Synthesis of conformationally restricted amino acids – Highly versatile scaffolds Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Florian A. Sahr aus Regensburg Regensburg 2009 Diese Arbeit wurde angeleitet von: Prof. Dr. Oliver Reiser Promotionsgesuch eingereicht am: 14. Juli 2009 Promotionskolloquium am: 6. August 2009 Prüfungsauschuß: Vorsitz: Prof. Dr. Sigurd Elz 1. Gutachter: Prof. Dr. Oliver Reiser 2. Gutachter: Prof. Dr. Umberto Piarulli 3. Prüfer: Prof. Dr. Jörg Heilmann Die vorliegende Arbeit wurde unter Leitung von Herrn Prof. Oliver Reiser in der Zeit von November 2005 bis März 2009 am Institut für Organische Chemie der Universität Regensburg, sowie von April 2009 bis Juni 2009 am Dipartimento di Scienze Chimiche e Ambientali der Università dell’ Insubria unter Leitung von Prof. Umberto Piarulli angefertigt. Herrn Prof. Oliver Reiser möchte ich für die Überlassung des interessanten Themas und seine Unterstützung während der Durchführung dieser Arbeit danken. Herrn Prof. Umberto Piarulli möchte für die freundliche Aufnahme in seinen Arbeitskreis und seine Unterstützung während der Zeit an der Università dell’ Insubria danken. Meinen Eltern Experience is the name everyone gives to their mistakes. Oscar Wilde, Lady Windermere’s Fan, 1892, Act III Index A. Introduction 1 A. 0. Preface 1 A. 1. Synthetic strategies towards α-amino acids 2 A. 1. 1. Racemic syntheses of α-amino acids 2 A. 1. 2. Asymmetric syntheses of α-amino acids 4 A. 2. Synthetic strategies towards β- and γ-amino acids 7 A. 2. 1. Applications of β- and γ-amino acids 11 B. Main part 19 B. 1. Development of conformationally constrained β-amino acids 19 - New cispentacin derivatives B. 1. 1. Cispentacin and other cyclic β-amino acids 19 - Highly versatile scaffolds B. 1. 1. 2. Structure inducing amino acids in 20 Neuropeptide Y (NPY) analogues B. 1. 2. Synthesis of new cispentacin derivatives 23 B. 1. 2. 1. Synthesis of the γ-butyrolactone framework 23 B. 1. 2. 2. Synthesis of lactone fused cyclopentanes 26 B. 1. 3 Modification of the lactone moiety – Synthetic access 35 to different α-amino acid side chains B. 1. 4. Application of new cispentacin analogues in peptides 39 B. 1. 4. 1. Solid phase peptide synthesis (SPPS) 39 B. 1. 4. 2. Structural investigations of α-β-peptides and biological 45 activity of NPY analogues B. 2. Preparation of a bicyclic β-proline derivative as potential new 49 organocatalyst B. 2. 1. Introduction 49 B. 2. 2. Synthesis of bicyclic homoproline 50 B. 3. Conformationally restricted γ-amino acids 54 B. 3. 1. Introduction 54 B. 3. 2. Synthesis of trans C5 amino acids 57 β,γ B. 4. Preparation of diketopiperazine (DKP) amino acids and their 60 application in organocatalysis B. 4. 1. Introduction 60 B. 4. 2. Synthesis of trans-DKP scaffold 61 C. Experimental part 75 D. Summary 108 E. Appendix 111 E. 1. NMR spectroscopic data 111 E. 2. X-ray crystallographic data 145 Abbreviations Ala alanine GABA γ-amino butyric acid β-ACC β-amino Gln glutamine cyclopropanecarboxylic acid Gly glycine Asp asparagine HATU 2-(7-aza-benzotriazole-1-l)- Bn benzyl 1,1,3,3-tetramethyluronium) Boc tert-butyloxycarbonyl hexafluorophosphate Cbz carboxybenzyloxy HBTU O-benzotriazole-N,N,N',N'- CD circular dichroism tetramethyluronium CH CN acetonitrile hexafluoro phosphate 3 DABCO 1,4-diazabicycl[2.2.2]octane HOAt hydroxyazabenzotriazole d.e. diastereoisomeric excess HOBt hydroxybenzotriazole d.r. diastereoisomeric ratio LAH lithium aluminiumhydride DBU 1,8-diazabicyclo LDA lithium diisopropylamide [5.4.0]undec-7-ene Me methyl DCC N,N'-dicyclohexyl NPY neuropeptide Y carbodiimide Ph phenyl DCM dichloromethane ppb part per billion DIBAL-H diisobutyl aluminium ppm part per million hydride Pro proline DIC N,N'-diisopropyl RNA ribonucleic acid carbodiimide Ser serine DIPEA diisopropylethylamine SPPS Solid phase peptide DKP diketopiperazine synthesis DMAP dimethylaminopyridine TBDMS tert-butyldimethylsilyl DMSO dimethylsulfoxide TEMPO 2,2,6,6-tetramethylpyridine- e.e. enantiomeric excess 1-oxyl EDC N-ethyl-N'- TFA trifluoroacetic acid dimethylaminopropyl THF tetrahydrofurane carbodiimide TMEDA tetramethylethylendiamine Fmoc 9-fluorenylmethyl Tyr tyrosine chloroformate Val valine A. Introduction 1 A. Introduction A. 0. Preface Small molecules played the crucial role in the beginning of life. Hence, of course also amino acids are basic building blocks of all vital existence. This appears to be the appropriate expression since only 20 different amino acids display the smallest unit of peptides and proteins which are responsible for innumerable various activities. They are the monomers of entities that build up and maintain life’s structure and are involved in coordination of almost all physiological processes. Consequently, they give the cell structure and stability through proteins like collagen or elastin. Furthermore, amino acids build up macro biopolymers like enzymes as well as many other peptides which play important roles in coordination and maintenance of living organisms. Peptides, but also amino acids themselves, as well as biogenic amines (generally derived from amino acids) are the major substrates for targets like enzymes and receptors. Amino acids are naturally synthesised from intermediates of the major metabolic pathways like glycolysis or the citric acid cycle. Here α-keto acids like α-ketoglutarate are converted to the corresponding α-amino acids by transfer of ammonia catalysed by enzymes, e.g. glutaminase to produce glutamate. Other amino acids can be synthesised by transaminases in the presence of glutamate or aspartate as amine source. The first laboratory preparation of an amino acid was accomplished by Adolph Strecker (Figure 1) in 1850. In his pioneering work he was able to synthesise α-amino acids from simple readily available building blocks which will be described in the next chapter. Figure 1. Oil painting of Adolph Strecker.1
Description: