SYSTEM ARCHITECTURE OF SMALL UNMANNED AERIAL SYSTEM FOR FLIGHT BEYOND VISUAL LINE-OF-SIGHT THESIS Kwee Siam Seah, Military Expert 5 (Major), Republic of Singapore Air Force AFIT-ENV-MS-15-S-047 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, the United States Government or the corresponding agencies of any other government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENV-MS-15-S-047 SYSTEM ARCHITECTURE OF SMALL UNMANNED AERIAL SYSTEM FOR FLIGHT BEYOND VISUAL LINE-OF-SIGHT THESIS Presented to the Faculty Department of Systems Engineering and Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Systems Engineering Kwee Siam Seah, BS (Hons) Military Expert 5 (Major), Republic of Singapore Air Force September 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENV-MS-15-S-047 SYSTEM ARCHITECTURE OF SMALL UNMANNED AERIAL SYSTEM FOR FLIGHT BEYOND VISUAL LINE-OF-SIGHT Kwee Siam Seah, BS (Hons) Military Expert 5 (Major), Republic of Singapore Air Force Committee Membership: Dr. David R. Jacques Chair Dr. John M. Colombi Member Maj Scott Pierce, PhD Member AFIT-ENV-MS-15-S-047 Abstract Small Unmanned Aerial Systems (UAS) have increasingly been used in military application. The application in expanding scope of operations has pushed existing small UAS beyond its designed capabilities. This resulted in frequent modifications or new designs. A common requirement in modification or new design of small UAS is to operate beyond visual Line-Of-Sight (LOS) of the ground pilot. Conventional military development for small UAS adopts a design and built approach. Modification of small Remote Control (RC) aircraft, using Commercial-Off-The Shelf (COTS) equipment, offers a more economical alternative with the prospect of shorter development time compared to conventional approach. This research seeks to establish and demonstrate an architecture framework and design a prototype small UAS for operation beyond visual LOS. The aim is to achieve an effective and reliable development approach that is relevant to the military’s evolving requirements for small UASs. Key elements of the architecture include Failure Mode Effect and Criticality Analysis (FMECA), fail safe design for loss of control or communication, power management, interface definition, and configuration control to support varying onboard payloads. Flight test was conducted which successfully demonstrated a control handoff between local and remote Ground Station (GS) for beyond visual LOS operations. iv AFIT-ENV-MS-15-S-047 Dedicated to my dear wife for your love and patience. To my 2 sons for being my motivation in the period of research. To my parents and the rest of my family, for your continual support. v Acknowledgments I would like to thank my thesis committee, Dr David Jacques, Dr John Colombi and Maj Scott Pierce. This thesis would not be possible without your guidance, invaluable academic instruction and encouragement. Kwee Siam vi Table of Contents Page Abstract .............................................................................................................................. iv Acknowledgments.............................................................................................................. vi Table of Contents .............................................................................................................. vii List of Figures ......................................................................................................................x List of Tables .................................................................................................................... xii List of Abbreviations ....................................................................................................... xiv I. Introduction .....................................................................................................................1 1.1 Problem Statement ..............................................................................................3 1.2 Objective .............................................................................................................4 1.3 Investigative Questions .......................................................................................4 1.4 Scope and Assumptions ......................................................................................5 1.5 Methodology .......................................................................................................5 1.6 Thesis Overview ..................................................................................................6 II. Literature Review ...........................................................................................................7 2.1 Classification of Military UAS ...........................................................................7 2.2 Airworthiness Requirement for UAS ..................................................................9 2.3 Failure Mode Effect and Criticality Analysis ...................................................12 2.4 Link Budget Analysis ........................................................................................13 2.5 Related Research ...............................................................................................16 2.6 Summary .........................................................................................................211 III. Methodology ...............................................................................................................22 3.1 Research Framework .........................................................................................22 3.2 System Architecture Development....................................................................26 vii Page 3.3 Risk Management ..............................................................................................28 3.4 Incremental Flight Testing ................................................................................29 3.5 Design Approval ...............................................................................................29 3.6 Summary ...........................................................................................................29 IV. System Architecture and Risk Management...............................................................30 4.1 Specification Requirements...............................................................................30 4.2 System Architecture Development....................................................................33 4.3 Risk Management ..............................................................................................66 4.4 Intermediate Architecture ..................................................................................72 4.5 Iterative Testing of Intermediate Architecture ..................................................73 4.6 Bill of Material ..................................................................................................80 4.7 Final Architecture ..............................................................................................78 4.8 Summary ...........................................................................................................81 V. Test Results and Post Test Hazard Analysis ................................................................83 5.1 Incremental Test Flights ....................................................................................83 5.2 Post Fight Test Hazard Analysis .......................................................................91 5.3 Proposed Approach for Sequential Flight Test .................................................91 5.4 Summary ...........................................................................................................94 VI. Conclusions and Recommendations ...........................................................................95 6.1 Conclusions of Research ...................................................................................95 6.2 Significance of Research ...................................................................................97 6.3 Recommendations for Future Research ............................................................98 Bibliography ......................................................................................................................99 viii Page Appendix A: Failure Mode Effect and Criticality Analysis ............................................104 Appendix B: Setup for Pixhawk Autopilot Computer (ArduPilot, nd) ...........................115 Appendix C: Source Reference for Components in Architecture ....................................121 ix
Description: