. Bothconstructionshavenotyetfoundanaloguesovernumberfieldsbutproved extremely useful in function field arithmetic. Recent research is also due to B. Anglès, Q. Gazda, O. Gezmis¸, D. Goss, N. Green, A. Maurischat, T. Ngo Dac,M.Papanikolas,R.Perkins,andF.TavaresRibeiro. • The work started by Thakur [4] on multizeta values, on which his article in the present volume reports, proved to be extremely influential; perhaps also because of the motivic interpretation given jointly by him and Anderson. In particularmany transcendenceresults on algebraic independencefor the infi- nite or v-adic places have been proved in the meanwhile and many relations among such values are now understood. There has been much work in this area, particularly by B. Anglès, C.-Y. Chang, H.-J. Chen, N. Green, W.-C. Huang,Y.-L.Kuan,J.A.LaraRodríguez,Y.-H.Lin,Y.Mishiba,T.NgoDac, M.Papanikolas,S.Shi,F.TavaresRibeiro,G.Todd,andJ.Yu. • BreuerandPinkstartedaprogramtodevelopfoundationsofhigherrankDrin- feldmodularforms. WorkofPink[2]andofsomeofhisstudents,ledtoagood understandingoftheSatakecompactificationofDrinfeldmodularvarietiesof higher rank, algebraically and analytically. Very recent work on this and on higherrankDrinfeldmodularformsisalsoduetoD.Basson,F.Breuer,E.-U. Gekeler,S.Häberli,M.Papikian,S.Schieder,andF.-T.Wei. The above list is certainly not complete and we apologize for not mentioning the manyotherdevelopmentsthattookplaceinthelastyearsinfunctionfieldarithmetic andthefuturedirectionsthathavebeenstartedrecently. G.Böckle,D.Goss,U.Hartl,M.Papanikolas 23May2019 viii Preface N.B. It is with great sorrow that we observe that David Goss passed away during the compilation of this volume. David was one of the early pioneers in modern ap- proaches to function field arithmetic, and throughoutrecent decades he enthusiasti- callychampionednewdevelopmentsinthesubjectandcontinuallyencouragedboth juniorandestablishedresearcherstoreachfornewdiscoveries. Hewasawonderful colleagueandfriend. References [1] F.Pellarin,ValuesofcertainL-seriesinpositivecharacteristic.Ann.Math.176(3)(2012), 2055–2093. [2] R.Pink,CompactificationofDrinfeldmodularvarietiesandDrinfeldmodularformsof arbitraryrank.ManuscriptaMath.140(3–4)(2013),333–361. [3] L.Taelman,SpecialL-valuesofDrinfeldmodules.Ann.Math.175(1)(2012),369–391. [4] D.S.Thakur,FunctionFieldArithmetic,WorldScientific,RiverEdge,NJ,2004. Contents PartA.Surveyarticles 1 ArapidintroductiontoDrinfeldmodules,t-modules,andt-motives. . 3 byW.DaleBrownawell,MatthewA.Papanikolas 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Exponentialfunctionsofalgebraicgroups . . . . . . . . . . . . . . . . . 3 1.3 Drinfeldmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 t-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 t-Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Pink’stheoryofHodgestructuresandtheHodgeconjecture overfunctionfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 byUrsHartl,Ann-KristinJuschka 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Hodge–Pinkstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3 MixedA-motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 MixeddualA-motives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5 AndersonA-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2.7 (cid:2)-Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3 Localshtukas,Hodge–PinkstructuresandGaloisrepresentations . . . 183 byUrsHartl,WansuKim 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 3.2 Localshtukas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 3.3 DivisiblelocalAndersonmodules . . . . . . . . . . . . . . . . . . . . . . . 191 3.4 Tatemodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 3.5 Hodge–Pinkstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.6 Admissibilityandweakadmissibility. . . . . . . . . . . . . . . . . . . . . 222 3.7 TorsionlocalshtukasandtorsionGaloisrepresentations . . . . . . . . 230 3.8 DeformationtheoryofGaloisrepresentations . . . . . . . . . . . . . . . 245 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 4 FrobeniusdifferenceequationsanddifferenceGaloisgroups . . . . . . . 261 byChieh-YuChang 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 4.2 t-Motivictranscendencetheory. . . . . . . . . . . . . . . . . . . . . . . . . 262 4.3 Carlitzpolylogarithmsandspecial(cid:3)-values . . . . . . . . . . . . . . . . 268