Synthesis, Characterization, and Antimicrobial Activity of Water-soluble, Tri-carboxylato Amphiphiles Eko Winny Sugandhi Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Richard D. Gandour, Chair Paul R. Carlier Brian E. Hanson David G. I. Kingston James M. Tanko January 31, 2007 Blacksburg, Virginia Keywords: multi-tailed, multi-headed, tri-carboxylato, dendritic, amphiphile, solubility, microorganism, biological and intrinsic activity Copyright 2007, Eko W. Sugandhi Synthesis, Characterization, and Antimicrobial Activity of Water-soluble, Tri-carboxylato Amphiphiles Eko Winny Sugandhi ABSTRACT Many previous studies of biological activity in a homologous series of amphiphiles have shown a cut-off effect, where the biological activity increases with an increase in chain length, after which the activity plateaus or weakens. One factor suspected to cause this problem is solubility issues. We have designed several series of very hydrophobic, water-soluble amphiphiles to overcome this problem. Three homologous series containing mobile hydrophobic moieties and two series of epimers containing rigid cholestane moieties have been synthesized; the hydrophobic moiety is connected to the first-generation, Newkome-type dendron via a ureido linker. We have demonstrated that as tris(triethanolammonium) salts, these amphiphiles show excellent solubility in water. The solubilities in aqueous solution of the three series containing mobile hydrophobic moieties are 19,500 to 25,700 µM depending on the formula weight of the homolog, while those containing rigid cholestane moieties are 18,900 and 17,400 μM. Having eliminated the solubility issue, the antimicrobial activity against a broad spectrum of microorganisms has been screened. We have demonstrated that the antimicrobial activity depends on the amphiphile-series, species, chain-length, or epimer specificities, as well as hydrophobicity. The one-tailed, tri-carboxylato amphiphiles are generally better than the other series, with two exceptions. First, the two-tailed tri- carboxylato amphiphiles, 3CUr1(11) and 3CUr1(12) , are more active against 2 2 Cryptococcus neoformans; in fact, both amphiphiles (MICs are 6.9 and 7.2 μM, respectively) are considered to display good antifungal activity. Second, amphiphile 3CUr-β-cholestane, whose MIC is 27 μM, is more active against Staphylococcus aureus. Overall, these new tri-carboxylato amphiphiles only exhibit moderate activity with two promising leads. Furthermore, we have demonstrated the intrinsic activity (MIC ) of the one-tailed, 0 tri-carboxylato amphiphile series (3CUrn) against Mycobacterium smegmatis. All the MIC ‘s observed are at least 8-fold lower than the corresponding CMCs. Amphiphile 0 3CUr16 is the most active; the MIC is 100-fold smaller than the CMC. With this 0 consideration, we have suggested that the mechanism of action of the antimycobacterial activity in amphiphile 3CUr16 is not related to detergency. ii i ACKNOWLEDGMENTS I would like to express my deepest appreciation to my research advisor, Dr. Richard D. Gandour for his guidance, ideas, encouragement, and continual patience throughout the duration of my graduate years. His method of gentle guidance made this very difficult time in my life a little less stressful. I also acknowledge my committee members⎯Dr. Paul Carlier, Dr. Brian Hanson, Dr. David Kingston, and Dr. James Tanko⎯for their advice and assistance. I thank Dr. Joseph Falkinham, III, and Ms. Myra Williams for their generous assistance in doing biological assays. Beginning with no experience in handling microorganisms, I learned a great deal in preparing the media, growing the culture, safe handling, storing, running the assays, and finally interpreting the results. I thank Mr. Tom Glass and Mr. William Bebout for their help and support in the analytical services, and Mrs. Carla Slebodnick for her help in the X-ray crystallography services. Many thanks go to Mrs. Kay Castagnoli and Mrs. Janice McGinty for their special friendship. Special thanks also to Dr. Yang Yanyan, and current Gandour group members, especially André William, Richard Macri, Brett Kite, Shauntrece Hardrict, for making my stay a most enjoyable one. Finally I would like to thank my husband Ernest for his unconditional love and sacrifices in order to make this work a reality. Also, my parents and the rest of my family, who are always loving and supporting me in their characteristic style, deserve more gratitude than I can ever express. iv DEDICATION To my parents, my husband Ernest, and my little Stanley. v Table of Contents List of Figures……………………………………………………………………………ix List of Schemes…………………………………………………………………………..xi List of Tables…………………………………………………………………………….xii Chapter I Background of Amphiphiles and Their Antimicrobial Activity....................1 I.1 Introduction to Amphiphiles................................................................................1 I.2 Designing Amphiphiles as Antimicrobial Agents...............................................2 I.2.1 Detergency.....................................................................................................3 I.2.2 Hydrophilic Moiety of an Amphiphile..........................................................4 I.2.3 Hydrophobic Moiety of an Amphiphile.........................................................5 I.2.4 Amphiphiles of Interest..................................................................................6 I.3 Antimicrobial Properties of Amphiphiles............................................................7 I.3.1 Overview on Previous Studies in Gandour’s Laboratory..............................7 I.3.2 The Cut-off Effect........................................................................................10 I.4 Literature Review in Designing Amphiphiles of Interest..................................11 I.4.1 Multi-headed Amphiphiles..........................................................................12 I.4.2 Newkome Dendrons.....................................................................................13 I.4.3 Ureido Linker...............................................................................................15 I.4.4 One-tailed Tri-carboxylato Amphiphile......................................................18 I.4.5 Two-tailed Tri-carboxylato Amphiphile......................................................19 I.5 Cholestane-based Polyanionic Compounds Derived from Natural Product......22 I.6 Tri-carboxylato Amphiphile Containing Rigid Cholestane-based Hydrophobic Moiety................................................................................................................26 I.7 Microorganisms in Antimicrobial Screening.....................................................26 I.7.1 Bacteria........................................................................................................27 I.7.2 Fungi............................................................................................................28 I.8 Summary............................................................................................................29 References for Chapter 1..................................................................................................29 Chapter II Synthesis of One-Tailed, Tri-headed Amphiphiles (3CUrn)......................39 II.1 Preparation of WeisocyanateTM (3)....................................................................40 II.2 Preparation of Alkan-1-amines..........................................................................41 II.2.1 Literature Review on Syntheses of Long-chain Alkan-1-amines (4)..........41 II.2.2 Literature Review on Syntheses of 1-Azidoalkanes (8)..............................43 II.2.3 Literature Review on Syntheses of 1-Methanesulfonyloxyalkanes (9).......46 II.2.4 Literature Review on Syntheses of 1-Bromoalkanes (11)...........................46 II.2.5 Preferred Starting Material⎯Alkan-1-ols (12) or 1-Bromoalkanes (11)....47 II.2.6 Synthesis of Long-chain Alkan-1-amines (4)..............................................47 II.3 Synthesis of the 3EUrn Series (2a−e)...............................................................50 II.4 Synthesis of the 3CUrn Series (1a−e)...............................................................51 II.5 X-ray Crystal Structure of Tri-tert-butyl Ester 3EUr16....................................51 II.6 CMCs (Critical Micelle Concentration) of Amphiphiles 3CUrn......................53 II.7 Experimental Procedures...................................................................................55 References for Chapter II..................................................................................................65 Chapter III Synthesis of Two-Tailed, Tri-headed Amphiphiles (3CUr(n) and 2 3CUr1(n) )..................................................................................................73 2 v i III.1 The 3CUr(n) Homologous Series....................................................................74 2 III.1.1 Preparation of Secondary Amines...............................................................75 III.1.1.1 Literature Review on Syntheses of N-Alkylalkan-1-amines (4a, 4c, and 4e).......................................................................................................75 III.1.1.2 Literature Review on Syntheses of N-Alkylalkanamides (5).............77 III.1.2 Synthesis of N-Alkylalkan-1-amines (4a, 4c, and 4e).................................78 III.1.3 Synthesis of Two-tailed, Tri-headed 3CUr(n) Homologous Series..........79 2 III.2 The 3CUr1(n) Homologous Series..................................................................81 2 III.2.1 Preparation of Primary Amines (10a−f)......................................................82 III.2.1.1 Literature Review on Syntheses of 1-Alkylalkan-1-amines (10a−f)..82 III.2.1.2 Literature Review on Syntheses of Azidoalkanes..............................85 III.2.1.3 Literature Review on Syntheses of Methanesulfonyloxyalkanes.......86 III.2.1.4 Literature Review on Syntheses of Secondary Alkanols....................87 III.2.2 Synthesis of Amines (10a−f).......................................................................89 III.2.3 Synthesis of Two-tailed, Tri-headed 3CUr1(n) Homologous Series.........91 2 III.3 Comparison of Trends in Melting Temperatures (Tri-tert-butyl Esters vs Tri- carboxylic Acids)...............................................................................................93 III.4 Comparison of NMR Spectra of 3EUr(n) vs 3EUr1(n) .................................94 2 2 III.5 Experimental Procedures...................................................................................97 References for Chapter III..............................................................................................115 Chapter IV Synthesis of Tri-headed Amphiphiles Containing Cholestane-based Structure on the Hydrophobic Moiety.......................................................122 IV.1 The 3CUr-z-cholestane Series........................................................................123 IV.1.1 Preparation of 5α-Cholestan-3-amine (4a−b)...........................................125 IV.1.1.1 Literature Review on Syntheses of Amines (4a−b)..........................125 IV.1.1.2 Literature Review on Syntheses of 3-Azidocholestane (5a−b)........127 IV.1.1.3 Literature Review on Syntheses of 3-Methanesulfonyloxy-5α- cholestane (6a–b)..............................................................................129 IV.1.1.4 Literature Review on Synthesis of 3α-Bromo-5α-cholestane (7)....129 IV.1.2 Synthesis of 5α-Cholestan-3-amines (4a−b).............................................131 IV.1.3 Synthesis of 3CUr-z-cholestane (1a−b)...................................................133 IV.1.4 X-ray Structure of 3EUr-α-cholestane (2a).............................................134 IV.2 The 3CUrnEs-z-cholestane Homologous Series............................................137 IV.2.1 Preparation of 3α- and 3β- Epimer of 5α-Cholestan-3-yl Aminoethanoate (11a−b)......................................................................................................138 IV.2.1.1 Literature Review on the Synthesis of 5α-Cholestan-3α-yl Aminoethanoates (11a−b)................................................................139 IV.2.1.2 Literature Review on the Synthesis of 5α-Cholestan-3α-yl Azidoethanoate (12a−b)...................................................................140 IV.2.1.3 Literature Review on the Synthesis of 5α-Cholestan-3α-yl Chloroethanoate (13a−b)..................................................................140 IV.2.2 Synthesis of 5α-Cholestan-3α-yl Aminoethanoate (11a−b).....................141 IV.2.3 Synthesis of 3CUr1Es-z-cholestane (9a−b)...............................................143 IV.3 Experimental Procedures.................................................................................144 References for Chapter IV..............................................................................................162 vi i Chapter V Antimicrobial Activity of Various Tri-headed Amphiphiles.....................168 V.1 Introduction to Biological Assays....................................................................168 V.1.1 Measurement of Antimicrobial Activity....................................................168 V.1.2 Goals..........................................................................................................169 V.2 Recent Studies of Solubility of One-tailed Tri-carboxylato Amphiphiles.......170 V.3 Results of Biological Assays...........................................................................171 V.3.1 Range of Concentration of Active Amphiphiles........................................174 V.3.2 The Most Active Amphiphiles within Each Homologous Series..............175 V.3.3 Various Specificities Patterns of Antimicrobial Activity..........................177 V.3.3.1 One- and Two-tailed Amphiphiles...................................................177 V.3.3.2 Cholestane-based Amphiphiles........................................................179 V.3.4 Comparing Hydrophobicity and Antimicrobial Activity...........................180 V.3.4.1 One- and Two-tailed Amphiphiles....................................................180 V.3.4.2 Cholestane-based Amphiphiles..........................................................182 V.4 Comparison with Prior Work...........................................................................182 V.5 Conclusions......................................................................................................184 V.6 Experimental Procedures.................................................................................185 V.6.1 Preparation of Tri-carboxylato Amphiphiles Solutions in Aqueous Triethanolamine.........................................................................................185 V.6.2 Microbial Strains, Culture Conditions, and Preparations of Inocula for Susceptibility Testing.................................................................................185 V.6.3 Measurement of MICs...............................................................................187 References for Chapter V................................................................................................188 Chapter VI Intrinsic Activity of the 3CUrn Homologus Series Against Mycobacterium smegmatis...................................................................................................192 VI.1 The “inoculum effect”......................................................................................194 VI.2 Intrinsic Activity of Homologous Amphiphiles..............................................194 VI.3 Results and Discussions...................................................................................197 VI.3.1 MICs of the 3CUrn Series.........................................................................197 VI.3.2 Comparison with Previous Work...............................................................199 VI.3.3 Comparison of MICs and CMCs...............................................................199 VI.4 Conclusions......................................................................................................201 VI.5 Experimental Procedures.................................................................................201 VI.5.1 Microbial Strain, Culture Conditions, and Preparations of Inoculum for Susceptibility Testing.................................................................................201 VI.5.2 Measurement of MICs...............................................................................202 References for Chapter VI..............................................................................................203 Chapter VII Accomplishments, Conclusions, and Future Work....................................205 VII.1 Accomplishments.............................................................................................205 VII.2 Conclusions......................................................................................................206 VII.3 Future Work.....................................................................................................207 References for Chapter VII.............................................................................................208 APPENDICES................................................................................................................209 VITA...............................................................................................................................354 vi ii List of Figures Figure I.1 Common representations of an individual amphiphile...............................1 Figure I.2 Representation of amphiphile aggregates...................................................2 Figure I.3 Mono-, di-, and tri-ionic amphiphiles.........................................................5 Figure I.4 Schematic representations of proposed multi-headed amphiphiles............7 Figure I.5 Plots of log MEC (M) vs chain length in spermicidal (left) and log MIC (M) vs chain length in antifungal (right) assays of Z-n..............................8 Figure I.6 Plots of log MEC vs chain length in spermicidal assays of 1(p) and 2(p)10 Figure I.7 Various multi-headed amphiphiles with anti-HIV properties...................12 Figure I.8 Various Newkome-type dendrons (first and second generations) associated with ferrocene, dansyl, pyrene, and viologen...........................................14 Figure I.9 Structures of one-tailed tri-carboxylato amphiphiles having amido and carbamato linkers......................................................................................15 Figure I.10 Various compounds containing ureido functional groups........................17 Figure I.11 General representation and structure of one-tailed tri-carboxylato amphiphiles...............................................................................................18 Figure I.12 Various fatty acids tested for skin penetration rates and skin irritation....21 Figure I.13 General representations of two-tailed, tri-headed amphiphile series........22 Figure I.14 Polyol and polyamine dendrimers associated with cholestane moieties..24 Figure I.15 General structures of cholestane-based, tri-headed amphiphile series.....26 Figure II.1 X-ray crystal structure of tri-tert-butyl ester 3EUr16, showing the packing diagram and the intermolecular hydrogen bonding to water and to a neighboring molecule. Hydrogen-bond Donor(D)–Acceptor(A) distances and approximate ∠DHA: O(8)···N(2), 2.863(3) Å and 159.1°; O(15)···O(1), 2.718(4) Å and 170(4)°; O(15)···O(3), 2.843(4) Å and 169(4)°; N(4)···O(15), 2.832(3) Å and 153.4°. The other nitrogens on the ureido linker are just outside the range for significant hydrogen bonding. N(1)···O(8), 3.201(3) Å and 145.6°; N(3)···O(15), 3.074(3) Å and 141.6° ...................................................................................................................53 Figure III.1 General representation of two-tailed, tri-headed amphiphiles..................73 Figure IV.1 Structural representations of 5α- and 5β-cholestane..............................122 Figure IV.2 General structures of tri-headed amphiphiles series containing cholestane moiety.....................................................................................................123 Figure IV.3 X-ray crystal structure of 3EUr-α-cholestane (2a), showing the packing and the intermolecular hydrogen bonding to ethanol. Hydrogen-bond Donor(D)–Acceptor(A) distances and approximate ∠DHA: O(16)···O(1), 2.621(7) Å and 158.1°; O(15)···O(8), 2.625(6) Å and 161.0°; O(4)···O(16), 2.865(7) Å and 155(7)°; N(2)···O(15), 2.849(8) Å and 159.6°. The other nitrogens on the ureido linker are just outside the range for significant hydrogen bonding. N(3)···O(16), 3.035(7) Å and 141.6°; N(1)···O(15), 3.084(8) Å and 146.0°.............................................................................135 Figure V.1 Relationship between log MIC of the 3CUrn series vs chain length for E. coli, M. smegmatis (left) and C. albicans, C. neoformans, and S. cerevisiae (right). Error bars (not shown for clarity) are ± 0.3. Lines connecting points are eye guides...............................................................................175 ix Figure V.2 Relationship between log MIC of the 3CUr(n) and 3CUr1(n) series vs 2 2 chain length for C. neoformans (left) and C. albicans (right). Error bars (not shown for clarity) are ± 0.3. Lines connecting points are eye guides .................................................................................................................176 Figure V.3 Relationship between log MIC of one- and two-tailed amphiphiles vs logD for M. smegmatis (left) and C. albicans (right). Error bars (not shown for clarity) are ± 0.3......................................................................................181 Figure V.4 Relationship between log MIC and logD for C. neoformans (left) and S. cerevisiae (right). Error bars (not shown for clarity) are ± 0.3...............182 Figure VI.1 Effect of initial cell density on inhibition of growth of M. smegmatis for the 3CUrn series. Combined data of two separate assays⎯3.2 to 3.2 × 107 CFU/mL and 500 to 5.0 × 108 CFU/mL. Error bars (not shown for clarity) are ± 0.3...................................................................................................197 Figure VI.2 Effect of chain length on inhibition of growth of M. smegmatis of the 3CUrn series as function of the initial cell density. Error bars (not shown for clarity) are ± 0.3.................................................................................198 Figure VI.3 Comparison of log CMC and log MIC of the 3CUrn series at the highest and lowest initial cell densities of M. smegmatis....................................200 x
Description: