ebook img

Synthesis, characterization and application of WS₂ nanowire-nanoflake hybrid nanostructures PDF

56 Pages·2017·2.81 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Synthesis, characterization and application of WS₂ nanowire-nanoflake hybrid nanostructures

C652eukansi.kesken.fm Page 1 Tuesday, March 27, 2018 2:44 PM C OULU 2018 6 C 652 5 2 UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND AACCTTAA A UUNNIIVVEERRSSIITTAATTIISS OOUULLUUEENNSSIISS A C T A U N I V E R S I T A T I S O U L U E N S I S C T A CC TTEECCHHNNIICCAA Georgies Alene Asres University Lecturer Tuomo Glumoff G SYNTHESIS, e o r g CHARACTERIZATION AND i e University Lecturer Santeri Palviainen s A l APPLICATION OF WS e n 2 e Postdoctoral research fellow Sanna Taskila A NANOWIRE-NANOFLAKE s r e s HYBRID NANOSTRUCTURES Professor Olli Vuolteenaho University Lecturer Veli-Matti Ulvinen Planning Director Pertti Tikkanen Professor Jari Juga University Lecturer Anu Soikkeli Professor Olli Vuolteenaho UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU, FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING Publications Editor Kirsti Nurkkala ISBN 978-952-62-1888-5 (Paperback) ISBN 978-952-62-1889-2 (PDF) ISSN 0355-3213 (Print) ISSN 1796-2226 (Online) ACTA UNIVERSITATIS OULUENSIS C Technica 652 GEORGIES ALENE ASRES SYNTHESIS, CHARACTERIZATION AND APPLICATION OF WS 2 NANOWIRE-NANOFLAKE HYBRID NANOSTRUCTURES Academic dissertation to be presented with the assent of the Doctoral Training Committee of Information Technology and Electrical Engineering of the University of Oulu for public defence in Martti Ahtisaari -sali (L2), Linnanmaa, on 27 April 2018, at 12 noon UNIVERSITY OF OULU, OULU 2018 Copyright © 2018 Acta Univ. Oul. C 652, 2018 Supervised by Professor Krisztian Kordas Professor Anita Lloyd Spetz Doctor Gabriela Lorite Reviewed by Doctor Ana Laura Elias Arriaga Professor Harri Lipsanen ISBN 978-952-62-1888-5 (Paperback) ISBN 978-952-62-1889-2 (PDF) ISSN 0355-3213 (Printed) ISSN 1796-2226 (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2018 Asres, Georgies Alene, Synthesis, characterization and application of WS 2 nanowire-nanoflake hybrid nanostructures. University of Oulu Graduate School; University of Oulu, Faculty of Information Technology and Electrical Engineering Acta Univ. Oul. C 652, 2018 University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland Abstract Transition metal dichalcogenide (TMD) materials crystalize in a layered structure with a stoichiometry MX where M is a transition metal (Mo, W, Tc, Re, V, Nb, Ta, Ti, Zr, Hf) and X is 2 a chalcogen (S, Se, Te). While there is a strong covalent bond between the chalcogen and the metal atoms in each 2-dimensional (2D) sheet, the bulk 3-dimensional crystals are held together by weak van der Waals forces acting on the adjacent 2D sheets allowing for micromechanical and liquid phase exfoliation into nanostructures composed of either a single layer or a few layers. Since the electronic band structure depends not only on the chemistry but also on the number of layers, a whole new range of metal, semimetal and semiconductor materials may be achieved. These properties, among many other advantages (e.g. tunable band structure, high mobility of carriers, easy intercalation with ions), make TMDs appealing and timely for applications in solar cells and photodetectors, heterogeneous catalysis, electrocatalytic electrodes, energy storage and in (electro) chemical sensing. Motivated by the anticipated fascinating properties of TMDs, this research work focuses on the synthesis, characterization and application of a novel hybrid WS 2 nanomaterial. While the original goal of the research work was to develop a simple method to synthesize WS nanowires, it became clear that instead of nanowires a hybrid nanowire-nanoflake 2 (NW-NF) structure could be synthesized by a simple thermal sulfurization of hydrothermally grown WO nanowires. The structure, morphology and composition of the new materials were 3 analyzed by X-ray diffraction, Raman spectroscopy, electron microscopy and X-ray photoelectron spectroscopy. Temperature dependent electrical measurements carried out on random networks of the nanostructures showed nonlinear characteristics and a negative temperature coefficient of resistance indicating that the hybrids were semiconducting. Resistive gas sensors were prepared and exposed to H S, CO, NH , H and NO and to which the devices displayed ultra-high 2 3 2 sensitivity (0.043 ppm-1) towards H2S with a detection limit of 20 ppb. The results suggest further exploration of gas sensing with TMDs as potential competitive alternatives to the classical metal oxide based devices. Moreover, photodetector devices with excellent visible light response were also demonstrated using an individual WS NW-NF hybrid as well as its random networks having 2 photoresponsivity of up to 400 mAW-1. This was two orders of magnitude higher than that measured for other 2D materials based devices. Overall, the WS nanowire-nanoflake hybrid is a 2 truly multipurpose and multifunctional semiconductor making it a promising material for advanced micro, nano and optoelectronics devices. Keywords: gas sensor, nanoflake, nanohybrids, nanowire, photodetector, WO , WS 3 2 Asres, Georgies Alene, WS -nanolanka-nanohiutale -hybridirakenteen synteesi, 2 karakterisointi ja sovellukset. Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta Acta Univ. Oul. C 652, 2018 Oulun yliopisto, PL 8000, 90014 Oulun yliopisto Tiivistelmä Siirtymämetallidikalkogenidistä (transition metal dichalcogenide, TMD) olevat materiaalit kiteytyvät kerroksittaisiksi rakenteiksi, joiden stoikiometria on MX , missä M on siirtymämetalli 2 (Mo, W, Tc, Re, V, Nb, Ta, Ti, Zr, Hf) ja X on kalkogeeni (S, Se, Te). 2-ulotteisessa (2D) tasossa kalkogeenin ja metallin välillä on voimakas kovalenttinen sidos, mutta suuremmassa kolmiulot- teisessa kiteessä viereisiä tasoja sitoo toisiinsa vain heikot van der Waals-voimat, jolloin tasot on mahdollista erottaa mikromekaanisesti ja nestefaasikuorinnalla yksittäisiksi tai muutamasta ker- roksesta koostuvaksi nanorakenteeksi. Koska elektronivyörakenne ei riipu ainoastaan kemialli- sesta koostumuksesta vaan myös kerrosten lukumäärästä, voidaan muodostaa täysin uusia metal- lisia, puolimetallisia tai puolijohdemateriaaleja. Nämä ominaisuudet monien muiden lisäksi (esim. räätälöity vyörakenne, korkeanliikkuvuuden varauksen kuljettajat, helppo ionien interke- laatio) tekevät TMD-materiaaleista kiinnostavia ja ajankohtaisia aurinkokennoihin, valokennoi- hin, heterogeeniseen katalyysiin, sähkökatalyyttisiin elektrodeihin, energiavarastoihin ja sähkö- kemiallisiin antureihin. TDM-materiaalien oletettavasti kiehtovien ominaisuuksien motivoima- na tämä tutkimus keskittyy uusien hybridi-WS –nanomateriaalien synteesiin, karakterisoimi- 2 seen ja sovellutuksiin. Tutkimuksen alkuperäinen tavoite oli kehittää yksinkertainen menetelmä WS -nanolankojen syntetisoimiseksi, mutta kävi ilmi että nanolankojen sijaan syntyi nanolanka- 2 nanohiutale –hybridirakenne (nanowire-nanoflake, NW-NF), kun hydrotermisesti kasvatettuja WO -nanolankoja rikitettiin termisesti. Näiden uusien materiaalien rakenne, morfologia ja koos- 3 tumus on analysoitu röntgendiffraktiolla, Raman-spekstrokopialla, elektronimikroskoopilla ja röntgenfotoelektronispektroskopialla. Valikoimattomista nanorakenteista koostuvien verkosto- jen lämpötilasta riippuvien sähköisten ominaisuuksien mittaukset osoittavat epälineaarisia piir- teitä ja negatiivinen resistanssin lämpötilakerroin viittaa hybridien puolijohtavuuteen. Materiaa- lista valmistettiin resistiivisiä kaasuantureita, jotka altistettiin H S:lle, CO:lle, NH :lle, H :lle ja 2 3 2 NO:lle, näistä anturi osoitti erittäin suurta herkkyyttä H S:lle (0.043 ppm) havaintorajan ollessa 2 20 ppb. Tulokset kannustavat TMD-materiaalien kaasuanturisovellutusten jatkotutkimukseen tarjoten potentiaalisesti kilpailukykyisen vaihtoehdon perinteisille metallioksidi-pohjaisille lait- teille. Lisäksi, yksittäisillä WS –nanolanka-nanohiutalepartikkeleilla sekä valikoimattomilla 2 nanolanka-nanohiutalehybridiverkostoilla demonstroitiin valokenno, jonka vaste näkyvään valoon oli jopa 400 mAW-1 ollen kaksi kertaluokkaa korkeampi kuin muilla 2D-materiaaleihin perustuvilla kennoilla. Kaiken kaikkiaan, WS nanolanka-nanohiutalehybridi on todella moni- 2 käyttöinen ja monipuolinen puolijohde ollen lupaava materiaali kehittyneille mikro- nano- ja optoelektronisille laitteille. Asiasanat: kaasuanturi, nanohiutale, nanohybridit, nanolanka, valokenno, WO , WS 3 2 Acknowledgements This work has been conducted in the Microelectronics Research Unit of the University of Oulu under a grant provided by the Graduate School Infotech Oulu. First, I would like to thank my advisor Prof. Krisztian Kordas for his continuous support of my PhD study and related research work, for his patience, motivation, encouragement and knowledge. Without his kind guidance it would not have been possible to accomplish it. My sincere thanks also goes to my co- supervisors Prof. Anita Lloyd Spetz and Dr. Gabriela Lorite for their guidance and help. Besides my advisors, I would like to thank my follow-up group members: Docent Juha Hagberg, Dr. Jani Perantie and Dr. Merja Teirikangas for their constructive comments and for checking that the research was proceeding as planned. I am grateful to my current and former research group members: Dr. Melinda Mohl, Dr. Geza Toth, Dr. Jhih-Fong Lin, Topias Järvinen, Olli Pitkänen, Aron Dombovari, Teemu Sipola and Rashad Hajimammadov for their unfailing support and assistance during my research work. Also to everyone in the Microelectronics Research Unit and Microscopy and Nanotechnology Centre of the University of Oulu; it was great sharing the laboratory with all of you during last four years. I also very much appreciate the extensive support of collaborators from the Umeå University, University of Szeged, Max Planck Institute, Universidad del País Vasco, Rice University, Southern Illinois University, Linköping University and VTT Technical Research Centre of Finland. Last but not least, I would like to thank my family: my parents and my brothers and sisters for supporting me spiritually throughout this research work and my life in general. Oulu, February 2018 Georgies Alene 7 8

Description:
research work focuses on the synthesis, characterization and application of a novel hybrid WS2 nanomaterial. While the original goal of the research
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.