ebook img

System Modelling, Identification and Coordinated Control Design for an Articulated Forestry Machine PDF

117 Pages·1998·4.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview System Modelling, Identification and Coordinated Control Design for an Articulated Forestry Machine

System Modelling, Identification and Coordinated Control Design for an Articulated Forestry Machine Bin Mu B-Eng., (McGill University), 1994 Department of Mechanical Engineering McGill University June 1996 A thesis submitted to the Faculty of Graduate Studies and Research in partial fuulfülment of the requirements for the degree of Master of Engineering O Bin Mu, iMCMXCVI 1+m National Library Bibliothèque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1AON4 OttawaON K1AON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of thts thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in ths thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract This thesis descnbes the modelling of electrohydraulic actuation systems of a prototype forestry vehicle, the experirnentai identification of the dynamic models parameters and control strategies for forestry operations. The linear graph method is selected to derive comprehensive models of three electrohydraulic actuation subsystems, i.e. the swing, boom and stick subsystems, on the vehicle based on modelling of individual components. A new approach is proposed. then. to integrate rigid-body dynamic models with the actuator dynamic models to result in a cornplete machine model. Off-line parameter identification procedures are used, including the least-square method. A series of experiments is performed to obtain numericd values for the parameters involved in the system models. The experimental setups are described in detail and new procedures are explained. The model validation studies show that the mathematical models closely represent the dynamic characteristics of the foresuy machine. The concept of coordinated control in teleoperation is studied. The resolved motion rate control strategy shows superiority over conventional joint-based control in heavy-duty forestry machines. Two inverse Jacobian manipulator control schemes. based on velocity and on position servo schemes, are introduced and evaluated under various operating conditions. The results provide guidelines for the design and implementation of manipulator controllers on a forestry machine. Résumé Cette thèse décrit la modélisation de systèmes d'actuation électro-hydraulique pour un prototype de véhicule forestier, l'identification expérimentale de paramètres du modèle dynamique et des stratégies de commande lors d'opérations forestières. La méthode des graphes linéaires est choisie pour obtenir les modèles détaillés de trois actionneurs élecuo-hydrauliques différents du véhicule, soit ceux de la base rotative. de la flèche et du balancier, à partir de la modélisation des composantes individuelles. Une nouvelle approche est alors proposée pour combinér les modèles dynamiques des corps rigides aux modèles dynamiques des actionneurs afin d'obtenir un modèle complet de la machine. La méthode des moindres carrés est utilisée en différée pour l'identification des paramètres. Une série d'expériences a été effectuée d'obtenir les valeurs numériques de paramètres impliqués dans les modèles du système. Le montage expérimental détaillé est décris. et de nouvelles procédures sont justifiées. Les études de validation du modèle démontrent que les modèles mathématiques décrivent très bien les caractéristiques des systèmes. Le concept de commandes coordonnées dans les téléopérations est étudiés. La stratégie de commande du type de la vitesse du mouvement résolue, démontre sa supériorité face aux modèles d'asservissement conventionnels basés sur les articulations. et ce pour les machines forestières à usage intensif. Deux schéma de commande, celui de la matrice Jacobienne inversée avec la vitesse du manipulateur. et celui d'un modèle asservi en position, sont introduits et évalués sous diverses conditions d'opération. Le résultat fournit des lignes directrices pour la conception et la réalisation de modèles d'asservissement pour le véhicule. To iny parents Acknowledgments I wish to wholehemedly thank my supervisor Evangelos Papadopoulos for his invaluable guidance, assistance, scheduled and unscheduled discussions throughout the realization of my Master's degree. 1 tmly appreciate his time, wisdom. effort not only in the preparation of this thesis, but in ail aspects of academic life. His lectures on systems modeiling and robotics 1t ook back in the undergraduate years made up my rnind to pursue research in this field. I also wish to thank Real Frenette for his help with setting up experiments. His dedication, enthusiasm, patience under al1 weather conditions made this time consurning stage valuable experience for me. 1 aiso wish to thank Soumen Sarkar. one of my project partners. to discuss some issues related to this thesis. Also I would like to thank Paul Freedman at CRIM, Ismo Makkonen and Jean Coutu at FERIC, Robert Lessard at Autolog who were directly involved in the project and made contributions in the progress of my research. To ail my friends in the center, 1 owe a deep debt of thanks for making my stay here such a rewarding experience, even in the toughest of times. You are too numerous to narne. Ali, Dan, Eric, Glen, Yves, my research group members; and many friends, Robert, Hamid, Mike, Oliver, Manuel, Dominik, and of course, my roornmate, Nikolai. Special thanks to Eric for helping in the translation of the abstract into French. I wish to thank ail the people who make the Center for Intelligent Machines such an arnazing research unit. This research has been made possible with the financial support made by the Ministère de I'industrie, du Commerce, de la Science et de la Technologie of Quebec, (MICST).u nder the program SYNERGIE. Finally. 1 would like to thank my parents for their love and support during my Master's degree and throughout my entire university career. Table of Contents . .............................................................................. 1 INTRODUCTION -1 1.1 MOTIVATION .................................................................................................................. 1 1.2 ATREF PROJECT ............................................................................................................. 3 1.3 RELATED WORK ............................................................................................................. 4 1.4 THESIS OUTLINE .............................................................................................................. 6 . ..................................... 2 ELECTROHYDRAULIC ACTUATION SYSTEMS 8 2.1 WHY HYDRAULICS? ........................................................................................................ 9 2.2 POSITIVE-DISPLACEMENT PUMPS ........................................................................... I I 2.3 VALVES ........................... ... ...................................................................................... 13 2.3.1 Valve configurations .................................................................................................... 13 2.3.2 Valves in closed-loop control ..................................................................................... 15 2.4 ACTUATORS .................................................................................................................. 16 2.4.1 Cylinders ................................................................................................. ... .............. 17 2.4.2 Morors ............. ., .. .. .............................................................................................. 17 2.5 OTHER COMPONENTS ..................................................................................................... 8 2.5.1 Fifters. .....................................................................................................................1.8 2.5.2 Conductors. ... .......... . .............................................................................................1 9 2.5.3 Hydraulic fluids .........................................................................................................2. 0 2.6 S UMMARY ....................................................................................................................1. . . 3 MODELLING OF THE ELECTROHYDRAULIC ACTUATION SYSTEMS OF ................................... . ................................. THE FERIC MACHINE 2 3 3.1 ACTUATION SYSTEMS OVERVLEW ............................................................................... -24 3.2 ELECTROHYDRAULIC COMPONENTS ........................................................................... . 7 3.2.1 Pump ........................................................................................................................ 27 3.2.2 Valves. ................ ... ............................................................................................... 27 3.2.3 Transmission fines ...................................................................................................... 29 3.2.4 Hydraulic Cylinders. ................................................................................................... 31 3.2.5 Hydraulic Motor ..................................................................................................... 32 3.2.6 Other Related Cûrnponents. ......................................................................................... 33 3.3 SWING SUBSYSTEM. ....................................................................................................... 33 3.4 BOOWSTICK SüE3SYSTEM ............................................................................... ,, .......3 8 3.5 INTEGRATION WITH MANPULATOR DYNAMICS ........................................................ -40 ... 3.5. I Cylinder Actuation ..................................... ........... 41 3.5.2 Hydraulic Moror Actuation ........... .. ............................................................................ 43 3.6 SUMMARY .................................................................................................................. -45 . ........... ..... . ................................. 4 PARAMETER IDENTIFICATION .,, 4 6 4.1 BASICS OF PARAMETER IDENTIFICATION ........... .................................................. 46 ,. 4.1.1 Definition. ............................................................................................................... 46 4.1.2 Procedures ................... ... ................................................................................. 47 4.2 DATA-ACQUISITION SYSTEM ...................................................................................... -49 4.2. I Sensors ..................................................................................................................... -19 3.2.2 Data-AcquisifionS ysteni .............................. .. .............................................................. 51 4.3 EXPERIMENTATION ....................................................................................................... 5 3 4.3.1 Sensor Calibrarion ...................................................................................................... 53 43.2 Valve Configtiratioris. .................................................................................................. 53 4.3.3 Hose Resisrance ......................................................................................................... 56 4.3.4 inerrance and Capacitance .......................................................................................... 58 4.3.5 Motor Leakage ........................................................................................................... 61 .. 4.3.6 Piston alrd Moror Danlping ................. ..,.... . ............ ........... 64 4.4 MODEL VALIDATION STUDIES .................................................................................... 6 6 4.4.1 Swing Subsysrern ..................... .. .............................................................................. 66 -1.3.2 Stick Subsystern .......................................................................................................... 68 4.5 SUMMARY ..................................................-................................................................. -7O . ................................ 5 COORDINATED-MOTION CONTROLLER DESIGN -7 1 5.1 CONTROL STRATEGIES IN TELEOPERATION ................................................................ -7 2 5.2 COORDINATED-MOTION CONTROL SCHEMES EVALUATION ........................................ 7 4 5.2.1 Choices of Conrrol Schemes ......................................................................................... 73 5.2.2 Eflects of ManipuIaror Narural Frequency. ..................................................................... 78 5.2.3 Eflecrs of Accuracy of Manipulator Models .................................................................... 81 5.3 SUMMARY ..................................................................................................................... 84 . ............................................................................... 6 CONCLUSIONS 88 ............... .. ......................................................... REFERENCES 9 1 ...................................................................................... APPENDIX A -96 ........................................................................................ APPENDIX B 98 List of Figures FIGURE I .1 THE TEST BED .M ODIFlED ERIC C-1 80 FORWARDER ................................................. -3 FIGURE 2.1 POWER-TO-WEIGHT RATIOS FOR COMMON ACTUATOR PRINCIPLES .................................. 9 FIGURE 2.2 THREE BASIC TYPES OF HYDRALlLIC PLJMPS ............................................................... II . FIGURE 2.3 POWER CONSCIMITION OF TYPICAL HYDRAULIC SYSTEMS [ 1 21. ................................... 13 FIGURE 2.4 TIPICAL HYDPAULIC CONTROL VALVES .................... .......................................... 14 ,., FIGURE 2.5 FLOW GAIN OF DIFFERENT CENTER TYPES .................................................................. 14 FIGURE 2.6 TYPICAL TYPES OF CYLINDEUS (A) DOUBLE-ACTING. (B) SINGLE.ENDED . (C) DIFFERENTIAL ................................................................................................................ 17 FIGURE 3.1 SCHEMATICS OF THE MODIFIED ERIC C-180 FORWARDER ......................................... 25 FIGURE 3.2 THE SWING ACTUATION SUBSYSTEM. ....................................................................... 26 FIGURE 3.3 THE STICK ACTUATION SUBSYSTEM .............., ... .................................................. 26 FIGURE 3.4 A COMPAREON BElWEEN IDEAL AND REAL PRESSüRE SOURCE. ................................... 27 FIGüRE 3.5 T TYPE HOSE MODEL. ............................................................................................ 30 FIGURE 3.6 CY LINDER MODEL IN THE LINEAR GRAPH REPRESENTATION. ........................................3 2 FIGURE 3.7 HYDRAüLIC MOTOR MODEL. ............................................................................... 33 F(GURE 3.8 THE SWING SUBSYSTEM MODEL ............................................................................... 34 FIGURE 3.9 THE BOOM AND STiCK SUBSYSTEM MODELS ............................................................ 38 FIGURE 3.10 CYLINDER ACIUATION IN THE BOOM AND STiCK SUBSY!STEMS. .................................. 11 l?IGüRE 3.1 1 SCHEMATICS OF CYLINDER ACNATION ..................................................................4 2 FIGURE 1. I SCHEMATICS OF DATA-ACQUISITION SYSTEM ............................................................ 52 RGURE 4.2 EMBEDDED SYSTEM ...............................................................................................5 2 FIGURE 4.3 APPARATUS SiTW FOR VALVE CONFIGURATION MEASUREMENT. ................................. 55 FIGURE 4.4 VALVE CHARACTERISTICS. ..................................................................................... 55 FIGURE 4.5 HOSE RES [STANCE MEAS UREMENT. .........................................................................5. 7 FIGURE 4.6 RESISTANCE MEASUREMENT OF A SAE IOOR 12 HOSE WITH LENGTH OF 4 METERS AND 314 INCHES DIAMEIER .......................................................................................................... 58 FIGURE 4.7 INEUTANCE AND CAPACITANCE MEASIREMENT SFiUP. .............................................. -60 FiGüRE 4.8 CAPACITANCE AND INERTANCE ESTIMATION FOR A SAE 1 OOR 12 HOSE WITH LENGTH OF4 MEIERS AND 314 INCHES DIAMIXER .................................................................................. 61 FIGLTRE 4.9 LEAKAGE MEASUREMENT SEIUP. ............................................................................. 63 vii

Description:
reproduce, loan, distribute or sell reproduire, prêter Abstract. This thesis descnbes the modelling of electrohydraulic actuation systems of a prototype.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.