Synthesis of Tubular, Belt‐like and Möbius Aromatics Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo‐Wilhelmina Zu Braunschweig Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation Von Dariush Ajami Aus Teheran 1. Referent: Prof. Dr. Rainer Herges 2. Referent: Prof. Dr. Henning Hopf eingereicht am: 17. October 2003 Mündliche Prüfung (Disputation) am: 07. November 2003 To my parents and Mina Danksagung Mein besonderer Dank für die sehr angenehme und konstruktive Atmosphäre gilt meinem Doktorvater Prof. Dr. Rainer Herges. Er hat mich während der gesamten Arbeit stets mit Interesse, Anregungen und einem immer offenen Ohr unterstützt. Meinen Arbeitskreiskollegen Dr. Torsten Winkler, Dr. Markus Diechmann, Felix Köhler, Dr. Anke Krüger, Regina Meinlschmeit, Birtta Harbaum, Kirsten Hess, Katrin Schluze, Dietmund Peters, Monika Bayerhuber, Jan Clausen, Jörg Taubitz gebührt mein Dank für die sehr freundschaftliche Zusammenarbeit. Beim technischen Personal in Braunschweig und Kiel möchte ich mich für die Bereitstellung der Chemikalien, die Herstellung von Glasgeräten und die Messung zahlreicher Spektren bedanken. 1. Introduction......................................................................................................................1 1.1. History of Aromaticity............................................................................................1 1.2. Spherical Aromatic Compounds...........................................................................3 1.3 Tubular and Belt-like Aromatic Compounds......................................................4 1.3.1 Nanotubes.........................................................................................................4 1.3.1.1 Straight nanotubes...........................................................................................5 1.3.1.2 Helix-shaped and Hemitoroidal nanotube..................................................6 1.3.2 Cyclacenes, Beltenes and Collarenes............................................................8 1.3.3 Picotubes...........................................................................................................8 1.3.4 Cylic [n]paraphenylacetylenes......................................................................9 1.3.5 Bowl-shaped Benzoannulenes.....................................................................10 1.4 Our approach.........................................................................................................10 2 9,9’,10,10’-Tetradehydrodianthracene (TDDA) as the building block of picotubes syntheses.................................................................................................................................15 2.1 Synthesis of TDDA................................................................................................15 2.1.1 Greene’s synthesis of TDDA........................................................................15 2.1.2 Neumann’s improvement of the TDDA synthesis...................................16 2.1.3 Synthesis of o-mesitylensulfonylhydroxylamine (Carpino’s reagent)..16 2.2. Characterization....................................................................................................17 2.3 Reactivity................................................................................................................19 2.3.1 Electrophilic addition to TDDA..................................................................19 2.3.2 Nucleophilic addition to TDDA..................................................................19 2.3.3 Diels-Alder reaction of TDDA.....................................................................20 2.3.3.1 Diels-Alder reaction with electron-rich dienes.........................................20 2.3.3.2 Diels-Alder reaction with electron-poor dienes........................................21 2.3.4 Photochemically induced metathesis reactions of TDDA.......................22 2.3.4.1 Photochemical reaction with cycloalkenes................................................22 2.3.4.2 Photodimerization of TDDA.......................................................................22 2.3.4.3 Synthesis of Kammermeierphane...............................................................23 2.4. Conclusion:.............................................................................................................24 3 9,9’,9’’,10,10’,10’’-Hexadehydrotrianthracene (Trimer)...........................................25 3.1 General....................................................................................................................25 3.2 Synthesis strategy..................................................................................................26 3.3 Synthesis of the semitrimer..................................................................................33 3.4 Complexation properties of the semitrimer......................................................38 3.5 Epoxidation of semitrimer...................................................................................40 3.6 Attempted synthesis of Trimer from Semitrimer.............................................41 3.7 Attempted photochemically induced metathesis reactions of the semitrimer 43 3.8 Conclusion;.............................................................................................................43 4 Photochemically induced metathesis reaction of the tetramer...............................45 4.1 Improvement of the tetramer synthesis.............................................................46 4.3 Photochemically induced metathesis reaction of the tetramer.......................53 4.2 Photoreaction of tetramer in micellar solution.................................................55 4.3 Irradiation of the tetramer in aliphatic solvents...............................................57 4.4 Solid phase irradiation of the tetramer..............................................................57 4.5 Calculated structures of the hexamer and the octamer...................................62 4.7 Conclusion..............................................................................................................65 5 Möbius Aromatic compounds.....................................................................................67 5.1 General....................................................................................................................67 5.2 Möbius topologies in chemistry..........................................................................68 5.2.1 Möbius-type conjugation in annulenes......................................................68 5.2.2 Application of the Hückel-Möbius concept in organic chemistry.........69 5.2.3 Theoretically calculated Möbius annulenes..............................................71 5.2.4 A double-stranded Möbius strip of carbon and oxygen atoms..............75 5.2.5 Möbius strip of a single crystal....................................................................75 5.3 Synthesis of Möbius aromatic compound.........................................................76 5.3.1 Proposed strategy for synthesizing Möbius aromatic compounds.......77 5.3.2 Photochemically induced metathesis reactions of TDDA and cyclooctatetraene...........................................................................................................79 5.3.3 Synthesis of cis- or trans-tricyclooctadiene................................................82 5.3.4 Photochemically induced metathesis reactions of TDDA with cis- tricyclooctadiene............................................................................................................83 5.3.4.1 Photochemically induced metathesis reactions with using high pressure mercury lamp.................................................................................................................83 5.3.4.2 Photochemically induced metathesis reactions using a low-pressure mercury lamp.................................................................................................................90 5.3.5 Quantitative Measures of Aromaticity.......................................................99 5.3.5.1 Calculated energy of isomers......................................................................99 5.3.5.2 Harmonic oscillator model of aromaticity (HOMA)..............................102 5.3.5.3 Nucleus independent chemical shift (NICS)...........................................104 5.3.5.4 Magnetic susceptibility...............................................................................104 5.3.5.5 Anisotropy of current induced density....................................................104 5.3.5.6 UV absorption spectra................................................................................107 5.4 Conclusion........................................................................................................108 6 Summary.......................................................................................................................109 7 Experimental part........................................................................................................115 7.1 Apparatus.............................................................................................................115 7.2 Common procedure............................................................................................116 7.3 Synthesis...............................................................................................................117 7.3.1 Synthesis of TDDA......................................................................................117 7.3.1.1 Synthesis of 9-bromoanthracene...............................................................117 7.3.1.2 Synthesis of 9,10’-dibromoanthracene......................................................117 7.3.1.3 Synthesis of bistriazolindianthracene.......................................................118 7.3.1.4 Synthesis of N-aminobistriazolindianthracene.......................................118 7.3.1.5 Synthesis of tetradehydrodianthracene...................................................119 7.3.2 Synthesis of o-mesitylensulfonylhydroxylamin (Carpino’s reagent)..120 7.3.2.1 Synthesis of tert-butyl phenyl carbonate..................................................120 7.3.2.2 Synthesis of tert-butyl carbazate...............................................................120 7.3.2.3 Synthesis of tert-butyl azidoformate.........................................................121 7.3.2.4 Synthesis of tert-butyl N-hydroxycarbamate..........................................122 7.3.2.5 Synthesis of tert-butyl N-p-toluenesulfonoxycarbamate.......................122 7.3.2.5 Synthesis of hydroxylamine o-mesitylene sulfonate (Carpino’s reagent) 123 7.3.3 Attempted Diels-Alder reaction................................................................124 7.3.3.1 Typical reaction...........................................................................................124 7.3.3.2 Attempted Diels-Alder using ultrasound................................................124 7.3.3.3 Solid phase reaction under microwave irradiation................................125 7.3.3.4 Attempted high-pressure Diels-Alder reaction......................................125 7.3.3.5 Attempted solid phase Diels-Alder reaction...........................................125 7.3.4 Solid support reactions...............................................................................125 7.3.4.1 Addition of toluene to TDDA in the presence of Montmorillonite k10 125 7.3.4.2 Addition of anthracene to TDDA in the presence of Montmorillonite k10 126 7.3.4 Step by step synthesis of the trimer..........................................................127 7.3.4.1 Synthesis of the semitrimer 14...................................................................127 7.3.4.2 Complexation of the semitrimer...............................................................128 7.3.4.3 Epoxidation of the semitrimer...................................................................128 7.3.4.4 Attempted conversion of the semitrimer to the trimer by Heck reaction 130 7.3.4.4 Attempted bromination of the semitrimer..............................................130 7.3.4.5 Irradiation of the semitrimer and TDDA.................................................130 7.3.5 Photochemically induced metathesis reaction of tetramer...................131 7.3.5.1 Synthesis of the tetramer............................................................................131 7.3.5.2 Irradiation of the tetramer in micelles......................................................131 7.3.5.3 Irradiation of tetramer in dodecane..........................................................132 7.3.5.4 Solid phase irradiation of the tetramer with a laser...............................132 7.3.6 Synthesis of Möbius aromatic compounds..............................................132 7.3.6.1 Irradiation of TDDA and cyclooctatetraene............................................132 7.3.6.2 Thermal reaction of TDDA and cyclooctatetraene.................................133 7.3.6.3 Synthesis of the syn-tricyclooctadiene......................................................133 7.3.6.4 Irradiation of TDDA and TCOD with 700 W high-pressure mercury lamp 133 7.3.6.5 Irradiation of TDDA and TCOD with 15 W low-pressure mercury lamp 135 7.4 X-ray structure data............................................................................................138 7.4.1 X-ray structure of compound 10...............................................................138 7.4.2 X-ray structure of the semitrimer 14.........................................................141 7.4.3 X-ray structure of tetramer 4.....................................................................146 7.4.4 X-ray structure of the C closed isomer 36...............................................151 2 7.4.5 X-ray structure of isomer 38.......................................................................158 7.4.6 X-ray structure of the C Möbius 39..........................................................165 1 7.4.7 X-ray Structure of the C Möbius 40.........................................................173 2 8. References.....................................................................................................................182 1. Introduction Since the discovery of the fullerenes in 1985[1] and the generation of carbon nanotubes by Iijima in 1991[2], the synthesis of the fully conjugated non‐planar hydrocarbons gained tremendous interest. The fullerenes as well as the nanotubes, so far, are prepared at very high temperatures. Under these crude conditions a number of different structures (different diameter, length, helicity etc) are formed alongside with amorphous carbon. In case of the fullerenes efficient separation techniques made it possible to isolate C and C in larger amounts and high purity, however, 60 70 the purification of carbon nanotubes is still a distant prospect (except on the molecular level by single molecule manipulation in an AFM device). The rational synthesis of carbon nanotubes obtain uniform structures with well defined physical properties is considered to be one of the “holy grails” of nanotechnology[3]. The present work is aimed at taking the first steps toward this ambitious goal. 1.1. History of Aromaticity Fullerenes and carbon nanotubes are aromatic compounds. Aromaticity is also an important property of the belt‐like compounds, which are the targets of the present study. Therefore, a short history of the development of this concept is given below: 1825 Isolation of benzene (Faraday)[4] 1865 Benzene structure (Kekule)[5] 1866 Substitution is more favourable than addition (Erlenmeyer)[6] 1910 Aromatic compounds have exalted diamagnetic susceptibilities (Pascal)[7] 1925 Electron sextet and heteroaromaticity (Armit‐Robinson)[8]
Description: