polymers Article Synthesis of Quaternary Ammonium Salts of Chitosan Bearing Halogenated Acetate for Antifungal and Antibacterial Activities JingjingZhang1,2,WenqiangTan1,2,FangLuan1,2,XiuliYin1,*,FangDong1,QingLi1 andZhanyongGuo1,2,* ID 1 KeyLaboratoryofCoastalBiologyandBioresourceUtilization,YantaiInstituteofCoastalZoneResearch, ChineseAcademyofSciences,Yantai264003,China;[email protected](J.Z.);[email protected](W.T.); fl[email protected](F.L.);[email protected](F.D.);[email protected](Q.L.) 2 UniversityofChineseAcademyofSciences,Beijing100049,China * Correspondence:[email protected](X.Y.);[email protected](Z.G.);Tel.:+86-535-2109171(Z.G.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:19April2018;Accepted:10May2018;Published:15May2018 Abstract: In this paper, quaternary ammonium salts of chitosan bearing halogenated acetate, includingN,N,N-trimethylchitosanchloroacetate(TMCSC),N,N,N-trimethylchitosandichloroacetate (TMCSDC), N,N,N-trimethyl chitosan trichloroacetate (TMCSTC), and N,N,N-trimethyl chitosan trifluoroacetate(TMCSTF),werepreparedviaN,N,N-trimethylchitosaniodide(TMCSI).Theobtained chitosanderivativeswerecharacterizedbyFT-IR,1HNMRspectra,13CNMRspectra,andelemental analysis. Their antifungal property against Fusarium oxysporum f. sp. cucumebrium Owen (F.oxysporumf.sp.cucumebriumOwen),Botrytiscinerea(B.cinerea),andPhomopsisasparagi(P.asparagi) were evaluated by hyphal measurement method at concentrations ranging from 0.08 mg/mL to 0.8 mg/mL. Meanwhile, two common bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus),wereselectedasthemodelGram-negativeandGram-positivebacteriatoevaluatethe antibacterialpropertyofthechitosanderivativesbyagarwelldiffusionmethod. Theresultsshowed thatTMCSC,TMCSDC,TMCSTC,andTMCSTFhadbetterantifungalandantibacterialactivities thanchitosanandTMCSI.Inparticular,aruleshowedthattheinhibitoryactivitydecreasedinthe order: TMCSTF>TMCSTC>TMCSDC>TMCSC>TMCSI>chitosan,whichwasconsistentwith the electron-withdrawing property of different halogenated acetate. Apparently, the quaternary ammoniumsaltsofchitosanwithstrongerelectronwithdrawingabilitypossessedrelativelygreater antifungalandantibacterialactivities. Thisexperimentprovidesapotentiallyfeasiblemethodforthe furtherutilizationofchitosaninfieldsofantifungalandantibacterialbiomaterials. Keywords:quaternaryammoniumsaltsofchitosan;halogenatedacetate;characterization;antifungal activity;antibacterialactivity 1. Introduction Phytopathogenicfungihavebeensevereconstraintsofcropproductionandfoodsecurityglobally, whichmayleadtogreatlossestohumans[1]. Inaddition,E.coliandS.aureushavehistoricallybeen themajorhumanpathogenandcontinuetobethemostcommonlyimplicatedbacteriacausinghuman disease[2]. Inthepastfewdecades,thelarge-scaleuseofchemicalfungicidesandantibioticswas thedominanttooltoaddressthesedisasters[3]. However,theextensiveapplicationofsuchchemical fungicides and antibiotics often causes drug resistance in the fungi and bacteria. Drug-resistant bacterialandfungalstrainscanposeaseriousthreattohumanhealthgloballyanditobligesresearchers toseeknewalternatives[4,5].Therefore,developingsecureandecofriendlyalternativesthatcancontrol microorganismsaswellasdecreaseenvironmentalriskhasbecomeaneffectivetactic[6]. Polymers2018,10,530;doi:10.3390/polym10050530 www.mdpi.com/journal/polymers Polymers2018,10,530 2of14 As one of the most abundant natural polysaccharides, chitosan has unique physiochemical characteristics and bioactivities including biocompatibility, low toxicity, hemostatic activity, wound-healingproperties,andantimicrobialactivitythatcanbeappliedinthefieldsofbiotechnology, pharmaceutics,wastewater,cosmetics,agriculture,foodscience,textiles,andsoon[7–10]. Meanwhile, duetotheseexcellentproperties,chitosancanbeconsideredasagreatalternativeofantimicrobial medicineorfungicide.However,theapplicationofpristinechitosanasafungicidehasbeenlimiteddue toitslowersolubilityandweakeractivitycomparedtocurrentantimicrobialsonthemarket[11–13]. In order to meet the requirements of commercial medicine or fungicides, modifying the structure of chitosan is a common means to improve its solubility and other properties. Exactly, various derivativesofchitosanwithbetterwatersolubilityandbioactivitieshavebeensynthesizedthrough chemicalmodificationsuchasSchiffbasesofchitosan,N-substitutedchitosan,carboxymethylchitosan, quaternizedchitosan,andsoon[14,15]. Amongvariousderivativesofchitosan,quaternizedchitosan has drawn people’s attention for its excellent bioactivity, especially antimicrobial and antioxidant activities. Furthermore, we found that quaternized chitosan had better antioxidant activity than chitosan, Schiff bases of chitosan, and N-substituted chitosan, which was caused by the cation of quaternizedchitosan[14]. Andtheantifungalandantioxidantactivitiesofquaternizedchitosanare affectedbytheactivegroups,whichgraftedtochitosanaccordingtoearlierreports[12,16]. Except quaternized chitosan, chitosan ammonium salt is another kind of chitosan derivative whichhasanobviouscation. Meanwhile,thebetterantifungalactivityofchitosanammoniumsalt thanchitosanagainstC.cucumerinum(Ell.) etArthur,M.fructicola(Wint.) Honey,andF.oxysporumf. sp. cucumissativusLwerealsoreportedinapastpaper[17]. Nowthatbothquaternizedchitosan andchitosanammoniumsalthavemorepositivecharge,whichistheprincipalfactorthatcausesthe enhancementofchitosan’sbioactivities,quaternaryammoniumsaltofchitosanmaybeanexcellent antifungalorantibacterialagent. Inaddition,theelectron-withdrawingsubstitution–halogenscanplay keyrolesintheantifungalandantibacterialpropertiesofcompounds,whichcandisruptcellwalls andmembranestoleadtothedeathofmicroorganisms[18–20]. Therefore,theintroductionofthese groupsbearingvarioustypesandquantitiesofhalogensintoquaternaryammoniumsaltofchitosan couldhelpenhancethebioactivitiesofquaternaryammoniumsaltofchitosan. In order to study the effect of halogen atoms on the bioactivities of chitosan, the synthesis of TMCSC, TMCSDC, TMCSTC, and TMCSTF were reported. Firstly, the C –NH of chitosan 2 2 wasmodifiedasquaternizedchitosan,whichactedasanintermediatethatcouldformquaternary ammonium salts of chitosan bearing different halogenated acetate. Then, the final products were synthesizedthroughionexchangebetweenN,N,N-trimethylchitosaniodideandsodiumhaloacetic. ThechemicalstructuresofthederivativeswerecharacterizedbyFT-IR,1HNMRspectra,13CNMR spectra, and elemental analysis. Meanwhile, their antifungal activity against Fusarium oxysporum f. sp. cucumerium Owen (F. oxysporum f. sp. cucumerium Owen: ATCC42357), Botrytis cinerea (B. cinerea: ATCC48340), and Phomopsis asparagi (P. asparagi: ATCC24625) were measured in this paper. Furthermore,wetestedtheinhibitingabilityofsynthesizedderivativeswithbacteria,including Escherichiacoli(E.coli: ATCC27325)andStaphylococcusaureus(S.aurous: ATCC25923). Accordingly,we havediscussedtherelationshipbetweenthestructuresandbioactivitiesofchitosanderivativesbriefly. 2. MaterialsandMethods 2.1. Materials Chitosan was purchased from Qingdao Yunzhou Biochemistry Co., Ltd. (Qingdao, China). The degree of deacetylation was 81% and the viscosity average molecular weight was 7.8 × 103. Iodomethane, sodium iodide, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, and trifluoroaceticacidwerepurchasedfromSigma-AldrichChemicalCorp. (Shanghai,China). N-methyl- 2-pyrrolidone,ethanol,sodiumhydroxide,andsodiumchloridewereallpurchasedfromSinopharm ChemicalReagentCo.,Ltd. (Shanghai,China). Thereagentswereanalyticalgradeandusedwithout Polymers2018,10,530 3of14 further purification. Fungi Medium was purchased from Qingdao Hop Bio-Technogy Co., Ltd. (Qingdao,China). AgarPowderwaspurchasedfromBeijingChembaseTechnologyCo.,Ltd. (Beijing, China). TryptoneandYeastExtractPowderwerepurchasedfromBeijingAoboxingBio-TechCo.,Ltd. (Beijing,China). 2.2. AnalyticalMethods 2.2.1. FourierTransformInfrared(FT-IR)Spectroscopy FT-IRspectrometers,intherangeof4000–400cm−1withresolutionof4.0cm−1,wererecorded on a Jasco-4100 (Tokyo, Japan, provided by JASCO China (Shanghai) Co. Ltd., Shanghai, China). AllsamplesweregroundandmixedwithKBrdisksfortesting. 2.2.2. NuclearMagneticResonance(NMR)Spectroscopy 1H Nuclear Magnetic Resonance (1H NMR) spectra and 13C Nuclear Magnetic Resonance (13CNMR)spectrawereallmeasuredusingaBrukerAVIII-500Spectrometer(500MHz,Switzerland, providedbyBrukerTech. andServ. Co.,Ltd.,Beijing,China)at25◦Candusing99.9%Deuterium Oxide(D O)assolvents. 2 2.2.3. ElementalAnalysis The elemental analyses by combustion were used to evaluate the degrees of substitution in chitosanderivatives. Theanalysesofelementalcarbon,hydrogen,andnitrogeninchitosanderivatives were performed on a Vario Micro Elemental Analyzer (Elementar, Germany). The degrees of substitution(DS)ofchitosanderivativeswerecalculatedonthebasisofthepercentagesofcarbonand nitrogenaccordingtothefollowingequations[21]: n ×M −M × W DS = 1 C N C/N 1 n ×M 2 C M × W +n ×M ×DS −n ×M DS = N C/N 2 C 1 1 C 2 n ×M 3 C M × W +n ×M ×DS −n ×M −n ×M ×DS DS = N C/N 2 C 1 1 C 3 C 2 3 n ×M 4 C whereDS ,DS ,andDS representthedeacetylationdegreeofchitosan,thedegreesofsubstitution 1 2 3 ofN,N,N-trimethylchitosaniodide, anddegreesofsubstitutionofquaternaryammoniumsaltsof chitosanbearinghalogenatedacetate,respectively;M andM arethemolarmassesofcarbonand C N nitrogen, M = 12, M = 14, respectively; n , n , n , and n are the number of carbons of chitin, C N 1 2 3 4 acetamidogroup,trimethyl,andhaloaceticacidgroup,n =8,n =2,n =3,n =2,respectively;W 1 2 3 4 C/N representsthemassratiobetweencarbonandnitrogeninchitosanderivatives. 2.3. SynthesisofChitosanDerivatives 2.3.1. SynthesisofN,N,N-TrimethylChitosanIodide(TMCSI) TMCSIwaspreparedaccordingtothefollowingmethod[1]: Chitosan(10mmol)wasdispersed in80mLofN-methyl-2-pyrrolidone(NMP)andstirredatroomtemperaturefor1h. Then,NaI(4.5g), 15%NaOHaqueoussolution(15mL),andCH I(15mL)wereadded,subsequently. Themixturewas 3 refluxedforanadditional2hat60◦C.Afterrefluxreaction,thesolutionwaspouredintoethanolto affordsomeflavescentprecipitateandTMCSIcollectedbyfiltrationwasobtainedbyfreeze-drying overnightinvacuum. Polymers2018,10,530 4of14 Polymers 2018, 10, x FOR PEER REVIEW 4 of 14 2.3.2. SynthesisofQuaternaryAmmoniumSaltofChitosanBearingHalogenatedAcetate 2.3.2. Synthesis of Quaternary Ammonium Salt of Chitosan Bearing Halogenated Acetate TMCSI was then dissolved in 15% of sodium haloacetic in order to replace the iodide ions TMCSI was then dissolved in 15% of sodium haloacetic in order to replace the iodide ions with with haloacetic ions. The solution was dialyzed with distilled water for 3 days, and quaternary haloacetic ions. The solution was dialyzed with distilled water for 3 days, and quaternary ammonium salts of chitosan bearing halogenated acetate including N,N,N-trimethyl chitosan ammonium salts of chitosan bearing halogenated acetate including N,N,N-trimethyl chitosan chloroacetate (TMCSC), N,N,N-trimethyl chitosan dichloroacetate (TMCSDC), N,N,N-trimethyl chloroacetate (TMCSC), N,N,N-trimethyl chitosan dichloroacetate (TMCSDC), N,N,N-trimethyl chitosantrichloroacetate(TMCSTC),andN,N,N-trimethylchitosantrifluoroacetate(TMCSTF)were chitosan trichloroacetate (TMCSTC), and N,N,N-trimethyl chitosan trifluoroacetate (TMCSTF) were obtainedafterbeingfreeze-dried(Scheme1). obtained after being freeze-dried (Scheme 1). Scheme 1. Synthesis pathway of chitosan derivatives. Scheme1.Synthesispathwayofchitosanderivatives. 2.4. Antifungal Assays 2.4. AntifungalAssays The antifungal ability was assessed by the model of the earlier method [22]. Firstly, the samples Theantifungalabilitywasassessedbythemodeloftheearliermethod[22]. Firstly,thesamples (chitosan and chitosan derivatives) were dispersed in distilled water at a concentration of 6 mg/mL (chitosanandchitosanderivatives)weredispersedindistilledwaterataconcentrationof6mg/mLas as stock solutions. Then, each sample solution was added to fungi media, which was prepared from stocksolutions. Then,eachsamplesolutionwasaddedtofungimedia,whichwaspreparedfroma a mixture with a mass ratio of fungi medium, agar powder, and sterile water of 2.85:1.8:100, mixturewithamassratiooffungimedium,agarpowder,andsterilewaterof2.85:1.8:100,respectively, respectively, to give final concentrations of 0.08, 0.4, and 0.8 mg/mL. The final solutions were poured togivefinalconcentrationsof0.08,0.4,and0.8mg/mL.Thefinalsolutionswerepouredintosterilized into sterilized Petri dishes (9 cm). After the mixture was cooled, the fungi mycelium of 5.0 mm Petri dishes (9 cm). After the mixture was cooled, the fungi mycelium of 5.0 mm diameter was tdraianmsfeetrerre dwtaos tthraentsefsetrpreladt etoa nthdei tnecsut bpalatetde aantd27 in◦cCufboarte2d– 3atd 2a7y s°.CW fohre 2n–t3h deamyys.c Welihuemn othfefu mnygcierleiaucmhe odf fungi reached the edges of the control plate (without added samples), the antifungal index was theedgesofthecontrolplate(withoutaddedsamples),theantifungalindexwascalculatedasfollows: calculated as follows: AAnnttiiffuunnggaal lininddexe x(%(%))==(1(1−−D(cid:2911)D(cid:3415)a))× ×110000 DDb(cid:2912) wwhheerree DDa iiss tthhee ddiiaammeetteerr ooff tthhee ggrroowwtthh zzoonnee iinn tthhee tteesstt ppllaatteess aanndd DDb iiss tthhee ddiiaammeetteerr ooff tthhee ggrroowwtthh a b zone in the control plate. zoneinthecontrolplate. 22..55.. AAnnttiibbaacctteerriiaall AAssssaayyss TThhee aannttiibbaacctteerriaialla abbiliiltiytyo focf hcihtoitsoasnaann adncdh icthositaonsadne rdivearitvivaetsivwesa swdaest edrmeteinrmedinuesdin gustihnega tghaer wagealrl dwifeflul sidoinffumseiothno dm[e2t3h,2o4d] .[F2i3rs,2tl4y],. auFtiorsctllayv, edau(tsotecrlialve)edn u(tsriteenritlea)g anrumtreideniat (aagmarix tmureedoiaf T(ray pmtoinxetu,yree aostf eTxrtyrpactotnpeo,w ydeaesrt, aegxtarrapcto pwodwedr,esro, daiguamr pcohwlodriedr,e ,soadnidusmte crhilleowridatee, rainndt hsteermilaes wsaratetiro ino fth10e :m5:1a8s:s1 r0a:1ti0o0 o0)f w10a:s5:p18re:1p0a:1re0d00.)T wheans, pitrwepaasrepdo.u Trehdenin, tiot swtearsi lepopularteeds ainntdo csuteltruilree dplmateeds iaanwde rceulatlulorewde dmteodsiao liwdeifrye. 0a.l1lomwLedE .tcoo lsioalniddifSy.. a0u.r1e umsL(1 E05. cCoFliU a/nmd LS). wauerreeuisn (o1c0u5 lCatFeUd/omnLth) ewneuretr iiennotcauglaatremd eodni athaen dnuthtreinenspt raegaadr omnetdhiea eanntdir ethseunrf aspcereoafdt hoenm thede ieunmtirbey ssuterfrailcees opfa ttuhlea .mNeedxiut,mfo ubry wsteelrlsileo fs5pamtumlad. iNamexett,e frowure rweeblolsr eodf u5s minmg adsiatemrieletebr owreerrein beoarcehd pulsaitneg. Ian setearcihlew beolrle,r2 5inµ eLaochf spalmatpe.l eIsn (eaatcthh ewceolnl,c 2e5n tμraLt ioofn saomf2p0lems g(a/tm thLe) wcoenrecelonatrdaetdio.nB aocft e2r0i amlpgl/amteLs)w wereerein lcouabdaetded. Batac3t7e◦riCalo pvelartneisg hwtearned iznocnuebsaotefdin ahti b3i7ti o°nC woevreernmigeahstu arnedd azfotenres2 4ofh i.nGhribeaittieorni nwheibreit mioneazsounreeds ianfdteicr a2t4e dh.h Gigrheeartearn itnibhaibcitteiroinal zaocntievsi tiyn.dicated higher antibacterial activity. Polymers 2018, 10, x FOR PEER REVIEW 5 of 14 Polymers2018,10,530 5of14 2.6. Statistical Analysis 2.6. StaAtisltl icthaleA enxapleyrsiims ents were performed in triplicate and the data were expressed as means ± the standard deviation (SD, n = 3). Significant difference analysis was determined using Scheffe’s multiple Alltheexperimentswereperformedintriplicateandthedatawereexpressedasmeans±the range test. A level of p < 0.05 was considered statistically significant. standarddeviation(SD,n=3). SignificantdifferenceanalysiswasdeterminedusingScheffe’smultiple rangetest. Alevelofp<0.05wasconsideredstatisticallysignificant. 3. Results and Discussion 3. ResultsandDiscussion 3.1. Structure of Quaternary Ammonium Salts of Chitosan Bearing Halogenated Acetate 3.1. StructureofQuaternaryAmmoniumSaltsofChitosanBearingHalogenatedAcetate Each step of the synthesis was followed by FT-IR spectra (Figure 1), 1H NMR spectra (Figure 2), andE a1c3hC sNteMpoRf sthpeecstyrna th(Feisgiusrwe a3s)f. oMlloewanewdhbiyleF, Tt-hIRe sepleemcternat(aFli gaunraely1s)e,s1,H yNieMldsR, sapnedc ttrhae( Fdigeugrreee2s) ,of ansdub13sCtituNtMionR osfp eqcutarater(Fniagruyr aem3)m. oMnieuamnw sahlitlse ,otfh ceheitloesmaenn btaelarainnagl yhsaelso,gyeinealdtesd, aancdetathtee adree gsrheoews onf in suTbastbilteu t1i.o n of quaternary ammonium salts of chitosan bearing halogenated acetate are shown in Table1. CS 3432.67 2877.27 TMCSI 1654.631600.63 1079.84 1469.49 775.24 TMCSC TMCSDC 767.53 TMCSTC 833.10 TMCSTF 1195.951126.23 4000 3500 3000 2500 2000 1500 1000 500 Wavenum ber (cm-1) FigFuigruer1e. 1F.T F-ITR-IsRp sepctercatroaf ocfh cithoistaonsa,nT,M TCMSCI,STI,M TCMSCCS,CT,M TCMSCDSCD,CT,M TCMSCTSCT,Can, danTdM TCMSCTSF.TF. The FT-IR spectra of chitosan, TMCSI, TMCSC, TMCSDC, TMCSTC, and TMCSTF are shown in TheFT-IRspectraofchitosan,TMCSI,TMCSC,TMCSDC,TMCSTC,andTMCSTFareshown Figure 1. The spectrum of chitosan shows characteristic absorption bands at approximately 3432.67 cm−1 in Figure 1. The spectrum of chitosan shows characteristic absorption bands at approximately 34(3a2n.6g7uclamr −d1e(faonrmgualtaiornd eofof rOm–aHtio annodf ON––HH)a, n2d87N7–.2H7) ,c2m87−17 .(2–7CcHm −st1re(–tcChHingst)r, e1tc6h0i0n.6g3), 1cm60−01 .6(3vicbmra−ti1on (vimbroadtieosn ofm aomdienso ogfroaumpi)n, oangdr o1u07p9).,84a ncdm−11 0(7th9e.8 a4bcsmor−ba1n(cteh eofa βb-s(o1r,4b)a gnlcyecoosfidβic-( 1in,4 c)hgitloyscaons)i d[2ic5–i2n8]. chFitoors aTnM) [C25S–I,2 8a] .nFeowr TpMeaCk SIa,papenaerws pate aakboauptp e1a4r6s9a tcmab−o1, uwt 1h4ic6h9 cims −as1s,iwgnheidch tios athssei gcnheadratcotetrhisetic chaabrascotrebraisntcice aobfs Nor–bCaHnc3e [1o,f1N6]–. CFoHr T[M1,1C6S]C. F, oTrMTCMSCDSCC, ,aTnMd CTSMDCCS,TaCn,d thTeMreC aSrTeC n,etwhe preeaakres napewpepaeriankgs at 3 ap7p7e5a.r2i4n,g 7a6t77.5735,. 2a4n,d7 6873.35.31,0a cnmd−81,3 r3e.1sp0eccmti−v1e,lyre, swphecictihv sehlyo,uwldh ibche ashssoiuglndedbe toa stshige naebdsotorbtahnecaeb osfo trhbea nCc–eCl ofbthoendC –[C12l]b. oMndea[1n2w].hMilee,a nnwewhi lpe,enaekws appeapkesara papt e1a1r9a5t.91519 5a.n9d5 a1n1d261.12236 .c2m3−c1m f−or1 fToMrTCMSTCFS,T Fw,hwichhic hare assigned to the characteristic absorbance of C–F [12]. At the same time, there are characteristic peaks areassignedtothecharacteristicabsorbanceofC–F[12]. Atthesametime,therearecharacteristic peoafk Nso–fCNH–3 CaHt abaotuatb 1o4u7t01 c4m70−1,c mwh−i1c,hw phriocvhep trhoavte ththea qtuthaeteqrnuaartyer anmarmyoanmiummo nsiaultms gsraoltuspgsr sotuilpl sexsitsiltl in 3 the molecules of TMCSC, TMCSDC, TMCSTC, and TMCSTF. The above-mentioned results existinthemoleculesofTMCSC,TMCSDC,TMCSTC,andTMCSTF.Theabove-mentionedresults preliminarily demonstrated that quaternary ammonium salts of chitosan derivatives were obtained. preliminarilydemonstratedthatquaternaryammoniumsaltsofchitosanderivativeswereobtained. Polymers2018,10,530 6of14 Polymers 2018, 10, x FOR PEER REVIEW 6 of 14 CH OH 2 O O OH n A N+(CH ) OOCR 3 3 CH2OH D O 2 O O OH A A n pyranosering N+(CH3)3I B A B R= Cl Cl A B R= Cl B A Cl Cl R= Cl A F F R= F FFiigguurree 22.. 11HH NNMMRR ssppeeccttrraa ooff TTMMCCSSII, ,TTMMCCSSCC, ,TTMMCCSSDDCC, ,TTMMCCSSTTCC,, aanndd TTMMCCSSTTFF.. The structures of the synthesized products were further demonstrated by 1H NMR spectra The structures of the synthesized products were further demonstrated by 1H NMR spectra (Figure 2) and 13C NMR spectra (Figure 3). As shown in the figures, all spectra show signals at (Figure 2) and 13C NMR spectra (Figure 3). As shown in the figures, all spectra show signals at 2.0–5.5 ppm (1H NMR spectra) and 50–100 ppm (13C NMR spectra), which are assigned to the 2.0–5.5 ppm (1H NMR spectra) and 50–100 ppm (13C NMR spectra), which are assigned to the diagnostic chemical shifts of chitosan [29,30]. In 1H NMR spectrum of TMCSI, the chemical shift at diagnostic chemical shifts of chitosan [29,30]. In 1H NMR spectrum of TMCSI, the chemical shift 3.1 ppm is assigned to the protons of –N+(CH3)3 groups [1,31]. Similarly, the trimethyl groups show at 3.1 ppm is assigned to the protons of –N+(CH ) groups [1,31]. Similarly, the trimethyl groups the prominent peak at 53 ppm in 13C NMR spect3ru3m. As compared with TMCSI, new peaks are showtheprominentpeakat53ppmin13CNMRspectrum. AscomparedwithTMCSI,newpeaks observed at 4.0 ppm (CH2ClCOO– in TMCSC) and 6.0 ppm (CHCl2COO– in TMCSDC) in 1H NMR are observed at 4.0 ppm (CH ClCOO– in TMCSC) and 6.0 ppm (CHCl COO– in TMCSDC) in 1H spectra of products, which a2re assigned to protons of halogenated ac2etic anions [32]. As far as NMRspectraofproducts, whichareassignedtoprotonsofhalogenatedaceticanions[32]. Asfar TMCSTC and TMCSTF, the spectra are similar to TMCSI and no new peaks appear because of as TMCSTC and TMCSTF, the spectra are similar to TMCSI and no new peaks appear because of absence of protons of halogenated acetic anions. As to the 13C NMR spectra of quaternary absenceofprotonsofhalogenatedaceticanions. Astothe13CNMRspectraofquaternaryammonium ammonium salts of chitosan bearing halogenated acetate, new signals at about 175, 170, 166, and 161 ppm are related to carbons of COO– groups in TMCSC, TMCSDC, TMCSTC, and TMCSTF [33]. Polymers2018,10,530 7of14 saltsofchitosanbearinghalogenatedacetate, newsignalsatabout175, 170, 166, and161ppmare Polymers 2018, 10, x FOR PEER REVIEW 7 of 14 relatedtocarbonsofCOO–groupsinTMCSC,TMCSDC,TMCSTC,andTMCSTF[33]. Furthermore, Fnuerwthreersmoonraen, cenepwea kressaopnpaenacre apte4a4kps pampp(CeaHr 2aCtl 4in4 TpMpmCS C(C),H629Cpl pinm T(CMHCCSlC2)i,n 6T9M pCpSmD C(C),H95Clp2 pimn T(CMCCl3SDinCT)M, 9C5 SpTpCm), (aCnCdl31 1in7 TpMpmCS(CTFC3),i nanTdM 1C17T Fp)p,mco n(CfiFrm3 iinn gTMthCeTpFre),s econncefiromftihneg hthaleo pgerensaetnedcem oef tthhyel hcaalrobgoennsa[t1e2d, 3m4]e.thInyla cdadrbitoionns, [t1h2e,3c4h].e mIni caadldsihtiioftns, othfe– Nch+e(mCHic3a)l3 sahtifatsb oouf t–3N.1+(CppHm3)3( a1Ht aNboMutR 3s.1p epcptrma) (a1Hnd N5M3pRp smpe(c1t3rCa) NanMdR 53s ppepcmtra ()13sCti lNleMxRis tsipnecthtrea)s psteicllt reaxiosft qinu athteer snpaercytraam omf qounaiutemrnsaarlyts aomfmchointoiusamn sbaeltasr inogf hcahloitgoesanna tebdeaarcientgat eh.aTlohgeerenfaotreed, thaecesetadtea. taTahdeerqefuoartee, lythpersoev edtahtea suacdceeqsusfautelllyy sypnrothvees isthoef scuhcictoessasfnudlleyr sivyanttihveessi.s of chitosan derivatives. CH OH 2 O O OH A n B N+(CH ) OOCR CH2OH 3 3 O O OH A n pyranosering N+(CH3)3I A B C C A R= Cl C Cl B C A R= Cl Cl Cl R= A B C Cl C F F A R= B C F C FFiigguurree 33.. 113C3C NNMMRR spspeecctrtara oof fTTMMCCSSI,I ,TTMMCCSSCC, ,TTMMCCSSDDCC, ,TTMMCCSSTTCC, ,aanndd TTMMCCSSTTFF.. The degrees of substitution (DS) for chitosan derivatives were calculated on the basis of the percentagesofcarbonandnitrogenandtheresultsareshowninTable1. Asisshown,theintermediate TMCSIpresentsthehighestdegreeofsubstitution. TheDSoffourfinalproducts(TMCSC,TMCSDC, TMCSTC, and TMCSTF) are various. For example, compared with TMCSDC with the DS of 0.60, Polymers 2018, 10, x FOR PEER REVIEW 8 of 14 Table 1. The elemental analyses, yields, and the degrees of substitution of chitosan derivative. Polymers2018,10,530 Elemental Analyses (%) 8of14 Compounds Yields (%) Degrees of Substitution Deacetylation C N H C/N CS 40.851 7.474 6.879 5.47 - 0.81 theDSvalueofTMCSTFisonly0.32. Generally,thedegreesofsubstitutionofproductswoulddirectly TMCSI 87.6 29.211 4.076 5.485 7.17 0.66 - affect tThMeiCrSbCio activity7.3.T5 he low39e.r28d eg4r.e9e41o f s6u.4b61st itu7t.9io5 n as well as0.l4e6s s functional group- s mean a weakeTrMbiCoSaDctCiv ity. Th6e9re.8f ore,e3v8e.n43i9f TM4.C68S9T F7h.2a1s7t he8s.t2r ongestelectro0n.6e gativity,itsbiologi-c alactivity maynToMtbCeStThCe bestbe7c5a.3u seof4t3h.e05l4o w5D.3S61in s7o.8m37e ca8s.e0s3. 0.5 - TMCSTF 74.6 42.88 5.556 6.998 7.72 0.32 - Table1.Theelementalanalyses,yields,andthedegreesofsubstitutionofchitosanderivative. The degrees of substitution (DS) for chitosan derivatives were calculated on the basis of the percentages of carbon and nitrogeEnle manednt atlhAe narelyssuelsts( %a)re showDne girne esTaobfle 1. As is shown, the Compounds Yields(%) Deacetylation intermediate TMCSI presents the ChighestN degreeH of suCb/sNtitutioSnu.b sTthiteu tiDonS of four final products (TMCSC, TCMSCSDC, TMCSTC, an40d. 8T51MC7S.4T7F4) ar6e. 8v79ariou5s.4. 7For examp-le, compared 0w.81ith TMCSDC with the DTMS CoSf I0.60, the 8D7.S6 value2 9o.f2 1T1MC4.S0T76F is 5o.4n8ly5 0.372..1 7Generally0,. 6t6he degrees of s-ubstitution of productsT wMoCuSlCd directly73 .a5ffect th3e9.i2r8 bio4a.c9t4i1vity.6 .T46h1e low7.9e5r degree 0o.4f6 substitution a-s well as less TMCSDC 69.8 38.439 4.689 7.217 8.2 0.6 - functional groups mean a weaker bioactivity. Therefore, even if TMCSTF has the strongest TMCSTC 75.3 43.054 5.361 7.837 8.03 0.5 - electronegativity, its biological activity may not be the best because of the low DS in some cases. TMCSTF 74.6 42.88 5.556 6.998 7.72 0.32 - 3.2. Antifungal Activity 3.2. AntifungalActivity The antifungal activity of chitosan and chitosan derivatives against three destructive Theantifungalactivityofchitosanandchitosanderivativesagainstthreedestructivephytopathogenic phytopathogenic fungi, including F. oxysporum f. sp. cucumebrium Owen, B. cinerea, and P. asparagi, fungi, including F. oxysporum f. sp. cucumebrium Owen, B. cinerea, and P. asparagi, are shown in are shown in Figures 4–6. Their antifungal indices and the relationship between the structure and Figures4–6. Theirantifungalindicesandtherelationshipbetweenthestructureandantifungalactivity antifungal activity of chitosan derivatives are discussed as follows. ofchitosanderivativesarediscussedasfollows. 0.08 mg/mL 80 0.4 mg/mL 0.8 mg/mL 70 60 ) % ( x 50 e d n al I 40 g n u 30 ntif A 20 10 0 CS TMCSI TMCSC TMCSDC TMCSTC TMCSTF FFiigguurree 44.. TThhee aannttiiffuunnggaall aaccttiivviittyy ooff cchhiittoossaann aanndd cchhiittoossaann ddeerriivvaattiivveess aaggaaiinnsstt FF.. ooxxyyssppoorruumm ff.. sspp.. ccuuccuummeebbrriiuumm OOwweenn.. FF.. ooxxyyssppoorruumm iiss oonnee ooff tthhee mmoosstt imimppoorrttaanntt ssooiill--bboorrnnee ppaatthhooggeennss tthhaatt ccaauussee rroooott--rroott aanndd wwiilltt ddiisseeaasseess iinn aa wwiiddee vvaarriieettyy ooff ccrrooppss.. IItt hhaass tthhee aabbiilliittyy ttoo ppeerrssiisstt ffoorr vveerryy lloonngg ppeerriiooddss iinn ssooiill wwiitthhoouutt aa hhoosstt [[3355]].. FFiigguurree 44 sshhoowwss tthhee aannttiiffuunnggaall aaccttiivviittyy ooff cchhiittoossaann aanndd aallll ddeerriivvaattiivveess aaggaaiinnsstt FF.. ooxxyyssppoorruumm ff.. sspp.. ccuuccuummeebbrriuiummO Owwene.nA. Asiss issh oshwonw,sne, vseervaelrcaoln ccolunscilounssiocnasn cbaeng abien egdaiansefdo lalosw fos:llfiorwstsl:y ,fifrosrtlayl,l tfeosrt eadll staemstepdle ssa,tmhepliensh, itbhiteo irnyhriabtietsorinyc rraetaesse iwncitrheathsee wrisiethi nthceo nricseen itnra ctioonnc.eTnhtrisattiroenn.d Tihsiosb tvreionuds iasn odbivsisouuista abnled fiosr sauliltasabmle pfolers a.lFl osarminpstleasn.c Feo,rth inesitnahnicbei,t othrye rinahteisbiotforTyM raCtSeCs oafr eTM1.0C1S%C, a3r0e.4 17.%01,%an, 3d06.477.3%8,% anwdh 6e7n.3t8h%e cworhreens ptohne dcionrgrecsopnocnednitnragt icoonnscaernetr0a.t0i8onms ga/rme 0L.,008. 4mmg/gm/Lm, L0,.4a nmdg0/.m8Lm, ga/nmd L0,.8r emspge/cmtiLv,e lrye.sSpeeccotinvdellyy,. bSeeccaounsdeloyf, tbheecainutsreo doufc ttihoen ionfteroledcutrcotnio-nd raowf ienlegcgtrroonu-pdsr–ahwaliongge ngaroteudpas–cehtaaltoeg,ethneatfienda lapcerotadtue,c ttshhea fvienaal b etterabilitytoinhibitF.oxysporumf. sp. cucumebriumOwencomparedwithchitosanandTMCSI, andthisconclusionisapparentlyreinforcedat0.8mg/mLand0.4mg/mL.Thirdly,ofallthetested Polymers 2018, 10, x FOR PEER REVIEW 9 of 14 products have a better ability to inhibit F. oxysporum f. sp. cucumebrium Owen compared with Polymers2018,10,530 9of14 chitosan and TMCSI, and this conclusion is apparently reinforced at 0.8 mg/mL and 0.4 mg/mL. Thirdly, of all the tested samples, the antifungal activity against F. oxysporum f. sp. cucumebrium Owen decreases in the order: TMCSTF > TMCSTC > TMCSDC > TMCSC > TMCSI > chitosan. This samples,theantifungalactivityagainstF.oxysporumf. sp. cucumebriumOwendecreasesintheorder: TreMguClSaTriFty> iTs MidCenStTicCal> wTiMthC tShDe Cso>rtT oMrdCeSrC of> eTleMctCroSnIe>gcahtiivtoitsya n(–.CTFh3i s>r e–gCuClal3r i>t y–CisHidCeln2 t>ic –aClwHi2tChl)t hoef substituent groups with halogens in chitosan quaternary ammonium salts. For example, the sortorderofelectronegativity(–CF >–CCl >–CHCl >–CH Cl)ofsubstituentgroupswithhalogens 3 3 2 2 antifungal indices of TMCSTF, TMCSTC, TMCSDC, TMCSC, TMCSI, and chitosan are 77.15%, inchitosanquaternaryammoniumsalts. Forexample,theantifungalindicesofTMCSTF,TMCSTC, 76.30%, 70.01%, 67.38%, 50.72%, and 20.25% at 0.8 mg/mL, respectively. The results above TMCSDC,TMCSC,TMCSI,andchitosanare77.15%,76.30%,70.01%,67.38%,50.72%,and20.25%at demonstrate that the difference of active groups grafting onto the synthesized chitosan derivatives 0.8mg/mL,respectively. Theresultsabovedemonstratethatthedifferenceofactivegroupsgrafting contributed much to the antifungal action, but their effect on promoting antifungal activity varied ontothesynthesizedchitosanderivativescontributedmuchtotheantifungalaction,buttheireffecton according to the difference in electronegativity. promotingantifungalactivityvariedaccordingtothedifferenceinelectronegativity. 0.08 mg/mL 80 0.4 mg/mL 0.8 mg/mL 70 60 ) % ( x 50 e d n Polymers 2018, 10, x Fal IOR P4E0ER REVIEW 10 of 14 g n fungi of F. oxysfuporum30 f. sp. cucumerium Owen and B. cinerea. The order, which is TMCSTC > ti n TMCSDC > TMCASC, is in accord with earlier descriptions. The inhibitory property of TMCSTF is 20 slightly lower than TMCSTC. Although the electronegativity of the fluorine atom is stronger than that of the chlorine atom, it is possible that the antifungal activity of TMCSTF is weaker than that of 10 TMCSTC because of its lower substitution degree (Table 1) and less active ingredient. In brief, these results mentioned abo0ve indicate that the halogen atoms have a positive effect on antifungal activity CS TMCSI TMCSC TMCSDC TMCSTC TMCSTF when they are introduced into chitosan and the mechanism between the structure and antifungal activity of chitosan derivatives will be simply discussed later. Figure5.TheantifungalactivityofchitosanandchitosanderivativesagainstB.cinerea. Figure 5. The antifungal activity of chitosan and chitosan derivatives against B. cinerea. 80 B. cinerea is an airborne p0.l0a8n tm pga/mthLogen with a necrotrophic lifestyle attacking over 200 crop hosts (including field and row 0 c.4ro mpgs,/ mfrLuit, vegetables, and flowers) and it can cause destructive and 70 economically important plant 0d.8is meags/emsL worldwide. The antifungal activity of chitosan and chitosan derivatives against B. cinerea was tested and the results are shown in Figure 5. Overall, most rules 60 against F. oxysp)orum f. sp. cucumerium Owen discussed above still can be appropriate for the % antifungal activx (ity o5f0 samples against B. cinerea. For example, all samples exhibit antifungal e properties againdst B. cinerea and the inhibitory indices are concentration-dependent. Besides, the n sample that posal Isesse4s0 the weakest inhibitory activity is still chitosan. The quaternary ammonium salts of chitosang bearing halogenated acetate (TMCSC, TMCSDC, TMCSTC, and TMCSTF) also have n better antifungaful abi3li0ty than TMCSI and chitosan. Furthermore, the rule of inhibitory property ti against B. cinerean, which is TMCSTF > TMCSTC > TMCSDC > TMCSC > TMCSI > chitosan, is distinct A 20 according to Figure 5. The inhibitory indices of TMCSTF, TMCSTC, TMCSDC, TMCSC, TMCSI, and chitosan at 0.4 mg/mL against B. cinerea are 59.43%, 59.02%, 57.2%, 55.66%, 30.10%, and 9.25%, 10 respectively. As a destructive pathogenic fungus, P. asparagi can cause severe stem blight of asparagus. 0 Figure 6 shows the antifungCaSl activiTtyM CoSfI chitoTsMaCnS Cand TcMhCitSoDsCan dTeMrCivSaTCtivesT MagCaSiTnFst P. asparagi. The inhibitory indices of all the samples mounted up with increasing concentration. All chitosan derivativesFF iibggeuuarrerei 6n6..g TT hhheea laaonngttieiffnuunangtgeaadll aaacccttiievvtiiattyyte oo ffs hcchhoiiwttoo ssbaanent aatennrdd accnhhiitttioofussaannng ddaeel rraiivvcaatittviivvieetyss aatgghaaaiinnnss ttT PPM.. aaCssppSaaIrr aaaggnii..d chitosan, and the inhibitory indices of TMCSTF, TMCSTC, TMCSDC, and TMCSC are 73.54%, 74.69%, 72.36%, 3a.n3d. A6Bn9..t3cibi5na%cert eearati a0ils. 8Aa mcntigav/iimrtybL o,r nreesppelacntitveplayt,h wogheilne twhiet hinahinbeitcorroyt rroaptehsi cofl iTfeMstCylSeI aatntadc ckhinitgosoavne arr2e0 505.c4r7o%p hanosdt s1T(0hi.ne8c %alun. dtHiibnoagwctfieeverliedarl, a atnhcdtei vrroiutwyle a cogrfoa piinnssh,tfi rbEui.t iocto,rlyvi eaagncetdtia vSbi.tl yea usa,rgeauansidn osflft ocPwh. ieatorssps)aaarnan gadin iidts ccaah nliittoctasleau nsde idfdfeeerrisvetnrautti cvftreiovsme wa tenhrdee economicallyimportantplantdiseasesworldwide. Theantifungalactivityofchitosanandchitosan evaluated through the agar well diffusion method. The results depicted in Table 2 reveal that the d erivativesagainstB.cinereawastestedandtheresultsareshowninFigure5. Overall,mostrules tested samples display a moderate inhibitory effect on the growth of bacterial pathogens. In general, the results drawn from antibacterial activity are similar to antifungal activity. For instance, all of the chitosan derivatives exhibit better antibacterial activity comparable to chitosan. Moreover, the antibacterial activity decreases in the order of TMCSTF > TMCSTC > TMCSDC > TMCSC > TMCSI > chitosan, which is identified with antifungal activity. The above results therefore suggest that different substituents can markedly influence the antibacterial efficacy of the compounds and the stronger electron-withdrawing capacity indicates better antibacterial activity. Table 2. The measurements of antibacterial activity for chitosan and chitosan derivatives by agar well diffusion method. Zone of Inhibition in mm (Mean ± SD) n = 3 Microorganism CS TMCSI TMCSC TMCSDC TMCSTC TMCSTF E. coli 5.11 ± 0.25 5.72 ± 0.35 7.14 ± 0.46 7.66 ± 0.52 7.77 ± 0.47 7.86 ± 0.39 S. aureus 5.19 ± 0.21 6.42 ± 0.53 6.62 ± 0.48 7.36 ± 0.60 8.23 ± 0.49 8.77 ± 0.41 Values are expressed as mean ± SD. Different letters within a row mark significantly different values (p < 0.05). According to earlier reports, chitosan and its derivatives possess broad spectrum antimicrobial activity and this activity can be affected by several factors such as pH, concentration, molecular weight, degree of deacetylation, temperature, and so on with different mechanisms of action [36–38]. In this paper, the halogenated acetate that was selected to be grafted on chitosan is another Polymers2018,10,530 10of14 against F. oxysporum f. sp. cucumerium Owen discussed above still can be appropriate for the antifungalactivityofsamplesagainstB.cinerea. Forexample,allsamplesexhibitantifungalproperties againstB.cinereaandtheinhibitoryindicesareconcentration-dependent. Besides,thesamplethat possessestheweakestinhibitoryactivityisstillchitosan. Thequaternaryammoniumsaltsofchitosan bearinghalogenatedacetate(TMCSC,TMCSDC,TMCSTC,andTMCSTF)alsohavebetterantifungal abilitythanTMCSIandchitosan. Furthermore,theruleofinhibitorypropertyagainstB.cinerea,which isTMCSTF>TMCSTC>TMCSDC>TMCSC>TMCSI>chitosan,isdistinctaccordingtoFigure5. TheinhibitoryindicesofTMCSTF,TMCSTC,TMCSDC,TMCSC,TMCSI,andchitosanat0.4mg/mL againstB.cinereaare59.43%,59.02%,57.2%,55.66%,30.10%,and9.25%,respectively. Asadestructivepathogenicfungus,P.asparagicancauseseverestemblightofasparagus.Figure6 showstheantifungalactivityofchitosanandchitosanderivativesagainstP.asparagi. Theinhibitory indicesofallthesamplesmountedupwithincreasingconcentration. Allchitosanderivativesbearing halogenatedacetateshowbetterantifungalactivitythanTMCSIandchitosan,andtheinhibitoryindices ofTMCSTF,TMCSTC,TMCSDC,andTMCSCare73.54%,74.69%,72.36%,and69.35%at0.8mg/mL, respectively,whiletheinhibitoryratesofTMCSIandchitosanare55.47%and10.8%. However,the ruleofinhibitoryactivityagainstP.asparagiisalittledifferentfromthefungiofF.oxysporumf. sp. cucumeriumOwenandB.cinerea.Theorder,whichisTMCSTC>TMCSDC>TMCSC,isinaccordwith earlierdescriptions. TheinhibitorypropertyofTMCSTFisslightlylowerthanTMCSTC.Although theelectronegativityofthefluorineatomisstrongerthanthatofthechlorineatom,itispossiblethat theantifungalactivityofTMCSTFisweakerthanthatofTMCSTCbecauseofitslowersubstitution degree(Table1)andlessactiveingredient. Inbrief,theseresultsmentionedaboveindicatethatthe halogenatomshaveapositiveeffectonantifungalactivitywhentheyareintroducedintochitosanand themechanismbetweenthestructureandantifungalactivityofchitosanderivativeswillbesimply discussedlater. 3.3. AntibacterialActivity TheantibacterialactivityagainstE.coliandS.aureusofchitosanandchitosanderivativeswere evaluated through the agar well diffusion method. The results depicted in Table 2 reveal that the testedsamplesdisplayamoderateinhibitoryeffectonthegrowthofbacterialpathogens. Ingeneral, the results drawn from antibacterial activity are similar to antifungal activity. For instance, all of thechitosanderivativesexhibitbetterantibacterialactivitycomparabletochitosan. Moreover,the antibacterialactivitydecreasesintheorderofTMCSTF>TMCSTC>TMCSDC>TMCSC>TMCSI> chitosan,whichisidentifiedwithantifungalactivity. Theaboveresultsthereforesuggestthatdifferent substituents can markedly influence the antibacterial efficacy of the compounds and the stronger electron-withdrawingcapacityindicatesbetterantibacterialactivity. Table2.Themeasurementsofantibacterialactivityforchitosanandchitosanderivativesbyagarwell diffusionmethod. ZoneofInhibitioninmm(Mean±SD)n=3 Microorganism CS TMCSI TMCSC TMCSDC TMCSTC TMCSTF E.coli 5.11±0.25 5.72±0.35 7.14±0.46 7.66±0.52 7.77±0.47 7.86±0.39 S.aureus 5.19±0.21 6.42±0.53 6.62±0.48 7.36±0.60 8.23±0.49 8.77±0.41 Valuesareexpressedasmean±SD.Differentletterswithinarowmarksignificantlydifferentvalues(p<0.05). Accordingtoearlierreports,chitosananditsderivativespossessbroadspectrumantimicrobial activityandthisactivitycanbeaffectedbyseveralfactorssuchaspH,concentration,molecularweight, degree of deacetylation, temperature, and so on with different mechanisms of action [36–38]. In thispaper,thehalogenatedacetatethatwasselectedtobegraftedonchitosanisanotherimportant factor that could influence the bioactivity of chitosan. Up to now, many researches have proven
Description: