Synthesis of Thiourea and Urea Organocatalysts by Opioids By Bo Liu (B.Sc.) Supervisors: Dr. Kieran Nolan Prof. Nicholas Gathergood (Tallinn University of Technology, Estonia) For the award of Master’s Degree by Research in Organic Chemistry School of Chemical Sciences Dublin City University July 2017 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of a Master’s degree by research is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: __________________ Bo Liu (Candidate) ID No.: 12211565 Date: __________________ I Table of Contents Declaration ..................................................................................................................... I Table of Contents .......................................................................................................... II List of Abbreviations .................................................................................................... V List of Figures ............................................................................................................... X List of Schemes ......................................................................................................... XIV List of Tables .......................................................................................................... XVIII List of Appendix Figures and Tables ...................................................................... XIX Acknowledgements ................................................................................................... XXI Abstract ................................................................................................................... XXII Chapter 1 Literature Review ....................................................................................... 1 1.1 Chiral compounds .............................................................................................. 2 1.2 Primary sources of chiral compounds ................................................................ 2 1.2.1 Resolution of racemates ........................................................................... 3 1.2.2 Asymmetric synthesis .............................................................................. 5 1.2.3 Chiral pool approach ................................................................................ 6 1.3 Other sources of chiral compounds .................................................................... 9 1.3.1 Transition-metal catalysts ........................................................................ 9 1.3.2 Organocatalysis ...................................................................................... 12 1.3.3 Classification of organocatalysis ............................................................ 13 1.3.3.1 Lewis base catalysis ......................................................................... 13 1.3.3.2 Lewis acid catalysis ......................................................................... 17 1.3.3.3 Brønsted base catalysis .................................................................... 23 1.3.3.4 Brønsted acid catalysis .................................................................... 26 1.3.3.5 Specific (strong) Brønsted acid catalysis ......................................... 27 1.3.3.6 General Brønsted acid catalysis ....................................................... 32 1.4 Bifunctional chiral phosphoric acids ................................................................ 41 1.4.1 Catalysis by acids ................................................................................... 41 1.4.2 Structural features of chiral phosphoric acids ........................................ 43 1.4.3 Catalysis of Mannich reaction by a chiral phosphoric acid ................... 44 1.5 Cinchona alkaloid-based thiourea and urea derivatives ................................... 48 II 1.5.1 The cinchona alkaloids ........................................................................... 48 1.5.2 Cinchona alkaloid-based thiourea, urea and squaramide derivatives .... 50 1.5.3 Catalysis of asymmetric Michael addition reactions by cinchona-derived urea and thiourea derivatives .......................................................................... 57 1.6 Opium alkaloid-based organocatalysts ............................................................ 59 1.6.1 The morphine alkaloids .......................................................................... 59 1.6.2 The structure of morphine alkaloids ...................................................... 60 1.6.3 Catalysis of reactions by morphine alkaloids......................................... 61 1.7 Conclusion ....................................................................................................... 63 1.8 References ........................................................................................................ 65 Chapter 2 Synthesis and structural characterisation of thiourea and urea opioid derivatives .................................................................................................................... 83 2.1 Synthesis of opioid derivatives ........................................................................ 84 2.1.1 Synthesis of 6-O-tosylcodeine (1) .......................................................... 86 2.1.2 Synthesis of 8-isothiocyanocodide (2) and 8-azidocodide (3) ............... 88 2.1.3 Synthesis of 8-aminocodide (4) ............................................................. 90 2.1.4 Synthesis of N,N’-disubstituted thiourea (5) and urea (6) derivatives ... 91 2.1.5 Attempted synthesis of chiral phosphoric acid based opioid derivative.93 2.2 Characterization of opioid precursors .............................................................. 96 2.2.1 1H NMR of opioid precursors ................................................................ 96 2.2.2 13C NMR of opioid precursors ............................................................. 100 2.3 Characterization of N,N’-disubstituted thiourea and urea derivatives ........... 103 2.3.1 1H NMR of N,N’-disubstituted thiourea and urea derivatives ............. 104 2.3.2 1H-1H COSY of N,N’-disubstituted thiourea and urea derivatives ...... 108 2.3.3 13C and DEPT-135 of N,N’-disubstituted thiourea and urea derivatives ....................................................................................................................... 111 2.3.4 HMQC of N,N’-disubstituted thiourea and urea derivatives ................ 114 2.3.5 IR spectroscopy of N,N’-disubstituted thiourea and urea derivatives .. 117 2.3.6 MS of N,N’-disubstituted thiourea and urea derivatives ...................... 119 2.3.7 XRD of N,N’-disubstituted thiourea and urea derivatives ................... 122 2.4 Future work .................................................................................................... 129 2.5 References ...................................................................................................... 132 III Chapter 3 Catalytic study of N,N’-disubstituted thiourea opioid derivative in Michael addition reactions ....................................................................................... 139 3.1 Introduction .................................................................................................... 140 3.2 Catalysis of Michael addition reaction by Takemoto catalyst........................ 140 3.3 Evaluation of N,N’-disubstituted thiourea derivative in the Michael addition reaction ................................................................................................................. 146 3.3.1 Evaluation of the effects of selected solvents ...................................... 147 3.3.2 Evaluation of the effects of reagent ratios ............................................ 150 3.3.3 Evaluation of the effects of catalyst loading ........................................ 151 3.4 Discussion ...................................................................................................... 153 3.5 Future work .................................................................................................... 155 3.6 References ...................................................................................................... 157 Chapter 4 Experimental ........................................................................................... 159 4.1 Chemicals and instruments ............................................................................ 160 4.2 Preparation of opioid derivatives ................................................................... 161 4.3 Study of Michael addition reaction ................................................................ 170 4.4 References ...................................................................................................... 172 Appendices ...................................................................................................................... i Appendix A: NMR spectra ...................................................................................... ii Appendix B: HPLC chromatograms (Solvent Tests) ............................................ xii Appendix C: Crystal data and structure refinement for N,N’-disubstituted thiourea and urea derivatives............................................................................................. xvii IV List of Abbreviations *: stereogenic center A Å: Angstrom [α]: specific rotation Ac: acetyl aq.: aqueous Ar: aryl atm: atmosphere B BINAP: 2,2’-bis(diphenylphosphino)-1,1’-binaphthyl BINOL: 1,1’-bi-2-naphthol BINSA: 1,1’-binaphthyl-2,2’-disulfonic acid Boc: tert-butoxycarbonyl C ºC: degrees Celsius cm-1: wavenumber (s) COD: 1,5-cyclooctadiene COSY: correlation spectroscopy δ: chemical shift in parts per million D DABCO: 1,4-diazabicyclo[2.2.2]octane DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene DCM: dichloromethane DCE: 1,2-dichloroethane de: diastereomeric excess DEPT: distortionless enhancement by polarization transfer DHQ: dihydroquinine DHQD: dihydroquinidine DIOP: 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane V DiPAMP: ethane-1,2-diylbis[(2-methoxyphenyl)phenylphosphane] DMF: dimethylformamide DMSO: dimethyl sulfoxide DPEN: 1,2-diphenylethane-1,2-diamine dr: diastereomeric ratio E ee: enantiomeric excess endo: endothermic eq.: equivalent er: enantiomeric ratio ESI: electrospray ionization Et: ethyl et al.: and others exo.: exothermic Exp.: experiment F FGI: Functional Group Interconversion Fig.: Figure G g: gram (s) H h: hour (s) HMQC: heteronuclear multiple quantum correlation HOMO: highest occupied molecular orbital HPLC: high-performance liquid chromatography Hz: Hertz I IR: infrared VI J J: coupling constant (in NMR spectrometry) K kg: kilogram (s) L LC-MS: liquid chromatography-mass spectrometry ʟ-DOPA: ʟ-3,4-dihydroxyphenylalanine Lit.: literature LUMO: lowest unoccupied molecular orbital M M+: parent molecular ion Me: methyl MeOH: methanol min: minute (s) mL: milliliter mol: mole (s) mmol: millimole m.p.: melting point MS: mass spectrometry Ms: methanesulfonyl m/z: mass to charge ratio N NMR: nuclear magnetic resonance O OTs: tosylate (p-toluenesulfonate) P Ph: phenyl VII PhSH: thiophenol PMP: 4-methoxyphenyl ppm: parts per million iPr: isopropyl PPh : triphenylphosphine 3 R RI: relatively intensity rt: room temperature S S 2: bimolecular nucleophilic substitution N S 2’: bimolecular nucleophilic substitution with allylic rearrangement N SOMO: singly occupied molecular orbital T TADDOL: α,α,α’,α’-tetraaryl-1,3-dioxolane-4,5-dimethanol TBD: 1,5,7-triazabicyclo[4.4.0]dec-5-ene TBS: tert-butyldimethylsilyl TEA: triethylamine TEMP.: temperature THF: tetrahydrofuran TIPS: triisopropylsilyl TIPBs: triisopropylbenzenesulfonyl TLC: thin layer chromatography TMG: 1,1,3,3-tetramethylguanidine TMSCN: trimethylsilyl cyanide TsCl: 4-toluenesulfonyl chloride V VANOL: 3,3’-diphenyl-2,2’-bi-1-naphthalol VAPOL: 2,2’-diphenyl-(4-biphenanthrol) VIII X XRD: X-ray powder diffraction IX
Description: