Synthesis of State Observer and Nonlinear Output Feedback Controller Design of AC Machines * A.A.R Al Tahir To cite this version: * A.A.R Al Tahir. Synthesis of State Observer and Nonlinear Output Feedback Controller Design of AC Machines . Engineering Sciences [physics]. universite de caen normandie, 2016. English. NNT: . tel-01465299 HAL Id: tel-01465299 https://hal.science/tel-01465299 Submitted on 11 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Spécialité (Génie Electrique) Normandie Université U.F.R de Sciences ECOLE DOCTORALE SIMEM Synthèse d’Observateur d'État et Commande Non-Linéaire à Retour de Sortie des Machines AC Présentée et soutenue par Ali Abdul Razzaq AL TAHIR Thèse soutenue publiquement le (16 décembre 2016) devant le jury composé de Professeur des Universités/ Mr / Mohamed Benbouzid Université de Bretagne Occidentale, Rapporteur France Maître de Conférences HDR Emérite Mr / Maxime Wack / Université de Technologie de Rapporteur Belfort-Montbéliard, France Professeur des universités / Mr / Fayçal Ikhouane Universitat Politècnica de Catalunya, Examinateur Spain Maître de Conférences HDR/ Mr / Salah Laghrouche Université de Technologie de Examinateur Belfort-Montbéliard, France Professeur des universités/ Mr / F. Giri Directeur de thèse Normandie Université, France Professeur des universités / Mr / Tarek Ahmed - Ali Directeur de thèse Normandie Université, France Laboratoire : Groupe de recherche en informatique, image, automatique et instrumentation de Caen (GREYC) Acknowledgements First of all, I will give my thanks forever to my God, who makes me able to complete this work. This thesis is submitted to the School of Doctorate ‘’SIMEN ‘’ at University of Caen Lower Normandy in partial fulfillment of the requirements for the Ph.D. degree in Electrical Engineering. The dissertation has been followed by two supervisors: Professor F. Giri from CNRS – 6072, GREYC laboratory, UFR Science 2 and Tarek. A. Ali from School National Superior Engineer of Caen and Research Center (ENSICAEN) at University of Caen Lower Normandy. I would like to express my special thanks to them for their support and enduring patience, advice, guidance and their response to my work during my PhD research. Without them, this project would not have been possible. Also, I would like to express my special thanks to members of jury for their responses. I greatly appreciate the Iraqi government, ministry of higher education and scientific research in Iraq. Thanks also to all staff of the Iraqi Cultural Attaché and Campus France for administrative assistance, which are fully sponsored to carry - out my PhD study at university of Caen lower Normandy. During the project period of three years, I had many valuable discussions with the colleagues at GREYC laboratory for providing the research facilities that make it possible for me to conduct this work. I would like to thank all of them for scientific assistance. My thanks also to the laboratory staff of GREYC, who helped me to build the implementation test for this project. Finally, I must express my profound gratitude to my father, my mother, who never lived to see the fruit of their dedicates, to my sisters, and siblings for supporting me, continuous encouragement and patience, even when the road was bumpy throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. I am really thankful to them. Words cannot explain how I am grateful to my wife beside me throughout my study. PhD AL TAHIR Ali Abdul Razzaq, 2016 i List of Publications and Communications Here are the list of the publications and the communications on the results of this work: International Conferences 1. A. A.R. AL-Tahir, A. El Magri, T. Ahmed-Ali, A. El Fadili, F. Giri, (2015). Sampled - Data High-Gain Nonlinear Observer Design for Synchronous PMSM. 1’st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, Saint Petersburg, Russia, Papers Online Science Direct, ELSEVIER, 48 (11): 327 - 332. doi:10.1016/j.ifacol.2015.09.206. 2- A. A.R. AL-Tahir, R. Lajouad, F.Z. Chaoui, R. Tami, F.Z. Chaoui, T. Ahmed-Ali, F. Giri, (2016). A Novel Observer Design for Sensorless Sampled Output Measurement: Application of Variable Speed Doubly Fed Induction Generator. 12’th IFAC International workshop on Adaptation and Learning in Control and Signal Processing, University of Technology, Eindhoven, Netherlands, Papers Online Science Direct, ELSEVIER, 49 (13): 235 - 240. doi.org/10.1016/j.ifacol.2016.07.957. 3- M. Kissaoui, A. A.R. AL - Tahir, A. Abouloifa, F.Z. Chaoui Y. Abouelmahjoub, F. Giri, (2016). Output-Feedback Nonlinear Adaptive Control of Three-phase AC/DC Converter for On-line UPS Systems. 12’th IFAC International workshop on Adaptation and Learning in Control and Signal Processing, University of Technology, Eindhoven, Netherlands, Papers Online Science Direct, ELSEVIER, 49 (13): 324 - 329. doi.org/10.1016/j.ifacol.2016.07.987 Articles accepted in the international journal 1- A. A.R. AL-Tahir, (2016). Sensorless Online Measurements: Application to Variable Speed Drive Systems. Submitted to International Journal for computation and mathematics in electrical and electronic engineering, early accepted for publication. ii Articles under revision in the international journals 2- A. A.R. AL-Tahir, (2016). Reduced order nonlinear state observer design having inter- sampled output behaviour. Submitted to Journal of Dynamic Systems, Measurements and Control, (under revision). Communication Posters 4- [Al Tahir,2015] Poster presentation entitled of ‘’ Sampled Data Nonlinear Observer Design for Permanent Magnet Synchronous Machines”, Journee’s du GREYC 2015, 4 - 5 June, 2015, organized by University of Caen Basse Normandy, and ENSICAEN, Campus 2, Amphi S3 – 057 et Salle S3 – 037. Communication Oral 5- Workshop entitled “Sampled – Data - High Gain Observer Design for Globally Exponential Convergence Dealing with PMSM”, presented to association OPTIC, University of Caen Basse Normandy, UCBN 2014. 6- Oral presentation entitled “High - Gain Observer Synthesis based on Sampled Output Measurements”. The doctoral school day DSD organized by the SIMEM's student representatives together with OPTIC association, University of Caen Basse Normandy, UCBN, 10 / 06 / 2016. iii Table of contents page Acknowledgements i List of publications and communications ii List of figures ix List of tables xii List of abbreviations and symbols xiii 1. Introduction 2 1.1 State of the art ………………………………………………………. 2 1.1.1 Development of synchronous machine drives …………………. 2 1.1.2 Continuous – time nonlinear state observer design ……………. 2 1.1.3 Sampled – data nonlinear state observer design ……………….. 3 1.1.3.1 Emulation design process ……………………………... 6 1.1.3.2 Direct discrete-time design process …………………… 6 1.1.3.3 Sampled-data design process ………………………….. 6 1.1.4 Electrical power system control techniques …………………... 7 1.1.5 Wind power generation systems ………………………………. 8 1.2 Contribution of the thesis ……………………………………………. 10 1.3 Objectives and motivations of the thesis …………………………….. 10 1.4 On-line observer design techniques for some of AC machines ……... 11 1.4.1 Sampled – data observer design for PMSM drives …………... 13 1.4.2 DFIG running with non-standard sampled observer …………. 14 1.5 Adaptive output feedback control of VSC for UPS system ………….. 15 1.6 Outline of thesis ……………………………………………………... 16 1.7 Appendices …………………………………………………………... 18 2. Mathematical Models and Control Fundamentals for On-line 19 Stabilization iv 2.1 Fundamentals of permanent - magnets electric machine ……………. 20 2.1.1 Rotor position sensor elimination …………………………….. 21 2.1.2 PM synchronous machines versus induction machines ………. 22 2.2 Permanent magnet synchronous machine modeling ……………….... 22 2.2.1 Modeling of PMSM in abc – representations ………………... 23 2.2.2 Model of PMSMs in rotating (𝑑− 𝑞) reference frame ……… 25 2.2.3 Model of PMSMs in (𝛼− 𝛽) representation ………………... 27 2.3 Modeling of wind generation power systems ………………………... 28 2.3.1 Wind turbine mathematical model …………………………… 29 2.3.2 Doubly fed induction generator model ……………………….. 30 2.4 Wind speed types and operating regions of WPGSs ………………… 31 2.4.1 Cut - in wind speed …………………………………………… 32 2.4.2 Rated wind speed ……………………………………….......... 32 2.4.3 Cut - out wind speed …………………………………………. 32 2.5 Wind turbine concepts ………………………………………………. 33 2.5.1 Fixed speed wind turbines ……………………………………… 33 2.5.2 Partial VSWT with rotor resistance ……................................... 33 2.5.3 VSWT with partial-scale converter …………………………… 34 2.5.4 VSWT with full-scale power converter ………………………. 35 2.6 Observability study for sensorless control design ………………….... 36 2.7 Backstepping control design techniques ………………..................... 42 2.7.1 Continuous - time backstepping design technique …………… 43 2.8 Introduction for a class of system studied ………………………….... 48 2.9 Fundamental properties for stability convergence analysis …………. 50 2.9.1 Input – to – state stability concept …………………………… 50 2.9.2 Fundamentals of ISS small - gain condition ………………… 51 3. Sampled – Data Nonlinear Observer Design for Sensorless Synchronous 54 PMSM 3.1 Introduction ……………………………………………………….. 55 3.1.1 Review of related research …………………………………... 55 3.1.2 Purposes and contributions ………………………………….. 55 v 3.2 Synchronous machine modeling and model transformation ………... 56 3.2.1 Synchronous PMSM model ………………………………….. 57 3.2.2 MIMO Model transformation of PMSM …………………….. 59 3.2.3 Observability analysis of full order variable speed PMSM …. 61 3.3 Sampled-data observer design and convergence analysis ……………. 62 3.3.1 Sampled – data observer structure …………………………… 63 3.3.2 Some technical hypotheses …………………………………... 63 3.3.3 Comparison with published results …………………………... 64 3.3.4 Some definition and notation ………………………………… 65 3.3.5 Stability analysis of the proposed observer …………………... 66 3.3.6 Discussion the main result …………………………………… 71 3.3.7 Observer equation in the original coordinates ………………... 71 3.4 Simulation results and verifications …………………………………. 72 3.4.1 Implementation considerations ………………………………. 72 3.4.2 Observer dynamic tracking performance …………………… 75 3.4.3 Sensorless sampled output measurements …………………… 75 3.5 Conclusions …………………………………………………………. 80 4. A Novel Observer Design based on Sensorless Sampled Output Measurements: Application to Variable Speed DFIG based Wind 83 Turbines 4.1 Introduction ………………………………………………………..... 84 4.1.1 Review of related research …………………………………… 84 4.1.2 Purposes and contributions …………………………………… 87 4.2 Representation of DFIG based wind turbine …………………………. 88 4.2.1 Wind turbine modeling ………………………………………... 88 4.2.2 Modeling assumptions ………………………………………… 90 4.2.3 Full version of DFIG model ………………………………....... 90 4.2.4 Power calculation in (𝑑 − 𝑞) quantities …………………...... 92 4.2.5 Observability analysis of full version DFIG model …………... 94 4.2.6 Motivations of using reduced model DFIG …………………… 97 4.2.7 Reduced version of DFIG model ……………………………... 97 4.3 Position sensorless measurements …………………………………..... 100 vi 4.4 Reduced - order state observer design ……………………………….. 101 4.4.1 Observer design assumptions ………………………………… 102 4.4.2 Some remarks and notations ………………………………... 103 4.5 Comparison with published results …………………………………. 104 4.6 Sampled - data observer design and convergence analysis ………... 104 4.6.1 Stability analysis of the proposed observer ………………….. 106 4.6.2 Discussion of the main result ………………………………... 113 4.7 Simulation results and verifications ……………………………….... 114 4.7.1 Implementation considerations ………………………………. 114 4.7.2 Observer dynamic tracking performance ……………………. 116 4.7.3 Sensorless sampled output measurements …………………... 117 4.7.4 Sensorless position measurements …………………………... 118 4.8 Conclusions …………………………………………………………. 122 5. Output Feedback Nonlinear Adaptive Control Strategy of Three - Phase AC/DC Boost Power Converter for Online UPS Systems 124 5.1 Introduction ……………………………………………………….. 125 5.1.1 Review of related research …………………………………... 126 5.1.2 Purpose and contribution ……………………………………. 127 5.2 Uninterruptable power supply topologies ………………………….. 128 5.3 Problem formulation ……………………………………………….. 129 5.3.1 System topology and modeling ……………………………... 129 5.3.2 Main control objectives ……………………………………... 132 5.3.3 Comparing with published results …………………………… 134 5.4 Adaptive controller design …………………………………………. 135 5.4.1 Observability analysis of on-line UPS system ……………… 135 5.4.2 Adaptive observer design …………………………………… 139 5.4.3 Stability convergence analysis ……………….…………….. 140 5.4.4 Inner control loop design - PFC achievement ……………… 142 5.4.5 Outer control loop design - DC output voltage regulation …... 145 5.4.6 Power factor calculation and estimation ……………………. 146 vii 5.5 Numerical simulation and verification …………………………........ 151 5.5.1 Implementation considerations ……………………………… 151 5.5.2 Tracking performance in presence of constant load …………. 152 5.5.3 Control performance in presence of resistive load uncertainty 157 5.6 Conclusions ………………………………………………………… 160 6. General Conclusions and Perspectives 162 6.1 General conclusions ..……………………………………………… 162 6.2 Suggestions for future works …………………………………........ 165 Appendices 166 A1. Clarke’s transformation ……………………………………………. 166 A2. Park ‘s transformation ……………………………………………… 166 A3. Pulse width modulation (PWM) generation ……………………….. 168 A4. Derivation of wind power equation ………………………………... 168 A5. Young’s inequality.…………………………………………………. 169 Bibliography 173 viii
Description: