1 Systematic trends in electronic properties of alkali hydrides 9 Mireille Aymar, Johannes Deiglmayr, and Olivier Dulieu 0 0 2 n a J Abstract: Obtaining ultracoldsamples of dipolar molecules isacurrent challenge which 8 requires anaccurate knowledge of their electronic propertiestoguide the ongoing experiments. Alkali hydride molecules havepermanent dipole significantlylarger than ] h those of mixed alkali speciesand, aspointed out byTaylor-Juarroset al. [Eur.Phys. J.D 31, p 213 (2004)] and by Juarros etal. [Phys. Rev. A 73, 041403 (2006)], arethusgood candidates - for moleculeformation. Inthispaper, using astandard quantum chemistryapproach based m on pseudopotentials for atomic corerepresentation, largeGaussian basissets, andeffective o core polarization potential, wesystematicallyinvestigate theelectronicproperties of thealkali t a hydrides LiH toCsH,inorder todiscussgeneral trends of their behavior. Wecomputed (for . the firsttimefor NaH,KH, RbH, andCsH) thevariation of their staticpolarizability with s c the internuclear distance. Moreover, inaddition topotential curves, wedetermineaccurate i values of permanent and transitiondipole momentsfor ground and excitedstatesdepending s y on theinternuclear distance. Thebehavior of electronicproperties of all alkali hydridesis h compared toeach other, inthelight of the numerous other dataavailableintheliterature. p Finally, theinfluence of thequality of therepresentation of thehydrogen electronic affinityin [ the approach on theresultsisdiscussed. 1 Key words: LiH,NaH, KH, RbH,CsH, alkali hydrides, permanent dipole and transition v dipole moments, staticdipole polarizabilities. 5 PACSNos.: 31.15.ac,31.15.ap,31.50.Bc,31.50.Df 0 0 1 1. Introduction . 1 Alkalihydrideshavecontinuouslyattractedtheinterestofresearchersinvariousareas.Indeed,they 0 9 are among the molecules with the simplest electronic structure, allowing very detailed comparisons 0 between differenttheoreticalmodels, and with available experimentalresults. The astrophysicaland : cosmologicalrelevanceofLiHiswellknown[1–3],asitisbelievedtobeformedintheearlyuniverse v i byradiativeassociationofHandLi[1].Thedeterminationoftheabundancesofchemicalelementsin X stellaratmospheresandthemodelingofthechemistryoftheseelementsintheearlyuniverserequires r aknowledgeofthecrosssectionsforvariouscollisionalprocessessuchasinelasticcollisionsbetween a hydrogenandalkaliatoms(Li,Na)[4,5],radiativechargetransferbetweenalkaliatomsandH+ [6], dissociativerecombination[7],orneutralizationcollisionsbetweenalkaliionsandH−[8,9].Molecular MireilleAymar, JohannesDeiglmayr,1 and Olivier Dulieu.2 Laboratoire Aime´ Cotton, CNRS, Baˆt. 505, UnivParis-Sud,91405OrsayCedex,France 1Present Address: PhysikalischesInstitut,Universita¨t Freiburg, Hermann-Herder-Strasse3, 79104 Freiburg, Germany 2Corresponding author (e-mail:[email protected]). unknown 99:1–23(2009) DOI:10.1139/Zxx-xxx (cid:13)c 2009NRCCanada 2 unknownVol.99,2009 reactiondynamicsof alkaliatoms andmolecularhydrogeninvolvealkalihydridesas productsand a good description of these systems is required to analyze the reaction mechanism [10,11]. Coˆte´ et al. [12,13] suggested that the formation of Bose-Einstein condensates of a dilute gas of hydrogen couldbeachievedbycoolinghydrogenatomsinabuffergasofalkaliatoms,whichcriticallydepends ontherelatedscatteringlengths.RecentlyJuarrosetal.havepredictedthatformationofultracoldLiH or NaH moleculesis possibleusingvariousprocessessuchas stimulatedRamanphotoassociationor stimulatedone-photonphotoassociation[14–16].Duetoitslargepermanentdipolemoment,theLiH molecule[17],andpossiblytheNaHmolecule,maybeconsideredascandidatesforStarkdeceleration. Also, following the ideas of ref. [18] related to alignment and orientation of polar molecules under the influence of combined static and laser fields, alkali hydrides could be good candidates for such experiments.Anaccurateknowledgeoftheelectronicpropertiesofthesemoleculesareprerequisiteto theextensionoftheseinvestigationstoheavieralkalihydrides. Followingpreviousworkonalkalidimersinourgroup,weperformedsystematiccomputationsof the electronic propertiesof alkali hydridesfrom LiH to CsH (Section 2) as well as the monocations formedfromthesemolecules.Newresultsforthedependenceoninternucleardistanceandonthevi- brationalindexoftheirdipolepolarizabilitiesarepresentedinSection3.Wealsocompareourresults withnumerousprevioustheoreticaldataforpotentialcurvesandpermanentandtransitiondipolemo- ments,identifyinggeneraltrendsforthesequantities(Section4),andallowingforananalysisoftheir accuracy.Inparticular,theissueoftheinclusionofacorrectionforthehydrogenelectronaffinityisdis- cussed.Mostofthecomputedresultsofthepresentworkareavailableassupplementarymaterialpro- videdbytheeditor.Inthefollowingwewilluseatomicunitsfordistances(a0=0.052917720859nm) andenergies(2R =219474.63137cm−1)exceptwhereotherwisestated. ∞ 2. Computational details and potential curves for neutral and ionic systems As in our previousstudies on alkali dimers, the alkali atoms are describedby ℓ-dependentpseu- dopotentialsfortheioniccores[19,20]includingeffectivecorepolarizationterms[21,22],andbya large set of uncontractedGaussian functions for the valence electron. For all atoms but Cs we used the Gaussian basis sets labeled as ”B” in ref. [23,24], while for Cs we use the basis set labeled as ”B’”inref.[25].Wealsousethesamecore-polarizationpotentials(CPP)thaninourpreviouswork, with the reported valuesfor the cut-off radii. For the H atom we set up a new large [10s5p2d]basis set of uncontracted Gaussian functions with the following exponents: 195.5, 27.6, 6.3, 1.8, 0.5983, 0.22, 0.09, 0.04, 0.019,0.006 for s basis functions;1.05, 0.22, 0.0669,0.024270,0.00669for p ba- sis functions;0.34, 0.061for d basis functions.This choice globallyimprovesthe calculated atomic levelenergiescomparedtopreviousworks.Weobtainthefollowingdiscrepancies:∆E1s =3.2cm−1, ∆E2s =2.1cm−1,∆E2p =7.4cm−1,∆E3s =29cm−1,∆E3p =51cm−1.Forinstance,Huzinaga etal.[26]usedalargebasissetofcontractedGaussianorbitalswhichgaveexactenergiesforthe1s, 2s, 2p, 3s and 3p levels. In their recent series of papers, Gade´a and coworkers [27–30] designed a [7s3p2d]Gaussian basis set contractedto [5s3p2d],close to the oneof Geumet al. [31]whoused a [7s3p2d]contractedto[6s3p2d]basisset.Theformerauthorsobtaineddeviationsof∆E1s ∼11cm−1 and∆E2s ∼ 700cm−1 [27],andthe latter ∆E1s ∼ 64cm−1 and∆E2s ∼ 35cm−1. Moreoverour basisalsoprovidesanimprovedhydrogenelectronicaffinitywithadeviationofabout140cm−1from theexactvalueofref.[32],i.e.threetimessmallerthanthevaluequotedbyBoutalibandGade´a[27] butslightlylargerthanthevalueofGeumetal.(∼111cm−1). Themolecularcalculationsare performedjustlike in ourpreviouspapers[23,25,33].Molecular orbitalsare determinedby a restrictedHartree-Fockcalculationincludingcorepolarization,yielding electronicenergiesandwavefunctionsofthemolecularion.Electronicenergiesandwavefunctionsof theneutralsystemarededucedfromafullconfigurationinteraction(CI)oftwo-electronconfigurations, throughtheCIPSIquantumchemistrycodeofthequantumchemistrygroupinToulouse(France)[34]. Our procedure automatically provides potential curves for the related alkali hydride ions treated as (cid:13)c2009NRCCanada Aymar,Deiglmayr,andDulieu 3 effective one-electronsystems, and it is worthwhile to examine them as a first check of its accuracy compared to other approaches. It is striking to see in Table 1 that even for the ground state of such simplesystems,publishedvaluesvarysignificantlyforthebindingenergyofLiH+ andNaH+,while onlyfewdataareavailableuptonowfortheheaviestspeciesKH+,RbH+,andCsH+.Toourknowl- edge only one experimental value has been published up to now, namely the CsH+ binding energy extracted from differential cross section measurements [35]. Very few measurements have been re- portedforothermolecularstates.WealsolistinTable1dataforthefirstexcitedstateA2Σ+whichhas beenwidelystudiedinthecontextofthetheoreticalcalculationofcrosssectionsforchargeexchange reactions[1,6,36–39]. Mostofthecalculationsofalkalihydrideionpotentialcurveshavebeencarriedoutwitheffective core potentials. In a series of recent papers, Magnier [40–42] extended the work of Alikacem and Aubert-Fre´con[43]byincludingeffectivecorepolarizationpotentialstotheirKlapischmodelpotential approach[44].Variouskindsofpseudopotentialshavebeenusedbyseveralauthors[36,37,39,45–48], the closest approach to ours being the work by Berriche and Gade´a [49] for LiH+. A few ab initio all-electroncalculationshavealso beenperformedmanyyearsago,byRosmusandMeyer[50]with the coupled electron pair approach, by Vojtik [51] using the MRDCI approach, and by Dalgarno et al.[1]andOlsonetal.[52]withSCFandCIapproaches,forthetreatmentofradiativeassociationin anastrophysicalenvironment.Itistedioustoachieveanenlighteningcomparisonofourdatawiththese works,asmostofthemarequiteoldandwereprobablylimitedbycomputationalfacilitiesatthattime. Moreover,severalcalculationsreportedbindingenergiesD fortheAexcitedstateonly,withwhich e ourresultsreasonablyagree,butwithoutreportingsimilardataforthegroundstate.Ourvaluesforthe LiH+ groundstate agree wellwith thoseof Magnier[40],butare slightlylargerthanthose obtained bythesameauthoronNaH+ andKH+ [41,42].FortheAstatethepresentD valuesforLiH+ and e NaH+ arealmostidenticalto thosepredictedbyMagnier[40,41]butslightlysmaller forKH+ [42]. Also,thedepthofthepotentialwelloftheAstateofCsH+lieswithintheerrorofthedatareportedin ref.[35]. Next, the accuracy of our full CI results yielded by our treatment of the neutral molecule as an effective two-electron system, can be analyzed from Tables 2 and 3, which display the equilibrium distancesR ,the harmonicconstantω andthe potentialwell depthofthe alkalihydrideselectronic e e statestogetherwithavailableexperimentalvaluesandwithseveralotherrecenttheoreticalresults.We concentrateouranalysisonthefourthlowest1Σ+ andtwolowest1Πelectronicstates,astheycanbe reachedbyelectricdipoletransitionfromthegroundstate. However,wealso performedcalculations fortripletstates,andalltheseresultsarecollectedinthesupplementarymaterialattachedtothispaper. We labelthemolecularstatesaccordingtothestandardspectroscopicnotation,i.e.X,A,C,E corre- spondingto thefourlowest1Σ+ states, andB ≡ (1)1Π. Similarly,tripletstatesarelabeledwiththe lowercaseindexesa, b,andc,forthe(1)3Σ+, (1)3Π, and(2)3Σ+, respectively.Inrefs.[27–30],the authorslabeledthe (4)1Σ+ as D state. Our conventionforthe sign of the permanentdipoleis that a positivevaluecorrespondstothechargedistributionA+ H−,whereAisanalkaliatom. The extensive review by Stwalley et al. [54] addresses most of the works already published on alkalihydrides.Inparticular,thisreviewreportsonexperimentalstudiesofthefirst1Σ+ state(theA state)fromNaHtoCsH.Vidaletal.[55,56]investigatedthespectroscopyofAandB(thelowest1Π) states,andYangetal.[57]andHsiehetal.[58]theAstateinKHandinCsH,respectively. We brieflyrecall below some of the theoreticalcalculations,mainly those yielding tablesof per- manent or transition dipole moments, for further reference in the next sections. Ab initio multicon- figurationself-consistent-fieldcalculationswith configurationinteraction(MCSCF-CI) of permanent and transition dipole momentsof LiH have been reportedby Docken and Hinze [59] using a Slater- type basis set, in contrast with Gaussian basis sets employed in the present calculations. Partridge and Langhoff [60,61] repeated such computationswith an extended Slater-type basis set. Roos and Sadlej[62]usedthecompleteactivespaceSCF(CASSCF)approachtocalculatethepermanentdipole (cid:13)c2009NRCCanada 4 unknownVol.99,2009 momentandthepolarizabilitiesofthe groundstate asfunctionsoftheinteratomicdistance.Sachset al. determined the electronic properties of several states of NaH [63,64]. Langhoff et al. extended theirpreviousinvestigationstoNaH,KH,andRbH[65]usingnearHartree-FockqualitySlater basis sets and incorporating electron correlation through a coupled-pair formalism. Laskowski et al. [66] studied the two lowest 1Σ+ states in CsH, using a similar approach to ours: effective ℓ-dependent pseudopotentials derived from relativistic Hartree-Fock calculations and including core polarization termsforatomiccorerepresentation,andGaussianbasissetsintheCIcalculation.Carnelletal.[67] investigatedthe first seventeen states of CsH with ab initio multi-referenceconfigurationinteraction (MRDCI)calculations.Combiningexistingexperimentaldataandab-initiocalculations,Zemkeetal. determinedthe dipolemomentforthe A1Σ+ → X1Σ+, B1Π → X1Σ+, and B1Π → A1Σ+ tran- sitionsandrelatedradiativetransitionprobabilitiesinLiH[68,69],andthepermanentdipolemoment fortheX andAstatesinNaH[70].Finally,Camachoetal.[71]builttheA1Σ+ →X1Σ+ transition dipolemomentofKHfromavailableexperimentaldata. MorerecentlyGade´aandcoworkershaveperformedaseriesofstudiesoftheadiabaticanddiabatic molecularstatesofalkalihydrides[27–30].Asinthepresentwork,theauthorsusedtheℓ-dependent pseudopotentialsofDurandandBarthelat[19,20],andcore-valencecorrelationfromref.[21,22].Fur- thermore,anR-dependentcorrectionoftheion-pairdiabaticcurvesisintroducedtoaccountforbasis set limitations and to ensure an improved value for the ground state energy. Permanent dipole mo- mentsforseveral1,3Σ+statesandtransitiondipolemomentsbetween1Σ+ stateshavebeendisplayed for KH [28], RbH [29], and CsH [30]. Khelifi et al. have determined the radiative and nonradiative lifetimesoftheA1Σ+ andC1Σ+ vibrationallevelsoftheKHmolecule[72,73]. InTable2,weseethattheoreticalvaluesforR aresystematicallyslightlysmallerthantheexper- e imentalones,especiallyforCsH. Thiscouldbe dueto theabsenceof short-rangerepulsiontermsin theECPcalculations.OurresultingvaluesforD areslightlylargerthansimilarcalculationsofGade´a e andcoworkers(column(a)intheTable)[27–30],whichisamanifestationoftheinfluenceofthelarge basiswe usedin ourwork.HoweveritiswellknownthatECP-typecalculationisnota perfectvari- ationalapproach,so that it may happenthat the computedwell-depthexceedsthe experimentalone, especiallywhenlargeioniccoresareinvolved(seetheCsHcase).Thispatternisalsovisibleinresults fromDolg[74].Theyrelyonfullyrelativisticpseudopotentials,andmolecularcalculationsarebased on Dirac-Hartree-Fockand CI approaches.Core-polarizationterms have been introduced,as well as correctionsforcore-corerepulsion.Equilibriumdistancesarealsofoundshorterthantheexperimental ones, while D are larger than the experimental ones for all species. When an empirical correction e forthehydrogenelectronicaffinityisincludedbyGade´aandcoworkersforKH, RbH,andCsH (see section4),thevaluesforD areincreasedandbecomeclosertotheexperimentalones.However,such e a correctioncannotbe consideredas a variationalprocedure,so thattheir D valueforCsH exceeds e the experimental one by about 462 cm−1. We will comment more about the effect of their ion-pair correctionondipolemomentsinsection4. Wesummarizedthemainspectroscopicconstantsofthefourlowest1Σ+ excitedstates,andofthe lowest1ΠstateinTable3,comparedtoexperimentalobservations,andtoselectedtheoreticalpredic- tions.Asalreadypointedout,Gade´aandcoworkers[27–30]haveinvestigatedallsystemsbutNaHand theirpapersincludeextensivecomparisonswith otherpredictionswhicharenotduplicatedhere.For NaHourvaluesarecomparedtothoseofLeeetal[76],whousedthelarge-corepseudopotentialofthe Stuttgartgroup[77]andaccountedforcorepolarizationfollowingref.[21].SCFandCIcalculations have been performed with the MOLPRO package. The X and A states of KH and RbH have been investigatedbyGarciaetal[80]usingasmall-corepseudopotential[77],andthedifference-dedicated configuration interaction (DDCI) method to account for core-valence correlation effects. Our values aregenerallyingoodagreementwiththoseofGade´aandcoworkersalthoughtheGaussianbasissets usedinthoseworkfordescribingthealkaliandhydrogenatomsdifferfromours.Itisdifficulttoknow ifthesomewhatlargedifferenceswiththevaluesforNaHof[76]arerelatedtothedifferencesinthe (cid:13)c2009NRCCanada Aymar,Deiglmayr,andDulieu 5 pseudopotentialortothoseinthebasissets. 3. Static dipole polarizabilities If the z axis is chosen along the internuclear axis in the molecule-fixedreference frame (x,y,z), therearetwoindependentcomponentsofthemolecularpolarizabilitytensor,i.e.,theparallelcompo- nentα ≡α andtheperpendicularoneα ≡α =α .Tworelatedquantitiesareusuallydefined: k zz ⊥ xx yy theaveragepolarizabilityα = (α +2α )/3andthepolarizabilityanisotropyγ = α −α .Asin k ⊥ k ⊥ ourpreviousworkonthe static dipolepolarizabilitiesofalkalidimers[82],we determinedthestatic dipole polarizabilitiesof alkalihydridesin their groundstate with the finite-fieldmethod[83],using electricfieldsbetween0.0003and0.0005a.u.toremainintheperturbativeregime.Wecalculatedboth componentsofthestaticdipolepolarizabilityforallsystemsasfunctionsoftheinternucleardistance R(Figure1).Forallsystems,theR-variationsofα andα aresimilar,withanincreaseofα with k ⊥ k increasingalkalimass,andasmoothincreaseofα withR.Toourknowledge,nootherR-variationof ⊥ thealkalihydridedipolepolarizabilityhasbeenpreviouslypublished,exceptforLiHinref.[62]which displaysadependencyinreasonableagreementwiththepresentone(Figure1(c)).LookingatlargeR, wenotehoweverthatthelithiumpolarizabilityseemstobeslightlyunderestimatedinref.[62].Also, Kolos and Wolniewicz [84] foundsimilar variationsof the H polarizabilities than the present ones, 2 butwithsmallervalues,asexpected. Byintegratingthepolarizabilitiesoverthevibrationalwavefunctions,wededucethev-dependency ofαandofγ,whichregularlyincreasefromLiHtoCsH,justlikefortheseriesofalkalipairs(Figure 2(a)). The anisotropies reach quite large values (up to 967 au. for CsH at v = 24, i.e. two times largerthanthecesiumatomicpolarizability),magnifyingtheinfluenceofthehydrogenatomwhenthe moleculeisvibrationallyexcited,incontrastwiththev =0case.Noothervalueshavebeenpublished inthepast.WealsodisplayinFigure1(b)thepermanentdipolemomentofthealkalihydrideground state which show similar v-dependence for all the systems, with a maximum followed by a rapid decreasetozero,asexpectedfromcomparablecalculationsforalkalipairs[23]. Inourpreviousworkaboutthegroundstatepolarizabilitiesofallhomonuclearandheteronuclear alkalidiatomics[82],bothα andα componentswerefoundtovarylinearlywithaneffectivevolume k ⊥ V = 4π(R )3/3,α varyingtwotimesfasterthanα withV .Thissuggestedthepictureofan eff e k ⊥ eff effectiveelliptic chargedistributionforthe alkalipair atthe equilibriumdistance. Inalkalihydrides, thisscalinglawremainsvalidonlyforα ,whileα doesnotmonotonicallyvaryalongtheseriesof k ⊥ alkalihydrides.Thismaybeduetotheweaknessofthehydrogenpolarizability,whichisatleastone orderofmagnitudesmaller(4.5a.u.[85])thanthealkaliones([82]).Thereforetheeffectiveelliptic chargedistributionofthemoleculeisprogressivelydominatedbythepolarizabilityofthealkaliatom, alongtheseriesfromLitoCs. Mostprevioustheoreticalworksreportedpolarizabilityvaluesattheexperimentalequilibriumdis- tance Rexp ofthe groundstate, whichareassembledin Table 4,togetherwith the presentresultsfor e α ,α ,αandγcalculatedeitheratRexp[54]orforv =0.TheLiHmoleculeisthemostextensively k ⊥ e studiedsystem, andwe giveonlythe mostsignificantvalues.Additionalreferencesmaybefoundin thequotedpapers.CoupledHartree-FockperturbationtheoryhasbeenusedbyLazzerettietal.[86], and multiconfigurationaltime-dependentHartree-Fock (MCTDHF) method by Sasagane et al. [87]. Multiconfigurationself-consistentfield(SCF)approacheshavebeenusedatvariouslevelsbyseveral authors[62,88–90].Inthesepapers,thefinitefieldmethod[83]orthechargeperturbativeapproach[89] havebeenusedtoextractpolarizabilities.Atime-dependentgaugeinvariantmethod(TDGI)hasbeen usedbyRe´ratetal.[91],whileVrbiketal.[92]employedadiffusionquantumMonte-Carlo(DQMC) approach.Sadlejandcoworkersaretheonlyauthorswhoinvestigatedstaticdipolepolarizabilitiesfor other species than LiH using many-body perturbation theory (MBPT) and coupled-cluster theories combinedwith finite field methods[93,94]. Most of the above-quotedauthorspresented predictions obtainedwithdifferentbasissetsoratdifferentlevelsofapproximation,andweonlyreportinTable4 (cid:13)c2009NRCCanada 6 unknownVol.99,2009 2000 (a) LiH NaH 1500 KH RbH el CsH all1000 r a P ) u. a. 500 ( y bilit a z ri 0 a ol p (b) c ati 300 St ar ul c ndi 200 e p r e P 100 5000 5 10 15 20 ) u. 400 (c) a. ( y bilit 300 a z ri a ol 200 p c ati St 100 0 5 10 15 20 R (a.u.) Fig. 1. (a) α and (b) α components of the static dipole polarizability of the alkali hydride ground stateas k ⊥ functionsoftheinternucleardistance.(c)ForLiH,ourresultsforα (fullline)andα (dashedlines)arecompared k ⊥ withthoseofRoosandSadlej[62](X-es). (cid:13)c2009NRCCanada Aymar,Deiglmayr,andDulieu 7 ) (a) u. a. 800 LiH ( es NaH biliti KH a RbH z ari 400 CsH ol p c ati St 0 ) (b) u. a. 800 ( s e biliti a z ari 400 ol p c ati St ) 0 e y (c) b 10 e D ( nt e m o m ole 5 p di nt e n a m r e 0 P 0 5 10 15 20 25 30 Vibrational level Fig.2. (a)averagepolarizability(dashedlines),(b)polarizabilityanisotropy(fulllines)(inau.),and(b)perma- nentdipolemoment(inDebye,with1a.u.=2.54158059D)ofthealkalihydridegroundstate,asfunctionsofthe vibrationallevel. (cid:13)c2009NRCCanada 8 unknownVol.99,2009 valuesobtainedwiththeirmostsophisticatedmodel. Valuesforthe polarizabilitiesatR are similar tothose forv = 0forallspeciesbutCsH within e 2%,simplybecausethesteepnessofthepolarizabilityfunctionsaroundR iscompensatedbythesym- e metriccharacterofthev = 0wavefunction.ForCsH,the9%differencecomesfromourequilibrium distance,whichisslightlysmallerthantheexperimentalone.ForLiHandNaHourpredictionsagree wellwithothervalueswiththeexceptionofthevaluesofGreadyetal.[88]obtainedwithatoosmall basisset.Therelativelywidevariationofthetheoreticalvaluesclearlyemphasizesthehighsensitivity of the polarizabilityto the size of the basis sets and to correlation effects. Our predictionsof α for k heavier systems lie between the two quoted values of ref. [93], while our values for α are slightly ⊥ smaller.Notethatthedipolemomentscalculatedwiththeirapproximation(b)inthatpaperarecloser toourvaluesthantheir(a)values. Wearenotawareofanypolarizabilitymeasurementinalkalihydrides.Anoldexperimentalvalue of the polarizabilityanisotropyfor LiH with a largeerrorbar (γ = 1.7±4.au) hasbeen quotedby StevensandLipscomb[95]asanunpublishedresultfromKlempereretal.. 4. Trends of the permanent and transition dipole moments of alkali hydrides WereportinTable4ourvaluesforthepermanentdipolemomentµ attheexperimentalequilib- z riumdistanceofthegroundstate.Wenotethattheyarequiteabitlargerthanthoseofalkalidimers[23] (ranging between 0.5 and 5 Debye), due to the large asymmetry of the charge distribution. Our val- ues show good agreement with the limited experimental data available (currently only for LiH and NaH[96,97]).Table4reflectsthesituationwhichhelduntilrecentlyforthetheoreticalworks:many ofthemweredevotedtoLiH,andonlyafewtoheavierspecies.Inparticular,weobtainaverygood agreementwiththemostelaboratemodelofSadlejandUrban[93]. WealsocomputedtheR-variationofthepermanentandtransitiondipolemomentsforaselection ofelectronicstates.Itiswell-knownthatsuchfunctionsrepresentsensitivetestsfortheaccuracyofthe computedelectronicwavefunctions.Asmentionedearlier,manytheoreticalworkshavebeenalready published for these quantities, and we concentrate on systematic trends in their behavior along the series ofalkalihydrides.Itis worthnotingthatsuch ananalysiscan be performeddueto the wealth of data concerning alkali hydrides, in contrast with the few data available for alkali dimers (see for instanceref.[33]). In the followingfigures, we display the computedR-variationof the permanentdipole moments fortheX,A,B,C,a,andbstatesofalkalihydrides,comparedtootheravailablestudies.Asexpected the most studied state is the X groundstate (Fig. 3(a)).Its permanentdipole momentshows similar regularvariationswithRforallspecies,reachingahighermaximumamplitudeatlargerdistancewith increasingmassandpolarizability.Theagreementbetweenallmethodsisgenerallysatisfactory,with theexceptionofref.[67]wherethemaximumvalueisfoundtobeabout20%larger.Thepermanent dipolemomentsfortheAstate(Fig.3(b))varyliketheonefortheX state,reachingtheirmaximum value at larger distances. Severalother determinationsexist in the literature for the LiH and NaH A state. We founda remarkableagreementfor LiH with refs. [59,60].In contrast,the maximumvalue foundbySachsetal.[63]isalmosttwotimessmallerthanours.Asforthegroundstate,themaximum valuefoundbyCarnelletal.forCsHislarger(byabout25%)thanours,whiletheonebyLaskowskiet al[66]isabout25%smallerthanours.Toourknowledge,theonlyothercalculationsforKH,RbH,and CsHhavebeenreportedbyGade´aandcoworkersinrefs[28],[29],and[30],respectively.Notablesof numericaldataareavailableinthesepapers,butasatisfactoryagreementisvisible,aslongastheeye canjudgefromtheirfigures(seethediscussionforRbHlaterinthissection).Finallyourcalculations for boththe X andA states of NaH are in excellentagreementwith those of Zemke et al. [70]who extractedthedipolemomentfunctionsfromananalysiscombiningab-initioandexperimentalresults. Asexpected,theR-variationoftheA−X transitiondipolemoment(Figure4a)reflectsbothvaria- tionsoftheX andApermanentdipolemomentsthroughthecorrespondingelectronicwavefunctions: (cid:13)c2009NRCCanada Aymar,Deiglmayr,andDulieu 9 20 (a) ) Docken&Hinze (1972) e y Partridge&Langoff (1981) b e 15 Langoff et al (1986) D ( Sachs et al (1975) ent Zemke et al (1984) m Carnell et al (1989)a o m 10 Carnell et al (1989)b e Laskowski et al (1981) ol p di nt ne 5 X-state a m r e P 0 40 (b) A-state ) e y b 30 e D ( nt e m o 20 m e ol p di nt 10 e n a m r e P 0 5 10 15 20 R (a.u.) Fig.3. ComputedpermanentdipolemomentsofX1Σ+(upperpanel)andA1Σ+(lowerpanel)statesasfunctions oftheinternuclear distance.Ourresultsare:LiH(blackfullline),NaH(reddashedline),KH(greendot-dashed line),RbH(bluedottedline),CsH(orangelong-dashed line).Otherdeterminationsaredisplayedfromref.[59] (blackfullcircles),ref.[60](blackopencircles),ref.[63](opensquares),ref.[70](plussigns),ref.[65](stars), ref.[66](fulltriangles),andref.[67]withoutorwithrelativisticeffects(dottedlineandfullcircles,ordottedline withopencircles,respectively). (cid:13)c2009NRCCanada 10 unknownVol.99,2009 two extremumarevisible,whosepositionscorrespondto thoseobtainedfortheX andApermanent dipolemomentfunctions.ThesamefigurealsodisplaysresultsconcerningthetransitionsB−X and B −Ainvolvingthe lowestB1Π excitedstate (Figure4b,c).Anexcellentagreementis foundagain with refs.[59,60]forallthese transitionsinLiH. Quiteunexpectedly,the agreementwith the values ofSachsetal[63]forNaHlooksbetterthanfortheApermanentdipolemoment.ForCsH,thecurve by Laskowski et al [66] is close to ours in the region of the maximum value of the X dipole mo- ment (below 10 a.u.), and notin the regionof the one of the A dipole moment(around15 a.u.). As inthepreviousfigure,resultsfromref.[67]disagreewithours.Again,theagreementfortheA−X transitiondipolemomentsseemsatisfactorywhenlookingatfiguresfromrefs.[28–30]forKH,RbH, andCsH.Whilenotdisplayedhere,resultsarealsoavailablefortransitiondipolemomentsamongthe lowest triplet Σ+ and Π states (c−a, b−a, c−b) in LiH [59] and NaH [63], in good agreement withthepresentresults.ExperimentalvaluesareonlyavailableforA−X andB−X transitionsin LiH[68,69],andourvaluesareinexcellentagreementwiththem.AdeterminationoftheA−X tran- sitiondipolemomentvariationinKHhasbeenrecentlyextractedfromtheexperimentbyCamachoet al.[71](whichistoourknowledgetheonlyexperimentaldataforthismolecule)showingareasonable agreementwithourvalue. InFigure5we displaythepermanentelectricdipolemomentforhigherexcitedsingletstates (B and C), and for the two lowest triplet a and b states. While less data are available for comparison, we observethe same trendthan in the previousfigures:the systematic investigationof Carnellet al. ref. [67]really seemsto missmost ofthe characterof the excited electronicwave functionsof CsH, whileourresultsareinagreementwiththoseofref.[60]fortheBstateofLiH,andofref.[63]forthe B,a,andbstatesinNaH.Avisualsatisfactoryagreementisalsoobservedwiththefiguresdisplayed inrefs.[28–30]. Asexpected,allofthesedipolemomentsvanishwithincreasingdistance,withasmallerratewith increasingalkalimass.TheC stateisthemostexcitedstatedisplayedinthefigure-correlatedtothe secondexcited1s+3s,1s+4s,1s+5s,1s+4d,and1s+5ddissociationlimitsforLiH,NaH,KH,RbH, and CsH, respectively-so its magnitudereacheslargervalues than for the other states. For all alkali hydrides,theC dipolemomentexhibitsirregularvariations,whichisthewell-knownmanifestationof the contributionof the ion-pair configurationin the electronic wave function(see Figure 6): as long as this ion-pair character dominates the wave function (between the avoided crossings marked with circlesinFigure6),thepermanentdipolemomentcantakelargevalues,untilthedistancewherethe covalent character shows up again. In LiH and NaH, the presence of the avoided crossing C and E states atshortdistancesisalso visiblein Figure5c(see arrows).Quite unexpectedly,the CsH dipole momentisnotthelargestoneoftheseries,astheion-paircharactercannotdeveloptowardsdistances largerthan22a.u.duetothesomewhatsmallerenergyspacingbetweentheexciteddissociationlimits, comparedtotheotherspecies. Theinfluenceoftheion-paircharacterisalsovisibleinthetransitiondipolemomentsamongthese excitedelectronicstates, asvisible onFigure 7 forthe C −A andE −C transitions.The transition dipole moment functions change very abruptly with the internuclear distance (see arrows), which is theexpectedmanifestationoflocalchangeoftheelectronicwavefunctionsatthelocationofavoided crossingsbetweentherelatedpotentialcurves. The treatment of the ion-pair contribution is actually a sensitive issue for discussing the quality oftherepresentationoftheelectronicwavefunctionsofthemoleculesinvariousapproaches.Indeed, suchacharacterisnotexplicitlyintroducedinthestandardGaussianbasissetsforneutralatoms,and wouldneedinprincipleaninfinitenumberofbasisfunctionstobeaccuratelyrepresented.Inthepresent work,wesetupalargebasisforthehydrogenatom,inordertoreproducetheatomicenergylevels,and hopefullytotakeinaccountasmuchaspossibleoftheion-paircharacter.Anindicationforthisisour computedvalueofthehydrogenelectronicaffinityEA = 5938cm−1,comparedtotheexperimental valueEAexp = 6083cm−1[32].Letusnotethatinref.[76]mentionedinTable3theauthorsuseda (cid:13)c2009NRCCanada