ebook img

Systems biology : a textbook PDF

507 Pages·2016·82.379 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Systems biology : a textbook

EddaKlipp WolframLiebermeister ChristophWierling AxelKowald SystemsBiology Edda Klipp Wolfram Liebermeister Christoph Wierling Axel Kowald Systems Biology A Textbook Second, Completely Revised and Enlarged Edition Authors AllbookspublishedbyWiley-VCHarecarefullyproduced. Nevertheless,authors,editors,andpublisherdonotwarrantthe Prof.Dr.h.c.EddaKlipp informationcontainedinthesebooks,includingthisbook,tobefreeof TheoreticalBiophysics errors.Readersareadvisedtokeepinmindthatstatements,data, Humboldt-UniversitätzuBerlin illustrations,proceduraldetailsorotheritemsmayinadvertentlybe Invalidenstr.42 inaccurate. 10115Berlin Germany LibraryofCongressCardNo.:appliedfor Dr.WolframLiebermeister BritishLibraryCataloguing-in-PublicationData InstituteofBiochemistry AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Charité-UniversitätsmedizinBerlin BibliographicinformationpublishedbytheDeutscheNationalbibliothek Charitéplatz1 TheDeutscheNationalbibliothekliststhispublicationintheDeutsche 10117Berlin Nationalbibliografie;detailedbibliographicdataareavailableonthe Germany Internetat<http://dnb.d-nb.de>. Dr.ChristophWierling 2016Wiley-VCHVerlagGmbH&Co.KGaA,Boschstr.12,69469 AlacrisTheranosticsGmbH Weinheim,Germany Fabeckstr.60-62 14195Berlin Allrightsreserved(includingthoseoftranslationintootherlanguages). Germany Nopartofthisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedor and translatedintoamachinelanguagewithoutwrittenpermissionfrom thepublishers.Registerednames,trademarks,etc.usedinthisbook, MaxPlanckInstituteforMolecularGenetics evenwhennotspecificallymarkedassuch,arenottobeconsidered Ihnestr.63-73 unprotectedbylaw. 14195Berlin Germany PrintISBN: 978-3-527-33636-4 ePDFISBN: 978-3-527-67566-1 Dr.AxelKowald ePubISBN: 978-3-527-67567-8 TheoreticalBiophysics MobiISBN: 978-3-527-67568-5 HumboldtUniversityBerlin Invalidenstr.42 Typesetting ThomsonDigital,Noida,India 10115Berlin Printedonacid-freepaper Germany Cover CoverdesignbyWolframLiebermeister.Thecoverpicturewas providedwithkindpermissionbyJörgBernhardt. Contents Preface xi 2.2.2 IllustrativeExamplesofODEModels 18 GuidetoDifferentTopicsoftheBook xiii References 21 AbouttheAuthors xv FurtherReading 21 3 StructuralModelingandAnalysisof PartOne IntroductiontoSystemsBiology 1 BiochemicalNetworks 23 3.1 StructuralAnalysisofBiochemicalSystems 24 1 Introduction 3 3.1.1 SystemEquations 24 1.1 BiologyinTimeandSpace 3 3.1.2 InformationEncodedintheStoichiometric 1.2 ModelsandModeling 4 MatrixN 25 1.2.1 WhatIsaModel? 4 3.1.3 TheFluxCone 27 1.2.2 PurposeandAdequatenessofModels 5 3.1.4 ElementaryFluxModesandExtreme 1.2.3 AdvantagesofComputationalModeling 5 Pathways 27 1.3 BasicNotionsforComputationalModels 6 3.1.5 ConservationRelations–NullSpaceofNT 29 1.3.1 ModelScope 6 3.2 Constraint-BasedFluxOptimization 30 1.3.2 ModelStatements 6 3.2.1 FluxBalanceAnalysis 31 1.3.3 SystemState 6 3.2.2 GeometricInterpretationofFluxBalance 1.3.4 Variables,Parameters,andConstants 6 Analysis 31 1.3.5 ModelBehavior 7 3.2.3 ThermodynamicConstraints 31 1.3.6 ModelClassification 7 3.2.4 ApplicationsandTestsoftheFluxOptimization 1.3.7 SteadyStates 7 Paradigm 32 1.3.8 ModelAssignmentIsNotUnique 7 3.2.5 ExtensionsofFluxBalanceAnalysis 33 1.4 Networks 8 Exercises 35 1.5 DataIntegration 8 References 36 1.6 Standards 9 FurtherReading 37 1.7 ModelOrganisms 9 1.7.1 Escherichiacoli 9 4 KineticModelsofBiochemicalNetworks: 1.7.2 Saccharomycescerevisiae 11 Introduction 39 1.7.3 Caenorhabditiselegans 11 4.1 ReactionKineticsandThermodynamics 39 1.7.4 Drosophilamelanogaster 11 4.1.1 KineticModelingofEnzymaticReactions 39 1.7.5 Musmusculus 12 4.1.2 TheLawofMassAction 40 References 12 4.1.3 ReactionThermodynamics 40 FurtherReading 14 4.1.4 Michaelis–MentenKinetics 42 4.1.5 RegulationofEnzymeActivitybyEffectors 44 2 ModelingofBiochemicalSystems 15 4.1.6 GeneralizedMassActionKinetics 48 2.1 OverviewofCommonModelingApproaches 4.1.7 ApproximateKineticFormats 48 forBiochemicalSystems 15 4.1.8 ConvenienceKineticsandModularRateLaws 49 2.2 ODESystemsforBiochemicalNetworks 17 4.2 MetabolicControlAnalysis 50 2.2.1 BasicComponentsofODEModels 18 4.2.1 TheCoefficientsofControlAnalysis 51 vi Contents 4.2.2 TheTheoremsofMetabolicControlTheory 53 6.4 CoupledSystemsandEmergent 4.2.3 MatrixExpressionsforControlCoefficients 55 Behavior 110 4.2.4 UpperGlycolysisasRealisticModelExample 58 6.4.1 ModelingofCoupledSystems 111 4.2.5 Time-DependentResponseCoefficients 59 6.4.2 CombiningRateLawsintoModels 113 Exercises 61 6.4.3 ModularResponseAnalysis 113 References 61 6.4.4 EmergentBehaviorinCoupledSystems 114 FurtherReading 62 6.4.5 CausalInteractionsandGlobalBehavior 115 Exercises 116 5 DataFormats,SimulationTechniques,and References 117 ModelingTools 63 FurtherReading 119 5.1 SimulationTechniquesandTools 63 5.1.1 DifferentialEquations 63 7 Discrete,Stochastic,andSpatialModels 121 5.1.2 StochasticSimulations 64 7.1 DiscreteModels 122 5.1.3 SimulationTools 65 7.1.1 BooleanNetworks 122 5.2 StandardsandFormatsforSystems 7.1.2 PetriNets 124 Biology 72 7.2 StochasticModelingofBiochemical 5.2.1 SystemsBiologyMarkupLanguage 72 Reactions 127 5.2.2 BioPAX 74 7.2.1 ChanceinBiochemicalReactionSystems 127 5.2.3 SystemsBiologyGraphicalNotation 74 7.2.2 TheChemicalMasterEquation 129 5.3 DataResourcesforModelingofCellular 7.2.3 StochasticSimulation 129 ReactionSystems 75 7.2.4 ChemicalLangevinEquationandChemical 5.3.1 General-PurposeDatabases 75 Noise 130 5.3.2 PathwayDatabases 76 7.2.5 DynamicFluctuations 132 5.3.3 ModelDatabases 77 7.2.6 FromStochastictoDeterministic 5.4 SustainableModelingandModel Modeling 133 Semantics 78 7.3 SpatialModels 133 5.4.1 StandardsforSystemsBiologyModels 78 7.3.1 TypesofSpatialModels 134 5.4.2 ModelSemanticsandModelComparison 78 7.3.2 CompartmentModels 135 5.4.3 ModelCombination 80 7.3.3 Reaction–DiffusionSystems 136 5.4.4 ModelValidity 82 7.3.4 RobustPatternFormationinEmbryonic References 83 Development 138 FurtherReading 85 7.3.5 SpontaneousPatternFormation 139 7.3.6 LinearStabilityAnalysisoftheActivator– 6 ModelFitting,Reduction,andCoupling 87 InhibitorModel 140 6.1 ParameterEstimation 88 Exercises 142 6.1.1 Regression,Estimators,andMaximal References 143 Likelihood 88 FurtherReading 144 6.1.2 ParameterIdentifiability 90 6.1.3 Bootstrapping 91 8 NetworkStructure,Dynamics,and 6.1.4 BayesianParameterEstimation 92 Function 145 6.1.5 ProbabilityDistributionsforRate 8.1 StructureofBiochemicalNetworks 146 Constants 94 8.1.1 RandomGraphs 147 6.1.6 OptimizationMethods 97 8.1.2 Scale-FreeNetworks 148 6.2 ModelSelection 99 8.1.3 ConnectivityandNodeDistances 149 6.2.1 WhatIsaGoodModel? 99 8.1.4 NetworkMotifsandSignificanceTests 150 6.2.2 TheProblemofModelSelection 100 8.1.5 ExplanationsforNetworkStructures 151 6.2.3 LikelihoodRatioTest 102 8.2 RegulationNetworksandNetwork 6.2.4 SelectionCriteria 102 Motifs 152 6.2.5 BayesianModelSelection 103 8.2.1 StructureofTranscriptionNetworks 153 6.3 ModelReduction 104 8.2.2 RegulationEdgesandTheirSteady-State 6.3.1 ModelSimplification 104 Response 156 6.3.2 ReductionofFastProcesses 105 8.2.3 NegativeFeedback 156 6.3.3 Quasi-EquilibriumandQuasi-SteadyState 107 8.2.4 AdaptationMotif 157 6.3.4 GlobalModelReduction 108 8.2.5 Feed-ForwardLoops 158 vii Contents 8.3 ModularityandGeneFunctions 160 10 Variability,Robustness,andInformation 209 8.3.1 CellFunctionsAreReflectedinStructure, 10.1 VariabilityandBiochemicalModels 210 Dynamics,Regulation,andGenetics 160 10.1.1 VariabilityandUncertaintyAnalysis 210 8.3.2 MetabolicsPathwaysandElementary 10.1.2 FluxSampling 212 Modes 162 10.1.3 ElasticitySampling 213 8.3.3 EpistasisCanIndicateFunctionalModules 163 10.1.4 PropagationofParameterVariabilityinKinetic 8.3.4 EvolutionofFunctionandModules 163 Models 214 8.3.5 IndependentSystemsasaTacitModel 10.1.5 ModelswithParameterFluctuations 216 Assumption 165 10.2 RobustnessMechanismsandScaling 8.3.6 ModularityandBiologicalFunctionAre Laws 217 ConceptualAbstractions 165 10.2.1 RobustnessinBiochemicalSystems 218 Exercises 166 10.2.2 RobustnessbyBackupElements 219 References 167 10.2.3 FeedbackControl 219 FurtherReading 169 10.2.4 PerfectRobustnessbyStructure 222 10.2.5 ScalingLaws 224 9 GeneExpressionModels 171 10.2.6 TimeScaling,SummationLaws,and 9.1 MechanismsofGeneExpression Robustness 227 Regulation 171 10.2.7 TheRoleofRobustnessinEvolutionand 9.1.1 TranscriptionFactor-InitiatedGene Modeling 228 Regulation 171 10.3 AdaptationandExplorationStrategies 229 9.1.2 GeneralPromoterStructure 173 10.3.1 InformationTransmissioninSignaling 9.1.3 PredictionandAnalysisofPromoter Pathways 230 Elements 174 10.3.2 AdaptationandFold-ChangeDetection 230 9.1.4 PosttranscriptionalRegulationthrough 10.3.3 TwoAdaptationMechanisms:Sensingand microRNAs 176 RandomSwitching 231 9.2 DynamicModelsofGeneRegulation 180 10.3.4 ShannonInformationandtheValueof 9.2.1 ABasicModelofGeneExpressionand Information 232 Regulation 180 10.3.5 MetabolicShiftsandAnticipation 233 9.2.2 NaturalandSyntheticGeneRegulatory 10.3.6 ExplorationStrategies 234 Networks 183 Exercises 236 9.2.3 GeneExpressionModelingwithStochastic References 237 Equations 186 FurtherReading 239 9.3 GeneRegulationFunctions 187 9.3.1 TheLacOperoninE.coli 187 11 OptimalityandEvolution 241 9.3.2 GeneRegulationFunctionsDerivedfrom 11.1 OptimalityinSystemsBiologyModels 243 EquilibriumBinding 188 11.1.1 MathematicalConceptsforOptimalityand 9.3.3 ThermodynamicModelsofPromoter Compromise 245 Occupancy 189 11.1.2 MetabolismIsShapedbyOptimality 248 9.3.4 GeneRegulationFunctionoftheLac 11.1.3 OptimalityApproachesinMetabolic Promoter 191 Modeling 250 9.3.5 InferringTranscriptionFactorActivitiesfrom 11.1.4 MetabolicStrategies 252 TranscriptionData 192 11.1.5 OptimalMetabolicAdaptation 253 9.3.6 NetworkComponentAnalysis 194 11.2 OptimalEnzymeConcentrations 255 9.3.7 CorrespondencesbetweenmRNAandProtein 11.2.1 OptimizationofCatalyticPropertiesofSingle Levels 196 Enzymes 255 9.4 FluctuationsinGeneExpression 196 11.2.2 OptimalDistributionofEnzymeConcentrations 9.4.1 StochasticModelofTranscriptionand inaMetabolicPathway 257 Translation 197 11.2.3 TemporalTranscriptionPrograms 259 9.4.2 IntrinsicandExtrinsicVariability 200 11.3 EvolutionandSelf-Organization 261 9.4.3 TemporalFluctuationsinGene 11.3.1 Introduction 261 Cascades 202 11.3.2 SelectionEquationsforBiological Exercises 203 Macromolecules 263 References 205 11.3.3 TheQuasispeciesModel:Self-Replicationwith FurtherReading 207 Mutations 265 viii Contents 11.3.4 TheHypercycle 267 13.2.1 ChemicalBondsandForcesImportantin 11.3.5 OtherMathematicalModelsofEvolution:Spin BiologicalMolecules 336 GlassModel 269 13.2.2 FunctionalGroupsinBiologicalMolecules 338 11.3.6 TheNeutralTheoryofMolecular 13.2.3 MajorClassesofBiologicalMolecules 338 Evolution 270 13.3 StructuralCellBiology 345 11.4 EvolutionaryGameTheory 271 13.3.1 StructureandFunctionofBiological 11.4.1 SocialInteractions 272 Membranes 347 11.4.2 GameTheory 273 13.3.2 Nucleus 349 11.4.3 EvolutionaryGameTheory 274 13.3.3 Cytosol 349 11.4.4 ReplicatorEquationforPopulationDynamics 274 13.3.4 Mitochondria 350 11.4.5 EvolutionarilyStableStrategies 275 13.3.5 EndoplasmicReticulumandGolgi 11.4.6 DynamicalBehaviorintheRock–Scissors–Paper Complex 350 Game 276 13.3.6 OtherOrganelles 351 11.4.7 EvolutionofCooperativeBehavior 276 13.4 ExpressionofGenes 351 11.4.8 CompromisesbetweenMetabolicYieldand 13.4.1 Transcription 351 Efficiency 278 13.4.2 ProcessingofthemRNA 353 Exercises 279 13.4.3 Translation 353 References 280 13.4.4 ProteinSortingandPosttranslational FurtherReading 283 Modifications 355 13.4.5 RegulationofGeneExpression 355 12 ModelsofBiochemicalSystems 285 Exercises 356 12.1 MetabolicSystems 285 References 356 12.1.1 BasicElementsofMetabolicModeling 286 FurtherReading 356 12.1.2 ToyModelofUpperGlycolysis 286 12.1.3 ThreonineSynthesisPathwayModel 289 14 ExperimentalTechniques 357 12.2 SignalingPathways 291 14.1 RestrictionEnzymesandGel 12.2.1 FunctionandStructureofIntra-andIntercellular Electrophoresis 358 Communication 292 14.2 CloningVectorsandDNALibraries 359 12.2.2 Receptor–LigandInteractions 293 14.3 1Dand2DProteinGels 361 12.2.3 StructuralComponentsofSignaling 14.4 HybridizationandBlottingTechniques 362 Pathways 295 14.4.1 SouthernBlotting 363 12.2.4 AnalysisofDynamicandRegulatoryFeatures 14.4.2 NorthernBlotting 363 ofSignalingPathways 304 14.4.3 WesternBlotting 363 12.3 TheCellCycle 307 14.4.4 InSituHybridization 364 12.3.1 StepsintheCycle 309 14.5 FurtherProteinSeparationTechniques 364 12.3.2 MinimalCascadeModelofaMitotic 14.5.1 Centrifugation 364 Oscillator 310 14.5.2 ColumnChromatography 364 12.3.3 ModelsofBuddingYeastCellCycle 311 14.6 PolymeraseChainReaction 365 12.4 TheAgingProcess 314 14.7 Next-GenerationSequencing 366 12.4.1 EvolutionoftheAgingProcess 316 14.8 DNAandProteinChips 367 12.4.2 UsingStochasticSimulationstoStudy 14.8.1 DNAChips 367 MitochondrialDamage 318 14.8.2 ProteinChips 367 12.4.3 UsingDelayDifferentialEquationstoStudy 14.9 RNA-Seq 368 MitochondrialDamage 323 14.10 YeastTwo-HybridSystem 368 Exercises 327 14.11 MassSpectrometry 369 References 327 14.12 TransgenicAnimals 370 14.12.1 MicroinjectionandESCells 370 14.12.2 GenomeEditingUsingZFN,TALENs,and PartTwo ReferenceSection 331 CRISPR 370 14.13 RNAInterference 371 13 CellBiology 333 14.14 ChIP-on-ChipandChIP-PET 372 13.1 TheOriginofLife 334 14.15 GreenFluorescentProtein 374 13.2 MolecularBiologyoftheCell 336 14.16 Single-CellExperiments 375

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.