ebook img

Systematic comparison of photoionised plasma codes with application to spectroscopic studies of ... PDF

15 Pages·2016·0.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Systematic comparison of photoionised plasma codes with application to spectroscopic studies of ...

A&A596,A65(2016) Astronomy DOI:10.1051/0004-6361/201628721 & (cid:13)c ESO2016 Astrophysics Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays M.Mehdipour1,J.S.Kaastra1,2,3,andT.Kallman4 1 SRONNetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands e-mail:[email protected] 2 DepartmentofPhysicsandAstronomy,UniversiteitUtrecht,POBox80000,3508TAUtrecht,TheNetherlands 3 LeidenObservatory,LeidenUniversity,POBox9513,2300RALeiden,TheNetherlands 4 NASAGoddardSpaceFlightCenter,Code662,Greenbelt,MD20771,USA Received15April2016/Accepted7October2016 ABSTRACT Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing ourunderstandingoftheUniverse.Inthisinvestigationwepresentasystematiccomparisonoftheleadingphotoionisationcodesto determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. WecarryoutourcomputationsusingtheCloudy,SPEX,andXSTARphotoionisationcodes,andcomparetheirderivedthermaland ionisationstatesforvariousionisingspectralenergydistributions.Weexaminetheresultingabsorption-linespectrafromthesecodes forthecaseofionisedoutflowsinactivegalacticnuclei.Bycomparingtheionicabundancesasafunctionofionisationparameterξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at logξ∼1to2,reducingtoabout20%deviationatlogξ∼3.Wealsosimulatespectraoftheionisedoutflowswiththecurrentand upcominghigh-resolutionX-rayspectrometers,onboardXMM-Newton,Chandra,Hitomi,andAthena.Fromthesesimulationswe obtainthedeviationonthebest-fitmodelparameters,arisingfromtheuseofdifferentphotoionisationcodes,whichisabout10to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena. Keywords. plasmas–atomicprocesses–atomicdata–techniques:spectroscopic–X-rays:general 1. Introduction hydrogendensityincm−3,andrthedistancebetweentheplasma andionisingsourceincm. An astrophysical object with an intense continuum radiation Given the definition of ξ, a self-consistent solution to the stronglyinfluencestheionisationandthermalstateofitsnearby ionisation and energy balance equations yields the temperature gas. For example, this is the case in active galactic nuclei and ionic abundances of a PIE plasma as a function ξ. The (AGN), where accretion of matter onto a supermassive black photoionisation codes, namely Cloudy1 (Ferlandetal. 2013), hole (SMBH) releases a huge amount of radiation, leading to SPEX2 (Kaastraetal. 1996), and XSTAR3 (Kallman&Bautista the photoionisation of the surrounding gas outflows. Such a 2001;Bautista&Kallman2001),computethisthermalandioni- medium is generally treated as in photoionisation equilibrium sationbalancebasedonthespectralenergydistribution(SED)of (PIE), and thus the ionisation state of the plasma is primarily theionisingsourceandtheelementalabundancesoftheionised regulated by the balance between photoionisation and recom- plasma.Thecodestakethevastdatabaseofatomicdataintoac- bination. Photoionised plasmas are however complex environ- count to derive the solution between various heating and cool- mentstomodelbecauseofvariousprocessesthatplayarolein ingmechanisms,suchasphotoionisation,recombination,Auger reaching photoionisation equilibrium. The equilibrium electron ionisation,collisionalionisation,bremsstrahlung,andCompton temperatureT ofaPIEplasmaisdeterminedbythesolutionto scattering. For a classical paper describing a PIE plasma and the energy balance equation, where the rate of energy injection modellingitsrelevantprocesses,seeKallman&McCray(1982). into the plasma (e.g. photoelectrons) is set equal to the rate of Forareviewofatomicdatausedinthemodellingofhotplasmas, energy loss from the plasma (e.g. radiation by radiative recom- seeKallman&Palmeri(2007). bination). The ionisation parameter ξ (Tarteretal. 1969; Kroliketal. In this investigation we used Cloudy version 13.01, SPEX 1981) conveniently quantifies the ionisation state of a PIE version3.02.00,andXSTARversion2.3tocarryoutasystematic plasmawithasingleparameter,whichisdefinedas comparison of the results from these photoionisation codes. In Sect.2wedescribethePIEcalculationsviathethreecodesfor L ξ ≡ , (1) n r2 H 1 http://www.nublado.org where L is the luminosity of the ionising source over the 2 http://www.sron.nl/spex 1−1000 Ryd (13.6 eV to 13.6 keV) band in erg s−1, n the 3 http://heasarc.gsfc.nasa.gov/xstar/xstar.html H ArticlepublishedbyEDPSciences A65,page1of15 A&A596,A65(2016) Table1.Absoluteabundancesofchemicalelementsthatweusedinour 1013 computations of the photoionisation equilibrium and the transmission BB spectrum. AGN1 Element Abundance Element Abundance Hz) 1012 H 1 S 1.622×10−5 Jy PL He 9.705×10−2 Cl 1.991×10−7 F (ν AGN2 Li 2.143×10−9 Ar 3.573×10−6 ν Be 2.360×10−11 K 1.449×10−7 1011 B 7.244×10−10 Ca 2.328×10−6 C 2.773×10−4 Sc 1.327×10−9 N 8.166×10−5 Ti 9.528×10−8 10−4 10−2 100 102 O 6.053×10−4 V 1.102×10−8 Photon energy (keV) F 3.097×10−8 Cr 5.047×10−7 Fig. 1. Four different SEDs that we used for our photoionisation bal- Ne 1.268×10−4 Mn 3.556×10−7 ancecalculationsinCloudy,SPEX,andXSTAR.TheAGN1andAGN2 Na 2.223×10−6 Fe 3.266×10−5 SEDs are the normal and obscured SED versions of a typical Seyfert Mg 3.972×10−5 Co 9.057×10−8 AGN (NGC 5548), taken from Mehdipouretal. (2015). The PL SED isapower-lawcontinuumwithΓ=2,andtheBBSEDisablackbody Al 3.258×10−6 Ni 1.888×10−6 withT =50eV. Si 3.855×10−5 Cu 2.084×10−8 P 3.199×10−7 Zn 5.012×10−8 differentSEDs.InSect.3wedeterminethethermalstateofPIE Notes. The values are from proto-solar abundances of Loddersetal. plasmasusingeachcodeandpresenttheirthermalstabilityanal- (2009). ysis. In Sect. 4 we study how different processes contribute to the cooling and heating of a PIE plasma, and how they change for different SED cases. In Sect. 5 we compare the ionisation us to investigate the effects of the ionising SED on the derived state of PIE plasmas computed by the three codes. We analyse resultsfromeachcode. thecorrespondingtransmissionspectrainSect.6,anddetermine The first SED, labelled AGN1, corresponds to that of thespectral-linedifferencesfoundbythethreecodes.InSect.7, Seyfert1galaxyNGC5548,derivedinMehdipouretal.(2015) for the study of ionised outflows in AGN, we compare the un- frommodellingextensivemultiwavelengthcampaigndataofthis certaintiesarisingfrommodellingwithdifferentphotoionisation object.TheAGN1SEDrepresentsthebroadbandcontinuumof codes with the statistical uncertainties from observations with astandardunobscuredAGN.ThesecondSED,labelledAGN2, high-resolutionX-rayspectrometers.Wediscussallourfindings is the obscured version of AGN1. This SED is also taken from inSect.8andgiveconcludingremarksinSect.9.InAppendixA Mehdipouretal. (2015) and represents the broadband contin- weprovideatable,comparingtheionicabundancesfoundbythe uumafterabsorptionbycoldgasatthecoreofthisAGN.Theex- threecodes. tremeultraviolet(EUV)andsoftX-raypartsofthisSEDaresup- pressedasshowninFig.1.ThisobscuredSED(AGN2)ionises thoseoutflows,whicharelocatedfurtheroutfromthenucleus. 2. Photoionisationequilibriumcalculations ThethirdSED,labelledPL,correspondstoasimplepower- law continuum with Γ=2, spanning from 0.1 eV to 1 MeV. A We computed the ionisation balance in Cloudy, SPEX, and power-law SED is sometimes used as an approximation for the XSTAR using the four SEDs described in Sect. 2.1 and the el- SED of those objects, which their broadband continuum model emental abundances described in Sect. 2.2. In SPEX, we used isnotestablished.ThefourthSED,labelledBB,correspondsto the new pion model for photoionisation calculations, which the spectrum of a simple blackbody emitter with a temperature is introduced in Sect. 2.3. In our ionisation balance calcula- of T =50 eV. This SED is chosen to be in contrast with other tions with each code, we adopt an optically thin photoionised SEDstorepresentaverysoftspectrum. plasmainequilibriumwithaslabgeometry.Thehydrogenden- sitywassetton =1×108cm−3,withatotalcolumndensityof H NH =1×1016cm−2.LaterinSects.6and7,wherewecalculate 2.2. Elementalabundances the absorption-line spectra of photoionised plasma, the column densityissettoN =1×1022cm−2. FortheelementalabundancesofthePIEplasma,theproto-solar H Wenotethatuptoandincludingversion13.03ofCloudy,L valuesofLoddersetal.(2009)wereadopted.Theabsoluteabun- inthedefinitionofξwastakentobethetotalionisingluminosity dances used in our calculations with each code are given in as first defined by Tarteretal. (1969). However, from version Table1. 13.04ofCloudy,thedefault Lischangedtobeconsistentwith the commonly used definition, where it ranges between 1 and 2.3. ThenewpionmodelinSPEX 1000 Ryd. In this paper, L is always over 1–1000 Ryd in our calculationswitheachcode. HereweintroducethenewpionmodelinSPEX,whichisaself- consistent photoionisation model that calculates both the ioni- sation balance and the spectrum. Previously, we used the xabs 2.1. Spectralenergydistributions modelinSPEX,whichcalculatedthetransmissionthroughaslab Inthispaper,weusedfourdifferentSEDsforourionisationbal- of photoionised plasma with all ionic abundances linked in a ance calculations, which are displayed in Fig. 1. This enables physicallyconsistentfashionthroughprecalculatedrunswithex- A65,page2of15 M.Mehdipouretal.:Systematiccomparisonofphotoionisationcodes Table2.ComparisonoftheComptontemperature(T )valuesobtained C 101 Cloudy bythethreecodesforthefourSEDcasesshowninFig.1. SPEX XSTAR 100 AGN2 AGN1 Cloudy SPEX XSTAR SED T (keV) T (keV) T (keV) V) C C C ke 10−1 AGN1 8.7 9.4 8.7 T ( AGN2 13.1 14.1 13.1 PL 4.6 4.8 4.5 10−2 BB 0.043 0.049 0.048 10−3 andXSTARforthetemperatureandionisationofthePIEplasma. 10−2 100 102 104 106 InFig.2weshowtheelectrontemperatureT oftheplasmaasa ξ functionofξfoundbythecodesforeachofthefourSEDs. Figure 2 demonstrates the different impact of each SED on 101 Cloudy the ionisation balance of the plasma, and hence T(ξ). The re- SPEX XSTAR sultsshowthatthereisreasonableagreementbetweenT(ξ)from 100 PL thecodesforeachSEDcase.Wecomparedthetemperaturesat logξof1.0,2.0,and3.0,whichcoversarangecommonlyfound V) ke 10−1 in AGN ionised outflows from X-ray spectroscopy. Over this ξ T ( range,fortheAGN1SEDthereisbetween25%and29%devia- tionbetweenthemaximumandminimumT valuesfoundbythe 10−2 BB codes. FortheAGN2 SED,thedifferenceis greateratbetween 37%to45%,whileforthePLSED,itisbetween27%and36%. 10−3 FortheBBSED,thereistheleastamountofT differenceat17% 10−2 100 102 104 106 to19%. ξ ThereisareasonablygoodagreementbetweentheCompton temperaturesT foundbythecodesforallfourSEDcases.The Fig.2.ElectrontemperatureT ofaPIEplasmaasafunctionofioni- C sationparameterξ.ThecurvesarecalculatedusingtheCloudy,SPEX, obtainedTC valuesaregiveninTable2.Thedeviationbetween and XSTAR photoionisation codes, shown in blue, red, and green, re- thecodesfromthemeanTCisabout4%.TheTCvalueishighest spectively.ThecalculationsarecarriedoutforthefourdifferentSEDs fortheAGN2SEDcaseandlowestfortheBBcase. ofFig.1:AGN1(toppanelinsolidline),AGN2(toppanelindashed AnionisingSEDdeterminestheionisationbalanceandther- line),PL(bottompanelinsolidline),andBB(bottompanelindashed mal stability of photoionised plasmas, such as the ionised out- line). flows in AGN. A photoionised plasma can be thermally unsta- ble in certain regions of the ionisation parameter space. This ternalcodes(CloudyorXSTAR).However,thenewpionmodel can be investigated by means of producing the thermal stabil- isdevelopedtocalculateallthestepsinSPEX. ity curves (also called S-curves or cooling curves), which is a The pion model uses the ionising radiation from the con- plot of the electron temperature T as a function of the pressure tinuum components set by the user in SPEX. So during spectral form of the ionisation parameter, Ξ, introduced by Kroliketal. fitting, as the continuum varies, the ionisation balance and the (1981).TheionisationparameterΞ,isdefinedasΞ≡ F/n ckT, H spectrumofthePIEplasmaarerecalculatedateachstage.This where F isthefluxoftheionisingsourcebetween1–1000Ryd meanswhileusingrealisticbroadbandcontinuumcomponentsto (in erg cm−2 s−1), k is the Boltzmann constant, T is the elec- fitthedata(e.g.ComptonisationandreflectionmodelsforAGN), trontemperature,andn isthehydrogendensityincm−3.Taking H thephotoionisationbalanceandthespectrumarecalculatedac- F = L/4πr2andusingξ ≡ L/n r2,Ξcanbeexpressedas H cordingly by the pion model. Thus, the variable nature of the L ξ ξ source continuum can also be taken into account in ionisation Ξ= = ≈19222 · (2) balancecalculations.SoratherthanassuminganSEDshapefor 4πr2n ckT 4πckT T H ionisationbalancecalculations,thepionmodelprovidesamore OntheScurveitself,theheatingrateisequaltothecoolingrate, accurate approach for determining the intrinsic continuum and sothegasisinthermalbalance.Totheleftofthecurve,cooling the ionisation balance. For example, Chakravortyetal. (2012) dominatesoverheating,whiletotherightofthecurve,heating have shown that just the temperature of the accretion disk and dominatesovercooling.OnthebranchesoftheScurvethathave the strength of the soft X-ray excess component in AGN (e.g. apositivegradient,thephotoionisedgasisthermallystable.This Mehdipouretal. 2011) can significantly influence the structure means small perturbations upwards in temperature increase the and stability of the ionised outflows in AGN. The pion model cooling,whilesmallperturbationsdownwardsintemperaturein- wasfirstusedinarecentpaperbyMilleretal.(2015)tomodel creasetheheating.However,onbrancheswithnegativegradient, thecomplexabsorptionspectrumofionisedflowscausedbythe thephotoionisedgasisthermallyunstable.Inthiscase,asmall tidaldisruptionofastarbyamassiveblackhole.Foradescrip- perturbation upwards in temperature increases the heating rel- tionoftheatomicdatabaseusedinthepionmodel,seetheSPEX ative to the cooling, causing further temperature rise, whereas manual. a small perturbation downwards in temperature leads to further cooling. InFig.3weshowthecomputedcoolingcurves,correspond- 3. Thermalstateofphotoionisedplasmas ingtothefourSEDcasesofFig.1.Wenotethatthedisplayed Following the ionisation balance calculations described in Ξ range in Fig. 3 corresponds to the same ξ and T range used Sect.2,herewepresentthesolutionsobtainedbyCloudy,SPEX, in Fig. 2. Comparing the results for AGN1 and AGN2 SEDs, A65,page3of15 A&A596,A65(2016) !!""##$$%%&&''(())**++,,--))..//0011%%22))11%%&&""//33))44))**++,,55))..22##//66""22))11%%&&""//33 101 Cloudy --77(cid:239)(cid:239)88 SPEX BB00$$##11))!!""##$$%%&&'' XSTAR --77(cid:239)(cid:239)== !!""##$$%%&&''))CCDD))EE6600$$00(cid:239)(cid:239)""11""??$$>>00&&// 100 --/3/3(cid:239)(cid:239) !!!!""""####$$$$%%%%&&&&''''))))CCCCDDDD))))F*F*GG00''@@""EE>>$$))00""&&11""))??//$$??>>##00$$&&$$""//>>%%&&'' V) AGN2 AGN1 AA?@)?@)(cid:239)(cid:239) --77(cid:239)(cid:239)99 !!""##$$%%&&''))CCDD))FF00@@EE$$00&&))%%00&&%%//##$$%%00&& T (ke 10−1 #$").">')#$").">') ----7777(cid:239)(cid:239)(cid:239)(cid:239);<;< 10−2 ')>')> #$%&#$%& --77(cid:239)(cid:239):: "" 10−3 !! --77(cid:239)(cid:239)--77 10−1 100 101 --77(cid:239)(cid:239)---- Ξ --77(cid:239)(cid:239)55 --7777 --7755 --7788 --7799 (cid:106)(cid:106) 101 Cloudy !!""##$$%%&&''(())**++)),,--..//%%00))//%%&&""--11))22))3333)),,00##--44""00))//%%&&""--11 SPEX 5566(cid:239)(cid:239)88 XSTAR BB..$$##//))!!""##$$%%&&'' 100 PL 5566(cid:239)(cid:239)== !!""##$$%%&&''))CCDD))EE44..$$..(cid:239)(cid:239)""//""??$$>>..&&-- T (keV) 10−1 A5A5')?@)-1')?@)-1(cid:239)(cid:239)(cid:239)(cid:239) 55556666(cid:239)(cid:239)(cid:239)(cid:239)<9<9 !!!!!!""""""######$$$$$$%%%%%%&&&&&&''''''))))))CCCCCCDDDDDD))))))FGFFGFHH....''@@@@""EEEE>>$$$$))....""&&&&//""))))??-%-%..$$??>>&&##..%%$-$-&&$$##""--$$>>%%%%..&&&&'' ">"> 10−2 #$"),#$"), 5566(cid:239)(cid:239);; ')>')> 10−3 BB #$%&#$%& 5566(cid:239)(cid:239):: "" 10−1 100 101 !! 5566(cid:239)(cid:239)5566 Ξ 5566(cid:239)(cid:239)5555 Fig. 3. Electron temperature T of a PIE plasma as a function of the 5566(cid:239)(cid:239)77 556666 556677 556688 556699 pressureformoftheionisationparameterΞ.Thecurvesarecalculated (cid:106)(cid:106) using the Cloudy, SPEX, and XSTAR photoionisation codes, shown in Fig.4.HeatingrateinaPIEplasmaasafunctionofionisationparameter blue,red,andgreen,respectively.Thecalculationsarecarriedoutfor thefourdifferentSEDsofFig.1:AGN1(toppanelinsolidline),AGN2 ξfortheAGN1andAGN2SEDs(toppanel),andthePLandBBSEDs (bottompanel).ThecurvescorrespondingtoAGN1andPLareshown (toppanelindashedline),PL(bottompanelinsolidline),andBB(bot- insolidlines,andthosecorrespondingtoAGN2andBBareindicated tompanelindashedline). withdashedlines.Foreachcase,thetotalheatingrateisshowninblack, andthecontributionsfromindividualprocessesareshowninthesame it is clear that the EUV/soft X-ray obscuration has a signifi- coloursastheircorrespondinglabels. cant impact on the ionisation balance and thermal stability of theplasma,andproducesamoreextendedunstablebranch.For each SED case, the predicted unstable branches from Cloudy, the total heating rate is 72.1%, 17.7%, 10.2%, and 0.05%, re- SPEX,andXSTARaresimilar. spectively. For the AGN2 SED, although the order is the same, thevaluesaredifferent.Inthiscase,heatingbyphoto-electrons islowerat49.7%,whileheatingbyComptonscatteringishigher 4. Physicalprocessesinphotoionisedplasmas at38.9%.ForAGN2,heatingbyAugerelectronsandCompton Figures 4 and 5 show how different heating and cooling pro- ionisationareonlyslightlyhigherthaninAGN1withvaluesof cessescontributetothetotalheatingandcoolinginaPIEplasma. 11.3%and0.09%,respectively.Thesedifferencesarisefromthe They are derived from our computations using the SPEX pion significant suppression of EUV/soft X-ray part of the SED in modelforeachSEDcase.Theyallowustounderstandhoweach AGN2relativetoAGN1(seeFig.1). processactsunderdifferentionisingSEDs,whichleadstoadif- ForthePLSED,thestrengthoftheprocessesaresimilarto ferentionisationbalancesolution.Thepercentagesreportedbe- those of AGN1: 79.1% for photo-electrons, 9.5% for Compton lowinourexaminationoftheresults,correspondtothefractional scattering, 11.4% for Auger electrons, and 0.02% for Compton contributionbyeachprocesstothetotalheatingorcoolingrate ionisation.FortheBBSED,theheatingratesoftheprocessesare overthespecifiedξrange. rather different. Heating by photo-electrons strongly dominates at 99.8%, while strengths of the other processes are very small 4.1. Heatingprocesses at0.1%forAugerelectrons,0.05%forComptonscattering,and almostzeroforComptonionisation. FromtheresultsofFig.4wecalculatedtheaverageheatingrate for each process between 1.0≤logξ ≤3.0, which is the most Apartfromtheaforementionedheatingprocesses,theSPEX relevant ionisation range. We find for all four SED cases, the pion model also takes heating by free-free absorption into ac- heating by photo-electrons is the most dominant heating pro- count. However, the contribution of this process to the total cess. For both AGN1 and AGN2 SEDs, the heating processes heating rate is minute and below the displayed range of Fig. 4. fromstrongesttoweakestare:(1)photo-electrons;(2)Compton For 1.0≤logξ ≤3.0, the average heating rate by free-free scattering;(3)Augerelectrons;and(4)Comptonionisation.For absorption is 9.5×10−9% at its lowest point for the BB SED theAGN1SED,thefractionalcontributionoftheseprocessesto and6.5×10−4%atitshighestpointforthePLSED. A65,page4of15 M.Mehdipouretal.:Systematiccomparisonofphotoionisationcodes !!""""##$$%%&&''(())**++,,((--..""##$$//((##$$%%00..11((22(())**++33((--//44..5500//((##$$%%00..11 inverseComptonisationarelowerthanthoseoftheotherSEDs ,,66(cid:239)(cid:239)77 at7.9%and0.01%,respectively. BB"">>44##((??""""##$$%%&& ,,66(cid:239)(cid:239)<< !!""""##$$%%&&((CCDD((??""####$$..$$""%%44##((00EE??$$>>44>>$$""%% ,,.1.1(cid:239)(cid:239) !!!!""""""""####$$$$%%%%&&&&((((CCCCDDDD((((=$=$%%00FF??00""==@@..00CC(($$!!%%44"">>@@$$""GG%%>>""%%((..??44>>>>00==$$%%&& AA@(@((cid:239)(cid:239) ,,66(cid:239)(cid:239)88 !!!!""""""""####$$$$%%%%&&&&((((CCCCDDDD((((H0H0==##000000??(cid:239)(cid:239)>>==HH""==00%%00(($$((""00%%@@$$..$$44....>>$$$$""""%%%% 5. Ionisationstateofphotoionisedplasmas ?? &(&( ,,66(cid:239)(cid:239);; 0=0= Here we present the ionisation state of PIE plasmas from com- 4>0(-4>0(- ,,66(cid:239)(cid:239):: putationsbyCloudy,SPEX,andXSTAR.WeusetheAGN1SED &(=&(= (seeFig.1)forthesecalculations,whichrepresentsthemostre- "#$%"#$% ,,66(cid:239)(cid:239)99 alisticionisingSEDforatypicalAGN.Wederivethevariation "" !! ,,66(cid:239)(cid:239),,66 of ionic abundances with ξ, and compare the temperature Tpeak andionisationparameterξ atwhichionicabundancespeak. ,,66(cid:239)(cid:239),,,, peak In Fig. 6 we show the ionic fractions of the most relevant ,,66(cid:239)(cid:239)33 ,,6666 ,,6633 ,,6677 ,,6688 (cid:106)(cid:106) ions as a function of ξ in a PIE plasma, calculated by Cloudy, SPEX, and XSTAR. To examine the results in Fig. 6, we intro- !!""""##$$%%&&''(())**((++,,""##$$--((##$$%%..,,//((00((1111((++--22,,33..--((##$$%%..,,// duce ∆logξ and ∆f , which are defined as the difference 4455(cid:239)(cid:239)77 peak peak BB"">>22##((??""""##$$%%&& betweenthelowestandhighestvaluesoflogξpeak and fpeak,re- 4455(cid:239)(cid:239)<< !!""""##$$%%&&((CCDD((??""####$$,,$$""%%22##((..EE??$$>>22>>$$""%% spectively,asfoundbythecodesforeachion.Forexample,we 44,/,/(cid:239)(cid:239) !!!!""""""""####$$$$%%%%&&&&((((CCCCDDDD((((=$=$%%..FF??..""==@@,,..CC(($$!!%%22"">>@@$$""GG%%>>""%%((,,??22>>>>..==$$%%&& can see in Fig. 6 that there is a good agreement between the AA@(@((cid:239)(cid:239) 4455(cid:239)(cid:239)88 !!!!""""""""####$$$$%%%%&&&&((((CCCCDDDD((((H.H.==##......??(cid:239)(cid:239)>>==HH""==..%%..(($$((""..%%@@$$,,$$22,,,,>>$$$$""""%%%% codesforOviiandOviiiions.Foreachoftheseions,ξpeak and ?? 2>.(+.=&(2>.(+.=&( 44445555(cid:239)(cid:239)(cid:239)(cid:239):;:; i∆fopenloaiksgavξtaipoelaunkess(cid:46)tac0ga.el1cs0uolaaftnOedd,∆tfhroefpmedaikffth(cid:46)eer0ecn.0oc5de.etseHnaordwesectvoloebrs,eecttooowmeaearcdlahsrgoleothrw.eeArr: "#$%&(="#$%&(= 4455(cid:239)(cid:239)99 sbiemtwileaerntrethnedicsoadlessoffoorunhdigfho-rioFnei,swathioerneitohnesrethisabneltotewr-aigorneiesamtieonnt "" !! 4455(cid:239)(cid:239)4455 ions. We find that from Fexviii to Fexxvi, ∆logξ (cid:46)0.1. FromFeixtoFexvii,∆logξ (cid:46)0.2.However,towaperadkslower 4455(cid:239)(cid:239)4444 peak 4455(cid:239)(cid:239)66 445555 445566 445577 445588 ionisedions, thedifferencebecomes increasinglygreater,rang- (cid:106)(cid:106) ing from 0.3 at Feviii to 4 at Feii. The ∆f is (cid:46)0.05 for all ix xxvi peak xvii ionsbetweenFe andFe ,withtheexceptionof Fe , Fig.5.CoolingrateinaPIEplasmaasafunctionofionisationparam- whichishigherat0.2.ForionsbetweenFeiiandFeviii,∆f eterξfortheAGN1andAGN2SEDs(toppanel),andthePLandBB peak rangesbetween0.05and0.5. SEDs(bottompanel).ThecurvescorrespondingtoAGN1andPLare showninsolidlines,andthosecorrespondingtoAGN2andBBarein- Thecomparisonforpartiallyionisedionsofthemostabun- dicatedwithdashedlines.Foreachcase,thetotalcoolingrateisshown dantelementsareprovidedinTableA.1.Inthistablewelistthe inblack,andthecontributionsfromindividualprocessesareshownin temperature T and ionisation parameter ξ for each par- peak peak thesamecoloursastheircorrespondinglabels. tially ionised ion. The ionic fraction value at its peak for each ionisgivenby f inthetable.Wecomputedthesevaluesfor peak the AGN1 SED using Cloudy, SPEX and XSTAR. Taking into accountallthe177ionsreportedinTableA.1,themeanandme- 4.2. Coolingprocesses dian ∆logξ are 0.44 and 0.16, respectively. The mean and peak median ∆f are 0.11 and 0.05, respectively. The median val- FromtheresultsofFig.5weobtainedtheaveragecoolingrate peak uesprovideabetterrepresentationbecauseofthefewoutliersin foreachprocessbetween1.0≤logξ ≤3.0.Wefindthatforall thelist.InSect.8,wediscussthedeviationsbetweentheresults four SED cases, cooling by collisional excitation is the most ofthethreecodes,giveninTableA.1. dominant cooling process. For both AGN1 and PL SEDs, the coolingprocessesorderedfromstrongesttoweakestareasfol- lows: (1) collisional excitation; (2) free-free emission; (3) re- 6. TransmissionofphotoionisedplasmasinX-rays combination;(4)electronionisation;and(5)inverseComptoni- sation. For the AGN1 SED, the fractional contribution of these FollowingthecomputationofionicabundancesforPIEplasmas, processestothetotalcoolingrateis66.8%,17.4%,14.9%,0.6% we calculated the corresponding X-ray absorption spectra with and0.3%,respectively.ForthePLSED,theyare67.3%,15.9%, eachcode.TheabsorptionspectrawerecalculatedfortheAGN1 15.7%, 1.0% and 0.1%. However, the order and strength of the SED. In our calculations, the column density for a slab of PIE processes are different for the AGN2 SED. In this case, the plasma was set to N =1×1022cm−2, with a turbulent veloc- H contributions from collisional excitation and recombination are ityofσ =200kms−1.Thesearetypicalvaluesobservedinthe v lower at 57.6% and 9.2%, respectively. On the other hand, the AGNionisedoutflows.Herewepresenttheresultsoverthemost contributions from free-free emission, inverse Comptonisation, relevantrangeofionisationparameters,inwhichprominentlines andelectronionisationarehigherat27.4%,5.0%,and0.8%,re- areproducedintheX-rayband.Figure7showsthemodelX-ray spectively. spectracalculatedbyCloudy,SPEX,andXSTARforlogξof1.0, For the BB SED, cooling by collisional excitation is higher 2.0, and 3.0. The spectra are shown in the rest frame with zero thanthoseoftheotherSEDsat72.7%ofthetotalcoolingrate. outflowvelocity. UnliketheotherSEDs,coolingbyrecombinationisthesecond To compare the end results of our photoionisation calcula- strongestprocessfortheBBSEDat14.9%.Furthermore,cool- tions, we obtained the optical depth of the strongest X-ray ab- ingbyelectronionisationishigherthanthoseoftheotherSEDs sorption lines. This is useful because the line optical-depth de- at 4.4%. On the other hand, cooling by free-free emission and terminesthestrengthoftheabsorptionlineinthespectrum.The A65,page5of15 A&A596,A65(2016) 1.0 1.0 1.0 n o He II C III C IV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o C V C VI N III cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o N IV N V N VI cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o N VII O III O IV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o O V O VI O VII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o O VIII Ne III Ne IV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Ne V Ne VI Ne VII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Ne VIII Ne IX Ne X cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Mg III Mg IV Mg V cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 10−1 100 101 102 103 104 10−1 100 101 102 103 104 10−1 100 101 102 103 104 ξ ξ ξ Fig.6.IonicabundancesinaPIEplasmaasafunctionofionisationparameterξ,whichiscalculatedusingCloudy(showninblue),SPEX(shown inred),andXSTAR(showningreen)fortheAGN1SEDasdescribedinSect.5. opticaldepthatthelinecentreisgivenby AGN1 SED, with N =1×1022cm−2 and σ = 200 kms−1. H v √ Thepanelsshowtheresultsforthefollowingthreeionisationpa- τ =αhλ f N /2 2πm σ (3) 0 c osc ion e v rameters:logξof1.0,2.0,and3.0.Thefewmissingdatapoints where α is the fine structure constant, h the Planck constant, in Fig. 8 occur when lines are not found in all the codes. We λc thewavelengthatthelinecentre, fosc theoscillatorstrength, discussthecomparisonresultsofFig.8inSect.8. N the column density of the absorbing ion, m the electron ion e mass, and σ the velocity dispersion. Thus, by comparing τ v 0 of each line from the codes, we are essentially comparing the 7. StudyofionisedoutflowsinAGNwith product of fosc and Nion, provided λc and σv are the same. In high-resolutionX-rayspectrometersusing Fig. 8 we present a comparison of the optical depth τ of the 0 differentphotoionisationcodes strongestX-rayabsorptionlinesatwavelengthsbelow40Å(en- ergies above 0.3 keV) from Cloudy, SPEX, and XSTAR calcu- Here we investigate the impact of using different photoionisa- lations. They were calculated for a PIE plasma, ionised by the tion codes on the derived parameters from X-ray observations A65,page6of15 M.Mehdipouretal.:Systematiccomparisonofphotoionisationcodes 1.0 1.0 1.0 n o Mg VI Mg VII Mg VIII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Mg IX Mg X Mg XI cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Mg XII Si III Si IV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Si V Si VI Si VII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Si VIII Si IX Si X cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Si XI Si XII Si XIII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Si XIV S III S IV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o S V S VI S VII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o S VIII S IX S X cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 10−1 100 101 102 103 104 10−1 100 101 102 103 104 10−1 100 101 102 103 104 ξ ξ ξ Fig.6.continued. of PIE plasmas. We simulated spectra of PIE plasmas in AGN componentwithN =1×1020cm−2(atypicallowGalacticN , H H withthecurrentandfuturehigh-resolutionX-rayspectrometers, such as seen in our line of sight towards NGC 5548), absorb- andobtainedthedeviationonthemodelparametersarisingfrom ing the AGN1 SED. We used the hot model in SPEX for mod- theuseofthethreephotoionisationcodes.Thesimulationswere ellingtheGalacticX-rayabsorptioncomponent,asdescribedin carriedoutforaPIEplasmaionisedbytheAGN1SED(i.e.the Mehdipouretal.(2015)forNGC5548. NGC 5548 unobscured SED). The column density and turbu- For each calculation by the three codes, we convolved lent velocity of the plasma were fixed to NH =1×1022cm−2 the corresponding spectrum with the response matrix of and σv = 200 kms−1. We carried out the photoionisation cal- each of the high-resolution X-ray spectrometers. We used culationsandspectralsimulationsforarangeofionisationval- XMM-Newton RGS (denHerderetal. 2001), Chandra LETGS ues, in which logξ ranged between 1.0 and 3.0 with an incre- (Brinkmanetal. 2000), and HETGS (Canizaresetal. 2005), ment of 0.5. This is a typical range of ξ values seen in X-ray Hitomi(Astro-H)SXS(Mitsudaetal.2014),andAthenaX-IFU observations of AGN ionised outflows, such as in NGC 5548 (Barretetal. 2016) for our simulations. For RGS, LETGS, and and NGC 3783. For our spectral simulations with the spec- HETGS, instrumental response matrices from the last observa- trometers, we also included a foreground Galactic interstellar tions of NGC 5548 were used, while for SXS and X-IFU we A65,page7of15 A&A596,A65(2016) 1.0 1.0 1.0 n o S XI S XII S XIII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o S XIV S XV S XVI cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe III Fe IV Fe V cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe VI Fe VII Fe VIII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe IX Fe X Fe XI cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe XII Fe XIII Fe XIV cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe XV Fe XVI Fe XVII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe XVIII Fe XIX Fe XX cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe XXI Fe XXII Fe XXIII cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 1.0 1.0 1.0 n o Fe XXIV Fe XXV Fe XXVI cti a 0.1 Cloudy 0.1 Cloudy 0.1 Cloudy n fr SPEX SPEX SPEX o XSTAR XSTAR XSTAR I 10−1 100 101 102 103 104 10−1 100 101 102 103 104 10−1 100 101 102 103 104 ξ ξ ξ Fig.6.continued. usedthelatestpubliclyavailableresponsematricesasofSeptem- statistical errors of the fitted parameters at 1σ confidence level ber 2016. Each simulated spectrum by a code was fitted with forminimumandmaximumexposuretimesof100ksand1Ms. the other two codes to obtain its best-fit ξ and N parameters. The modelling and observational uncertainties are presented in H Thus,anydifferenceinthederivedmodelparametersforagiven Fig. 9. We discuss the deviation in the model parameters ob- spectrumwouldbeduetointrinsicdifferencesbetweenthethree tainedbythecodesinSect.8. photoionisation codes. The standard deviation of the fitting re- InFig.9,themodellinguncertaintiescanbecomparedwith sultswerecalculatedtorepresentameasureofthemodellingun- theobservationaluncertainties.Thesimulatedobservationalun- certainty in ξ and NH parameters. For each instrument, we also certaintiesforeachinstrumentcorrespondtotheobservedX-ray calculated the observational uncertainties corresponding to the fluxlevelofAGN1SED(NGC5548),whichisabrightSeyfert1 A65,page8of15 M.Mehdipouretal.:Systematiccomparisonofphotoionisationcodes log ξ = 1.0 AGN in X-rays with F = 3.1×10−11 ergcm−2 s−1 and 0.3−2keV 1.0 F = 3.5×10−11 ergcm−2 s−1.WecanseeinFig.9that e 2−10keV nc 0.8 themodellinguncertaintiesaregenerallylargerthantheobserva- mitta 0.6 tionaluncertainties.However,atlogξ =3,themodellinguncer- s 0.4 taintiesareatthesamelevelorsmallerthantheobservationalun- n Tra 0.2 SPEX certainties,exceptforX-IFU,wheretheobservationaluncertain- 0.0 ties are tiny owing to its exceptional sensitivity. The upcoming 1.0 nce 0.8 Athena X-IFU microcalorimeter will provide us with unprece- smitta 00..46 dAeGnNte.dIndeptaaritliscouflatrh,eitpahllyoswicsaulssttoruacctucureraotefltyhdeeoteurtmfloinweinthgegparsopin- Tran 00..02 XSTAR ethrtrioeusgohftthheehdiegthe-citoionnisaotfioFnecxoxmivpo,nFeenxtx(lvo,gaξn=d F3)eoxfxthveioliunteflsoiwn e 1.0 the6keVbandwithanenergyresolutionof2.5eV.Inthecaseof anc 0.8 AGN1SED,wefindthatfora100ksX-IFUobservation,thesta- smitt 00..46 tisticalerrorsintheξ and NH parametersofthehigh-ionisation n componentaresmallerthanthemodellinguncertaintiesbyfac- Tra 0.2 Cloudy torsof30and10,respectively. 0.0 1 10 Energy (keV) 8. Discussion log ξ = 2.0 1.0 The deviation in the ionisation state results, derived by the e nc 0.8 three codes, is presented visually in Fig. 6 and numerically in a mitt 0.6 Table A.1 for the most relevant ions. Consequently, any devia- s 0.4 tion between the codes in ionisation state results in some dif- n Tra 0.2 SPEX ferencesinthestrengthoftheX-rayabsorptionlines,whichare 0.0 shown in Figs. 7 and 8. The effects on the derived plasma pa- 1.0 e rameters, from modelling observational X-ray spectra of AGN nc 0.8 a ionisedoutflows,arepresentedinFig.9. mitt 0.6 In general, the observed differences between the results of s 0.4 Tran 00..02 XSTAR mthoedceolldiensgaoref athmeahneiafetisntagt/icoonoloinfgallprthoecelsisttelse daniffdertehneciresaisnsotchie- e 1.0 ated atomic data. Figure 6 shows that there is some discrep- nc 0.8 ancybetweenthecodesforthelow-ionisationstagesofFe(i.e. a mitt 0.6 Fei-vii). This most likely originates from differences in the ns 0.4 low-temperature dielectronic recombination (DR) calculations Tra 0.2 Cloudy by the codes. In SPEX, the ionisation balance calculations of 0.0 Bryansetal. (2009) are adopted. The DR and radiative recom- 1 10 Energy (keV) bination (RR) rate coefficients used in Bryansetal. (2009) are the same as in Bryansetal. (2006), but these data are updated log ξ = 3.0 to include corrections to some of the rate coefficients, as well 1.0 e as updated DR data for Mg-like ions of H through Zn, and for anc 0.8 Al-like to Ar-like ions of Fe, taken from Badnell (2006a,b), mitt 0.6 Altunetal. (2007). The DR and RR data for all other ions, in- ns 0.4 cludingFei-vii,arefromMazzottaetal.(1998).Theratesfrom Tra 00..02 SPEX Mazzottaetal. (1998) do not include the low-temperature DR 1.0 for Fei-vii. However, in Cloudy, the low-temperature DR for nce 0.8 Fei-v is estimated using the mean of all the existing DR rates mitta 0.6 for each ionisation stage, while for Fevi-vii, the DR rates cal- s 0.4 culatedbyM.F.Guareused(priv.comm.).Ontheotherhand,in n Tra 0.2 XSTAR XSTAR, the low-temperature DR for Fei-viii is estimated from 0.0 ix nce 01..80 tXhSeTlAoRwu-tseemtpheerDatRurerapteasrtooffBthaednFeell(2D0R06raa)tef.oBroFtehixCltoouFdeyxainiid, smitta 00..46 ahsigwheerllioansistahteioDnRstargaetessopfrFoev.ided online4 by N.R. Badnell for n Tra 0.2 Cloudy Thereisabouta4%deviationinthevalueofComptontem- 0.0 peratures obtained by the three codes. Some of this deviation 1 10 isattributedtotherelativisticcorrectionsusedbythecodesfor Energy (keV) the energy exchange by relativistic electrons in Compton scat- tering. Cloudy uses numerical fits to the results of Winslow Fig. 7. Model transmission X-ray spectra of a PIE plasma with N =1×1022cm−2andσ =200kms−1,producedbyCloudy,SPEX, (1975),asusedinKroliketal.(1981),whichwereprovidedby H v C. B. Tarter (priv. comm.). The treatment of Compton heating andXSTARatlogξof1.0,2.0,and3.0.Themodelspectraarecalculated fortheAGN1SEDasdescribedinSect.6. andcoolinginXSTARversionspriorto2.3werenotaccuratefor 4 http://amdpp.phys.strath.ac.uk/tamoc/DR/ A65,page9of15 A&A596,A65(2016) log ξ = 1.0 log ξ = 2.0 log ξ = 3.0 Fe IX 16.789AÅ Fe XVIII 14.204ÅA Ni XXVII 1.589ÅA Fe IX 16.539AÅ Fe XVII 15.261ÅA Fe XXVI 1.784ÅA Fe VIII 16.973AÅ Fe XVII 15.014ÅA Fe XXVI 1.778ÅA Fe VIII 16.972AÅ Fe XV 15.359ÅA Fe XXV 1.850ÅA Fe VIII 16.929AÅ Fe XIII 15.890ÅA Fe XXV 1.573ÅA Fe VIII 16.907AÅ Fe XIII 15.849ÅA Fe XXV 1.495ÅA Fe VIII 16.803AÅ Fe XII 16.025ÅA Fe XXIV 10.663ÅA Fe VIII 16.709AÅ Fe XI 16.179ÅA Fe XXIV 10.620ÅA Fe VIII 16.678AÅ Fe XI 16.176ÅA Fe XXIV 7.996ÅA Fe VIII 16.656AÅ Fe X 16.366ÅA Fe XXIV 7.986ÅA Ca XI 30.447AÅ Fe X 16.358ÅA Fe XXIV 1.864ÅA Mg IX 9.378AÅ Fe IX 16.539ÅA Fe XXIV 1.861ÅA Ne IX 13.447AÅ Ar XIII 29.320ÅA Fe XXIV 1.857ÅA Ne IX 11.547AÅ Ar XII 31.389ÅA Fe XXIII 11.020ÅA Ne VIII 13.655AÅ S XIII 32.238ÅA Fe XXIII 10.981ÅA Ne VIII 13.653AÅ S XII 36.398ÅA Fe XXIII 8.305ÅA Ne VII 13.814AÅ S XII 34.533ÅA Fe XXIII 7.473ÅA Ne VII 12.175AÅ S XII 28.222ÅA Fe XXIII 1.870ÅA Ne VI 14.047AÅ S XI 39.240ÅA Fe XXII 11.706ÅA Ne VI 14.020AÅ Si XIII 6.648ÅA Fe XXII 11.459ÅA O VIII 18.972AÅ Si XI 33.513ÅA Fe XXII 11.421ÅA O VIII 18.967AÅ Si XI 6.778ÅA Fe XXII 8.935ÅA O VIII 16.006AÅ Si X 39.443ÅA Fe XXI 12.284ÅA O VII 21.602AÅ Mg XI 9.169ÅA Ca XX 3.019ÅA O VII 18.628AÅ Mg XI 7.851ÅA Ca XIX 3.177ÅA O VII 17.768AÅ Ne X 12.137ÅA Ar XVIII 3.737ÅA O VII 17.396AÅ Ne X 12.132ÅA Ar XVIII 3.731ÅA O VII 17.200AÅ Ne X 10.238ÅA Ar XVII 3.949ÅA O VII 17.086AÅ Ne IX 13.447ÅA S XVI 4.733ÅA O VII 17.009AÅ Ne IX 11.547ÅA S XVI 4.727ÅA O VI 22.021AÅ Ne IX 11.000ÅA S XVI 3.991ÅA O VI 22.019AÅ O VIII 18.972ÅA S XV 5.039ÅA O VI 21.788AÅ O VIII 18.967ÅA Si XIV 6.186ÅA O VI 19.379AÅ O VIII 16.007ÅA Si XIV 6.180ÅA O VI 19.379AÅ O VIII 16.006ÅA Si XIV 5.218ÅA O V 22.370AÅ O VIII 15.177ÅA Si XIV 5.217ÅA N VII 24.785AÅ O VIII 15.176ÅA Si XIII 6.648ÅA N VII 24.779AÅ O VIII 14.821ÅA Mg XII 8.425ÅA N VI 28.788AÅ O VII 21.602ÅA Mg XII 8.419ÅA N VI 24.900AÅ O VII 18.628ÅA Mg XII 7.106ÅA N VI 23.771AÅ O VII 17.768ÅA Ne X 12.137ÅA C VI 33.740AÅ O VII 17.396ÅA Ne X 12.132ÅA C VI 33.734AÅ N VII 24.785ÅA Ne X 10.240ÅA C VI 28.466AÅ N VII 24.779ÅA Ne X 10.238ÅA C VI 28.465AÅ N VII 20.910ÅA O VIII 18.972ÅA C VI 26.990AÅ N VI 28.788ÅA O VIII 18.967ÅA C VI 26.990AÅ C VI 33.740ÅA O VIII 16.006ÅA C V 34.973AÅ C VI 33.734ÅA N VII 24.779ÅA C V 33.426AÅ C VI 28.466ÅA C VI 33.740ÅA C V 32.754AÅ C VI 28.465ÅA C VI 33.734ÅA 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0 τ ratio τ ratio τ ratio 0 0 0 Fig.8.Comparisonoftheopticaldepthτ ofthestrongestX-rayabsorptionlinesatwavelengthsbelow40Å(energiesabove0.3keV),from 0 Cloudy,SPEX,andXSTARcalculationsforaPIEplasma,ionisedbytheAGN1SED,withN =1×1022cm−2andσ =200kms−1.Thedisplayed H v datagivetheratioofτ fromeachcoderelativetothemeanτ foundbythecodes.Theτ ratioisshowninbluecirclesforCloudy,reddiamonds 0 0 0 forSPEX,andgreensquaresforXSTAR.Thelistedlinescorrespondtothe50lineswiththehighestτ valuesatlogξof1.0(leftpanel),2.0(middle 0 panel),and3.0(rightpanel).Thedottedverticallineatτ ratioof1indicateswheretheresultsfromthecodeswouldbeidentical. 0 hardspectrawithsignificantfluxabove100keV.However,this Fromanalysisoftheionicfractionsofpartiallyionisedions hasbeenupdatedinversion2.3andthispaper,usingratesfrom inTableA.1,wefindthatforH-likeandHe-likesequenceions I.Khabibullin(priv.comm.),basedontheexpressionsgivenby there is on average about a 7% deviation between the codes Shestakovetal.(1988).Theenergyshiftperscatteringiscalcu- in ξ , at which ionic fractions peak. This deviation between peak latedbyinterpolatinginatable.InSPEX,theheating/coolingby the codes rises slightly to 9% for Li-like ions, 11% for Be-like Compton scattering is calculated using the formulae provided ions, and 13% for B-like ions. The deviation becomes greater by Ferland&Rees (1988; originally from Winslow 1975) and for higher isoelectronic sequence ions: 39% on average for the Levich&Sunyaev(1970). C-likethroughFe-likeionslistedinTableA.1.Ifoneconsiders A65,page10of15

Description:
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus We also simulate spectra of the ionised outflows with the current and Altun, Z., Yumak, A., Yavuz, I., et al. 2007
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.