ebook img

Synthesis of an Aircraft Featuring a Ducted-Fan Propulsive Empennage PDF

126 Pages·2017·9.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Synthesis of an Aircraft Featuring a Ducted-Fan Propulsive Empennage

Synthesis of an Aircraft Featuring a Ducted-Fan Propulsive Empennage N.H.M. van den Dungen t f el D t ei t si r e v ni U e h c s ni h c e T S A F YNTHESIS OF AN IRCRAFT EATURING A D -F P E UCTED AN ROPULSIVE MPENNAGE by N.H.M.vandenDungen inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience inAerospaceEngineering attheDelftUniversityofTechnology, tobedefendedpubliclyonTuesdayApril18,2017at13:00h. Studentnumber: 4133420 Thesisregistrationnr: 156#17#MT#FPP Thesiscommittee: Prof.dr.ir.L.L.M.Veldhuis TUDelft Headofdepartment dr.ir.R.Vos TUDelft Supervisor dr.ir.S.Hartjes TUDelft Externalcommitteemember ir.N.vanArnhem TUDelft Supervisor Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. P REFACE ThewordswritteninthisthesisbelongtothelastonesIeverputonpaperasaMasterstudentofthefacultyof AerospaceEngineeringattheDelftUniversityofTechnology.Withthecompletionofthisthesis,andtherefore theMastertrackofFlightPerformance&Propulsion,theyearsofstrugglingasastudentwillbeoverandthe decadesofworkingasanengineerwillstart. IstillrememberthedayIsignedupforthethesisontheDelftUniversityUnconventionalConfiguration, orsimplycalledtheDUUC.BackinNovember2015IwasfinishingmylastmonthofinternshipatTUIfly Engineering,whenIdiscoveredtheDUUCconceptontheBlackBoardpagewhilesearchingforpossiblethe- sistopics. BycoincidenceImetmytobecomethesissupervisorRoelofVosonaThursdaymorningonDelft CentralStation,whenIwasabouttotakethetraintoSchiphol.Afterhavingaquickword,wewerebothcon- vincedthatmynextchallengewouldconsistofaoneyearresearchtoanaircraftwithaducted-fanpropulsive empennage. Myfirstimpressionoftheconceptwas: "whereisthetail,andwhyaretheengineslocatedaft ofthefuselage?"Thisfirstimpressionwasaguidelinethroughoutthethesisresearchandallowedmetobe comprehensiveandcriticaltowardsthefindingsIdiscoveredinthepastyear. AttheendIbelievethatthebiggestchallengeofmylastMasteryears, wasnotthefactthatIonlyhad achallengingthesistopic, butthecombinationofworkingontwocomplexprojectswithinthesametime frame. ShortlytwomonthsearlierbeforeIdevotedmythesistotheDUUC,myextracurricularactivitiesat DelftAerospaceRocketEngineering(DARE)tookanewturnwiththestartofprojectAether, asupersonic technologydemonstratorforfutureDAREspaceflightsfeaturingactiveaerodynamicstabilizationandhigh- speedparachutedeployment.Attheendofthesummerof2015about30motivatedDAREstudentsdecided tocombinetheirvisionsintothedevelopmentofonelargeresearchrocket,anditbecamemydutyasproject managertoguideAetheranditsstudentstowardsasuccessfulflight. ThecombinedresearchofthesetwoprojectsmadethelastyearoftheAerospaceMasterthemostdifficult challengeIhadtofacesofar.DuringthedaytimeIwastryingtosolvetheintegrationandstabilityproblems oftheDUUC,andduringthenighttimemyteamandIweresolvingtheintegrationproblemsofamodular supersonicrocketdesign. Nevertheless,withtherightclearengineeringfocus,dedicationandmotivation, andsupportfromfriends,family,andcolleagues,Imanagedtocompletethewhatseemedtobeimpossible. ByquotingWalterD.Wintle:"Butsoonerorlaterthemanwhowinsistheonewhothinkshecan." TheconceptualdesignoftheDUUCwasatoughstudy, inthesensethatalargerangeofaeronautical disciplineshadtobeinvestigated,whereabalancebetweendetailedanalysisandoverallintegrationhadto bemaintained. AndsometimesIfoundanswerstoresearchquestionswhichwerenottheonesIhopedto find. However,intheendIreallyenjoyedworkingonconceptualaircraftdesign,becausethatisthemain reasonwhyIdecidedtostudyAerospaceEngineeringinthefirstplace. FirstofallIwouldliketothankmysupervisorRoelofVos,whoallowedmetoworkonthechallengingtopic ofconceptualaircraftdesign,andwhosupportedmethroughouttheentirethesis.Hiswillingnesstoprovide feedbackonmyworkatanytimehasmygreatestgratitude. SecondlyIwouldliketothankthemembersof mygraduationcommittee,LeoVeldhuisandSanderHartjes,forthetimetheyspentinassessingmywork. I wouldliketothankNandovanArnhemforhisinvaluablefeedbackontheDUUCconcept,andthetimehe waswillingtospentwithmetosolveindepthproblemsoftheaircraftdesign. FurthermoreIwouldliketo thankVikeshHarinarain,forourcooperationintheresearchtoducted-fanimplementationinaircraft. Iwouldliketothankallmyfriends,forthesupporttheygavemeduringthethesis,andforthefunwehad besidesallourhardstudywork.Andlastbutnotleast,Iwouldliketoexpressmygreatgratitudetowardsmy family,andespeciallymyparentsforthesupporttheygavemethroughoutmyentirestudiesinDelft. N.H.M.vandenDungen Delft,April,2017 iii A BSTRACT Researchintomoreefficientandsustainableaircraftisadrivingmotivationforaircraftengineerstodevelop innovativeconcepts.Theadvancedconventionalairlinersofthepresentdaystilllooksimilartothosedevel- opedintheearlyyearsofaviation. Insearchofrevolutionarysustainableconcepts,radicalout-of-thebox designsarebeingexplored. A thesis research is done to investigate the feasibility of the conceptual design of the Delft University UnconventionalConfiguration(DUUC),anaircraftfeaturingaducted-fanpropulsiveempennage(DFPE).By integratingthepropulsionsystemwithastabilizingring-wingliftingsurfaceandjetcontrolvanes,alighter andmorefuelefficientdesigncouldbeachieved. Themainbenefitoftheductedfanisanincreasedstatic thrustperformance,whereadditionallytheefficientring-wingdesigncontributestothestabilityandbalance oftheaircraft. Secondarybenefitsincludeblade-containmentprotectionandnoiseshielding. Thisthesis researchfocusesonducted-fansystem(DFS)performanceestimation,propulsionsystemmassestimation, aircraftsizingforlongitudinalstaticstabilityandbalance,andaircraftperformancecomparison. The Aircraft Design Initiator, a program designed to quickly synthesize realistic aircraft for initial per- formancestudiesofnewconcepts, isusedtomakemodelsoftheDUUCandasimilarsizedconventional referenceaircraft. OncebothaircraftaremodeledwithintheInitiator,theirperformancesarecomparedin termsofoperationalemptymass(OEM),maximumtake-offmass(MTOM),fuelconsumption,andaircraft drag,tostudytheeffectoftheDUUCconceptontheoverallaircraftdesign. Basedontheoperationalveloc- ityregionofductedfansandthepreviousresearchwithintheInitiatortoturbopropaircraft,theATR72-600 (high-wing,T-tail,turboprop)ischosenasreferenceaircraft. AsignificantupdatetotheInitiatorcorewas donesuchthattheuserhasthefreedomtodesigneachofthefollowingpropulsioncomponentsindividually: motor(gas-generator),centerbody,fan,nacelle(duct)andpylon. Thefandiameterissizedbasedonthefanrotationalvelocity,cruiseMachnumber,andmaximumfantip Machnumber. Dividingthefandiameterbytheductaspectratioyieldstheductchordlength. Combined withapredefinedductairfoil,fan-ductlongitudinaloffset,andfan-ducttipclearance,thetotalDFSgeometry isdetermined. Thepylonissizedsuchthatitleavesaclearancebetweentheductandthefuselage. Forthe stabilityandbalancecalculations,theequivalenttailarearesultsfromthehorizontalprojectedsurfaceareaof theductandpylon.Thepylonareainsidetheductdoesnotcontributetothetailarea,onlytheareabetween theductandthefuselageandthepylonareaaftoftheduct. AerodynamicpropertiesoftheDFPEarederivedfromacombinationofexistingempiricalmethodsfor planarwings(forthepylon)andring-wings(fortheduct). Basedonwindtunnelexperimentsthrusteffects ontheliftpropertiesoftheDFSareimplemented,whichincreaseboththeliftgradientasthemaximumlift coefficient. Becauseofunknowninteractionsbetweentheduct,fan,centerbody,pylon,andjetvanes,itis assumedthatthemaximumliftcoefficientoftheentireDFPEisdominatedbytheDFSonly.Thegeometries ofthejetvanesarenotsized,howevertheirthrust-vectoringeffectsareincludedinthecalculationofthelift coefficient, whereitisassumedbasedonexperimentalwindtunnelresearchthattheywillincreasethelift with20%foramaximumvanedeflection. Apropelleranalysisprogramisdeveloped,whichintegratesunductedandducted-fananalysistoolsto performpropellerperformancecomparisonsandaparametricducted-fandesignstudy. Analysiswiththe Ducted Fan Design Code (DFDC) tool indicates that a large duct aspect ratio is beneficial in terms of the propulsiveefficiency.DFDCisimplementedintheInitiator,howeveritisnotactiveincalculatingthepropul- siveefficiencies.TheDFDCmodulerequiresadetaileddesignofthefanbladegeometriesandductairfoil,to resultinrealisticoutput,e.g. thrust,torque,power. Becausethefanbladegeometrydesignmoduleisbeing developedinparallelbyanotherInitiatorthesis,theDUUCfangeometryischosenarbitrarilybasedonexper- imentalresearchonductedfansystems.ThepropulsiveefficienciesoftheDUUCarebasedontheHamilton StandardF568propellerinstalledontheATR72-600,whereitisassumedthattheDFShas10%highertake-off propulsiveefficiencyduetotheincreasedstaticthrustperformance. TheInitiatorClass2WeightEstimationmethodisupdatedwiththemodifiedenginemodel. Anaddi- tionalcomponentbasedweightestimationmethodfortheductisimplemented. Firstofall,thealuminium ductshellthicknessisbasedonthepressurevesseltheory,whichusesthestaticpressureandinternalduct pressure.Theinternalductpressureduringmaximumthrustattake-offisacquiredwiththeDFDCmodule. v vi ABSTRACT Theductshellmassscaleswithairfoilshape. Secondly,thethicknessofaKevlarbladecontainmentlineris calculatedincaseofabladerelease.Themassofthebladecontainmentlinerisaboutoneorderofmagnitude lower than the duct shell mass. A weight correction factor of 1.5 is included to account for the structural reinforcementsinsidetheductandthejetvanes.Thepylonmassisassumedtobe30%ofitstipmass,which consistsoftheengine,centerbody,fan,andduct. Becausetheductmassscaleswiththechordlengthand ductdiameter,thepylonmassscalesaccordingly. Sizingforlongitudinalstaticstabilityandcontrollability(LSSC),wherecontrollabilityreferstotrimming, isidentifiedasthecruxoftheDUUCconcept. ForminimumOEMtheDFPEshouldbeassmallaspossible, however for LSSC it is beneficial to have a certain tail area, to prevent that the DFPE generates too large downforcestomaintainabalancedaircraft.Torenbeek’s"X-Plot"methodismodified,suchthathisequations canbeusedtodeterminetheLSSClimitsfortheDUUC.BecausethetailareaoftheDFPEisfixedbychoosing theductaspectratioandfandiameteratthebeginningoftheaircraftdesignconvergence,theDUUCcanonly modifythewingpositiontoguaranteeastableandtrimmabledesign. Awing-positioningdiagramaidsthe aircraftdesignertoplacethewingasmuchforwardaspossible,whilecomplyingtotheLSSCrequirements. ThetrimdragoftheDUUCiscalculatedbasedontheresultsofthetrimdiagram,whereitisassumed thatalinearrelationbetweenthetail-offliftandthetaildownforceexists. Itisassumedthatthecenterof gravity(c.g.) shiftduringflightiswithin1%ofthemeanaerodynamicchord(MAC),suchthatthetailarm doesnotchange. Bydoingso,theforwardc.g. locationacquiredfromtheaircraftloadingdiagramcanbe usedtodeterminethemomentarmoftheDFPE.Asuperpositionmethodisappliedtocombinethetail-off liftdragpolarwiththetaildownforceandtrimdrag,toacquirethetotaltrimmedaircraftlift-dragpolar. Topreventbookkeepingerrorsthefollowingruleismaintained: AllDFPEpropertieswhichcontributein generatingadownforcearebookedunderthehorizontalstabilizercontributions, andallparameterswhich contributeingeneratingdragduetothefanfrontalareaarebookedunderthepropulsioncontributions. TheATR72-600baselinemodelhas-2.2%MTOM,-0.8%OEM,and-22.1%harmonicfuelmass,compared tothereferenceaircraft.Thelargediscrepancyinthefuelmassiscausedbyanunderestimationofthepower loading,whichislimitedbytherequirementtohaveaclimbgradientof2.1%afterabalkedlandingwithone engineout. Withahigherrequiredenginepower,theenginemassincreases. Thiseffectispresentforboth theATR72-600andDUUCmodels,howevertheDUUCexperiencesalargeraftshiftedOEMc.g. IncludingtheuncertaintiesintheDFPEweightestimation, theDUUCindicatesthattheMTOMvaries from +5.8% to +20.2%, OEM varies from +9.1% to +31.8%, and harmonic fuel burn varies from +8.4% to +21.9%,withrespecttotheATR72-600Initiatormodel.DuetotheheavyDFPE,theOEMincreases.Therefore theenginesneedtobemorepowerfultolift-offtheaircraft,whichincreasestheaircraftmassinthenextit- erationinthedesignconvergence.Secondly,theheavyDFPEshiftsthec.g.faraft.Thisreducesthemoment armbetweentheaerodynamiccenter(a.c.)oftheDFPEandc.g.,andthereforetheDFPEneedstogeneratea largerdownforcetokeeptheaircraftbalancedduringflight.Thelargedownforceresultsinalargetrimdrag, whichconsequentlyincreasesthetotalfuelconsumption. Thea.c. ofthetaillessaircraftislocatedafterthe mostforwardc.g.location,duetothecontributionsofthefuselageshapeandthefrontalareaofthefans. Asensitivityanalysisindicatesthatsmallerducts,bydecreasingitschordordiameter,resultinalighter andmorefuelefficientdesign.Unfortunatelythedecrementinductsizeislimitedbythestabilityandbalance constraints,andmanualchecksarerequiredtoverifythefeasibilityofthewing-positioningdesignspace. If theductsbecome too small, thehorizontal projectedsurfaceareaisnotbigenoughtogenerateacertain downforce,assuchtheaircraftbecomesinstable. Asensitivityanalysisofthetake-offpropulsiveefficiencyconcludesthatanincreaseinstaticthrustper- formancehasmarginaleffectontheoverallaircraftmassesandfuelconsumption.Thetake-offfuelsavingis insignificantcomparedtothecruisephasefuelburn.Thereforethemainperformancebenefitoftheducted fan, theincreasedstaticthrustperformancecomparedtosimilarsizedunductedpropellers, isnotsignifi- cantlybeneficialfortheoverallDUUCconcept. An"ideal"aircraftcomparisonwithmaximumpropulsiveefficienciesand"super-lightweight"ductde- signforboththeATR72-600andDUUCmodelsisperformed. TheidealDUUCshows+5.1%MTOM,+7.8% OEM,+7.6%fuelconsumption.ThisresultindicatesthatthestatedassumptionsonDFPEpropulsiveperfor- manceandweightestimationdonotchangetheoveralloutcomeoftheaircraftcomparison. ThefeasibilitystudytotheDUUCconceptshowsthattheheavyDFPEandlargetrimdragmakeitun- likelythatamorefuelefficientandlighterdesignresultscomparedtoasimilarsizedconventionalreference aircraft. C ONTENTS Preface iii Abstract v Nomenclature xi ListofFigures xv ListofTables xvii 1 Introduction 1 1.1 HistoryofDucted-FanAircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 DefinitionofaDucted-FanEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 AircraftDesignInitiator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 ResearchObjective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 ScopeofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 OutlineofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 TheoryofDuctedandUnductedFans 9 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 SizingoftheDucted-FanPropulsiveEmpennage . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 AdvanceRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 ActivityFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 PropellerPerformanceCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 PropellerPerformanceAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 ActuatorDiskTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 BladeElementMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Ring-Wing&DuctedFanAerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Ring-WingLiftGeneration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Ring-WingAerodynamicMoment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 DuctedFan:ThrustEffectsonRing-Wing . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.4 DFPEParasiteDragEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 PropellerAnalysisProgram 19 3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 BEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 XROTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 DFDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 AirfoilPolarInterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 MultiAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 PropellerMapAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.1 BEMvsXROTOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 DFDCValidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 MultiAnalysisforDuctedFans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 PropulsionWeightEstimation 27 4.1 Turboprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Raymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 Roskam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.3 TurbopropWeightEstimationTrade-Off. . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii viii CONTENTS 4.2 Propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 Torenbeek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 HamiltonStandard-NASA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.3 PropellerWeightEstimationTrade-Off. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Duct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 Raymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 Torenbeek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 CranfieldUniversitySemi-EmpiricalMethod . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.4 CranfieldUniversityComponent-BasedMethod. . . . . . . . . . . . . . . . . . . . . . 31 4.4 Pylon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 SizingforLongitudinalStaticStabilityandControllability 35 5.1 TailVolumeCoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 HorizontalTailEffectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 X-PlotMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 LongitudinalStaticStability&ControllabilityConstraints . . . . . . . . . . . . . . . . . . . . 37 5.4.1 FreeBodyDiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.4.2 SizingforStickFixedLongitudinalStaticStability . . . . . . . . . . . . . . . . . . . . . 38 5.4.3 SizingforLongitudinalStaticControllability(Trimming) . . . . . . . . . . . . . . . . . 38 5.4.4 BookkeepingofDFPEProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.5 DUUCWing-Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.5.1 GeneralProcedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.5.2 Wing-PositioningPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.6 Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.6.1 TrimDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.6.2 TrimDrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6 Results&Discussion 47 6.1 ReferenceAircraftValidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.1 PropellerPerformance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.2 GeneralCommentsonFinalResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.3 Class2WeightEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2 DUUCBaseline&ComparisonATR72-600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2.1 PropellerPerformance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2.2 GeneralCommentsonFinalResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2.3 Class2WeightEstimationComparison . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2.4 DragComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2.5 HorizontalStabilityEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 SensitivityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.1 DuctAspectRatio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.2 FanTipMachNumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.3 FanRPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.4 NumberofFanBlades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.5 Take-OffPropulsiveEfficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.6 Take-OffDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.7 PropulsionWeightFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.8 EngineLongitudinalLocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.9 IdealAircraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.10 SummaryonDesignPhenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7 Conclusion&Recommendations 73 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.1.1 ImplementationofTurbopropReferenceAircraftintheInitiator. . . . . . . . . . . . . . 73 7.1.2 ImplementationofDUUCConceptintheInitiator . . . . . . . . . . . . . . . . . . . . 74 7.1.3 PerformanceComparisonofDUUCandATR72-600Models. . . . . . . . . . . . . . . . 74 7.1.4 DUUCSensitivityAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1.5 OverallConclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Description:
Unconventional Configuration (DUUC), an aircraft featuring a ducted-fan propulsive empennage (DFPE). By integrating the propulsion system with a stabilizing ring-wing lifting surface and jet control vanes, a lighter and more fuel efficient design could be achieved. The main benefit of the ducted fa
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.